2_7e-3_1_0.1 / README.md
Onutoa's picture
update model card README.md
714f507
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: 2_7e-3_1_0.1
    results: []

2_7e-3_1_0.1

This model is a fine-tuned version of bert-large-uncased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6157
  • Accuracy: 0.7196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.007
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 11
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0957 1.0 590 1.6286 0.6214
1.1171 2.0 1180 0.6747 0.6217
0.8947 3.0 1770 2.3203 0.3786
0.9598 4.0 2360 0.9842 0.6217
0.9065 5.0 2950 0.7703 0.3933
0.9278 6.0 3540 0.6835 0.6217
0.8667 7.0 4130 1.2649 0.3783
0.9028 8.0 4720 0.8041 0.4847
0.8376 9.0 5310 0.6376 0.6382
0.8633 10.0 5900 0.8873 0.6346
0.8114 11.0 6490 0.6563 0.6517
0.7774 12.0 7080 0.6721 0.5927
0.7993 13.0 7670 0.7169 0.5593
0.783 14.0 8260 0.8230 0.6217
0.7426 15.0 8850 0.8903 0.6471
0.7765 16.0 9440 0.6656 0.5972
0.7135 17.0 10030 0.6012 0.6835
0.7211 18.0 10620 0.7250 0.6263
0.6977 19.0 11210 0.6059 0.6942
0.7171 20.0 11800 0.6088 0.6746
0.6492 21.0 12390 0.6587 0.6529
0.6865 22.0 12980 0.7926 0.6306
0.6446 23.0 13570 0.7486 0.6373
0.6424 24.0 14160 0.5743 0.6920
0.6075 25.0 14750 0.6606 0.7116
0.5918 26.0 15340 0.9846 0.5734
0.6047 27.0 15930 0.7312 0.6327
0.5819 28.0 16520 0.6141 0.7131
0.5636 29.0 17110 0.6814 0.7061
0.5673 30.0 17700 0.6304 0.7208
0.5631 31.0 18290 0.5952 0.6994
0.5297 32.0 18880 0.6358 0.7055
0.5253 33.0 19470 0.6810 0.6801
0.5226 34.0 20060 0.6240 0.7196
0.5117 35.0 20650 0.6342 0.6966
0.5066 36.0 21240 0.5623 0.7177
0.4968 37.0 21830 0.5724 0.7153
0.4829 38.0 22420 0.6402 0.7257
0.4892 39.0 23010 0.6528 0.7266
0.4782 40.0 23600 0.9618 0.7003
0.4845 41.0 24190 0.7193 0.7205
0.4742 42.0 24780 0.6461 0.7089
0.4564 43.0 25370 0.5987 0.7260
0.4592 44.0 25960 0.6792 0.7031
0.4402 45.0 26550 0.6405 0.7187
0.4314 46.0 27140 0.6285 0.7193
0.4351 47.0 27730 0.6312 0.7217
0.4366 48.0 28320 0.6445 0.7177
0.4315 49.0 28910 0.5979 0.7281
0.4207 50.0 29500 0.6114 0.7232
0.4099 51.0 30090 0.6984 0.7083
0.4018 52.0 30680 0.6533 0.7125
0.3998 53.0 31270 0.6237 0.7174
0.3978 54.0 31860 0.6144 0.7214
0.3975 55.0 32450 0.6166 0.7245
0.396 56.0 33040 0.6707 0.7138
0.3958 57.0 33630 0.6091 0.7187
0.3901 58.0 34220 0.6157 0.7202
0.3816 59.0 34810 0.6077 0.7239
0.3754 60.0 35400 0.6157 0.7196

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3