|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1000000 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: فتى يرتدي اللون الأحمر ينزلق على متن عربة نفخة |
|
sentences: |
|
- اثنان من الشباب الآسيويين يتسكعون |
|
- فتى يلعب على عربة نفخة |
|
- فتى يثقب سكيناً في عربة نفخة |
|
- source_sentence: عامل بناء يقف على رافعة يضع ذراعًا كبيرًا على قمة قمة قيد الإنشاء. |
|
sentences: |
|
- الاطفال يركبون عربة متعة |
|
- شخص يقف |
|
- لا أحد يقف |
|
- source_sentence: رجل مع حفرة طاقة كبيرة يقف بجانب ابنته مع خرطوم المكنسة الكهربائية. |
|
sentences: |
|
- جنديان يحملان أسلحة |
|
- رجل يحمل مثقاب يقف بجانب فتاة تحمل خرطوم كهربائي |
|
- الرجل والفتاة يرسمون الجدران |
|
- source_sentence: رجل يرتدي قميص أسود يعزف على الجيتار. |
|
sentences: |
|
- الرجل يرتدي الأسود. |
|
- هناك رجل يفرغ |
|
- الرجل يرتدي قميصاً أزرق. |
|
- source_sentence: رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا |
|
sentences: |
|
- رجل يلعب بالكاميرا |
|
- فتى يقفز في الهواء |
|
- الرجل يقف ويأخذ الصور |
|
model-index: |
|
- name: SentenceTransformer based on aubmindlab/bert-base-arabertv02 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8137491067613172 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8139804248887779 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.805239691712325 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8071457719582591 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8053105962459932 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8078084689219578 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8019135317246738 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7961388104098682 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8137491067613172 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8139804248887779 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.8137491067613172 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8139804248887779 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.805239691712325 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8071457719582591 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8053105962459932 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8078084689219578 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8019135317246738 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7961388104098682 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8137491067613172 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8139804248887779 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8127890716639393 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.813769735512917 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8045619532064516 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.806084784718251 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8047817340341926 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8067787363048019 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7985706834990611 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7926669266198092 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8127890716639393 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.813769735512917 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.8127890716639393 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.813769735512917 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8045619532064516 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.806084784718251 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8047817340341926 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8067787363048019 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7985706834990611 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7926669266198092 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8127890716639393 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.813769735512917 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.810388221021721 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8138356923403065 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8015100804443567 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8026219149891689 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8016089017435591 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8030480833628191 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.792265476718613 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.787067391010805 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.810388221021721 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8138356923403065 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.810388221021721 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8138356923403065 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8015100804443567 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8026219149891689 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8016089017435591 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8030480833628191 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.792265476718613 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.787067391010805 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.810388221021721 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8138356923403065 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8071777671061434 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8128987608664245 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7969339482985063 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7972524285093451 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7971979787664204 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.797866628579141 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7752745908442699 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7685950685903284 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8071777671061434 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8128987608664245 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.8071777671061434 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8128987608664245 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7969339482985063 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7972524285093451 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7971979787664204 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.797866628579141 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7752745908442699 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7685950685903284 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8071777671061434 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8128987608664245 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7992861493805723 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.809205854296297 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7841737408240652 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7848704254075567 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7865782078684138 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7874610680426495 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7341564461014968 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7244607540987561 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7992861493805723 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.809205854296297 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.7992861493805723 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.809205854296297 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7841737408240652 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7848704254075567 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7865782078684138 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7874610680426495 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7341564461014968 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7244607540987561 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7992861493805723 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.809205854296297 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on aubmindlab/bert-base-arabertv02 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabert-matro-v4") |
|
# Run inference |
|
sentences = [ |
|
'رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا', |
|
'رجل يلعب بالكاميرا', |
|
'الرجل يقف ويأخذ الصور', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8137 | |
|
| **spearman_cosine** | **0.814** | |
|
| pearson_manhattan | 0.8052 | |
|
| spearman_manhattan | 0.8071 | |
|
| pearson_euclidean | 0.8053 | |
|
| spearman_euclidean | 0.8078 | |
|
| pearson_dot | 0.8019 | |
|
| spearman_dot | 0.7961 | |
|
| pearson_max | 0.8137 | |
|
| spearman_max | 0.814 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8128 | |
|
| **spearman_cosine** | **0.8138** | |
|
| pearson_manhattan | 0.8046 | |
|
| spearman_manhattan | 0.8061 | |
|
| pearson_euclidean | 0.8048 | |
|
| spearman_euclidean | 0.8068 | |
|
| pearson_dot | 0.7986 | |
|
| spearman_dot | 0.7927 | |
|
| pearson_max | 0.8128 | |
|
| spearman_max | 0.8138 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8104 | |
|
| **spearman_cosine** | **0.8138** | |
|
| pearson_manhattan | 0.8015 | |
|
| spearman_manhattan | 0.8026 | |
|
| pearson_euclidean | 0.8016 | |
|
| spearman_euclidean | 0.803 | |
|
| pearson_dot | 0.7923 | |
|
| spearman_dot | 0.7871 | |
|
| pearson_max | 0.8104 | |
|
| spearman_max | 0.8138 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8072 | |
|
| **spearman_cosine** | **0.8129** | |
|
| pearson_manhattan | 0.7969 | |
|
| spearman_manhattan | 0.7973 | |
|
| pearson_euclidean | 0.7972 | |
|
| spearman_euclidean | 0.7979 | |
|
| pearson_dot | 0.7753 | |
|
| spearman_dot | 0.7686 | |
|
| pearson_max | 0.8072 | |
|
| spearman_max | 0.8129 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7993 | |
|
| **spearman_cosine** | **0.8092** | |
|
| pearson_manhattan | 0.7842 | |
|
| spearman_manhattan | 0.7849 | |
|
| pearson_euclidean | 0.7866 | |
|
| spearman_euclidean | 0.7875 | |
|
| pearson_dot | 0.7342 | |
|
| spearman_dot | 0.7245 | |
|
| pearson_max | 0.7993 | |
|
| spearman_max | 0.8092 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8137 | |
|
| **spearman_cosine** | **0.814** | |
|
| pearson_manhattan | 0.8052 | |
|
| spearman_manhattan | 0.8071 | |
|
| pearson_euclidean | 0.8053 | |
|
| spearman_euclidean | 0.8078 | |
|
| pearson_dot | 0.8019 | |
|
| spearman_dot | 0.7961 | |
|
| pearson_max | 0.8137 | |
|
| spearman_max | 0.814 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8128 | |
|
| **spearman_cosine** | **0.8138** | |
|
| pearson_manhattan | 0.8046 | |
|
| spearman_manhattan | 0.8061 | |
|
| pearson_euclidean | 0.8048 | |
|
| spearman_euclidean | 0.8068 | |
|
| pearson_dot | 0.7986 | |
|
| spearman_dot | 0.7927 | |
|
| pearson_max | 0.8128 | |
|
| spearman_max | 0.8138 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8104 | |
|
| **spearman_cosine** | **0.8138** | |
|
| pearson_manhattan | 0.8015 | |
|
| spearman_manhattan | 0.8026 | |
|
| pearson_euclidean | 0.8016 | |
|
| spearman_euclidean | 0.803 | |
|
| pearson_dot | 0.7923 | |
|
| spearman_dot | 0.7871 | |
|
| pearson_max | 0.8104 | |
|
| spearman_max | 0.8138 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8072 | |
|
| **spearman_cosine** | **0.8129** | |
|
| pearson_manhattan | 0.7969 | |
|
| spearman_manhattan | 0.7973 | |
|
| pearson_euclidean | 0.7972 | |
|
| spearman_euclidean | 0.7979 | |
|
| pearson_dot | 0.7753 | |
|
| spearman_dot | 0.7686 | |
|
| pearson_max | 0.8072 | |
|
| spearman_max | 0.8129 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7993 | |
|
| **spearman_cosine** | **0.8092** | |
|
| pearson_manhattan | 0.7842 | |
|
| spearman_manhattan | 0.7849 | |
|
| pearson_euclidean | 0.7866 | |
|
| spearman_euclidean | 0.7875 | |
|
| pearson_dot | 0.7342 | |
|
| spearman_dot | 0.7245 | |
|
| pearson_max | 0.7993 | |
|
| spearman_max | 0.8092 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 1,000,000 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 12.0 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.78 tokens</li><li>max: 174 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 30.79 tokens</li><li>max: 216 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| <code>ما الذي تتجنبه؟</code> | <code>ما الذي تحاولين تجنبه دائماً؟</code> | <code>أنا في حالة اكتئاب ماذا يجب أن أفعل؟</code> | |
|
| <code>رجل يقف عند لافتة صفراء</code> | <code>رجل يقترب من علامة</code> | <code>رجل بجانب لافتة زرقاء</code> | |
|
| <code>لماذا قام (مودي) بحظر أوراق نقدية بقيمة 500 و 1000 روبية؟</code> | <code>لماذا قام مودي بإلغاء عملة الـ 500 و 1000 روبية؟ وما سبب إدخال عملة الـ 2000 روبية فجأة؟</code> | <code>ما هو أفضل خيار بعد الانتهاء من البكالوريوس في الهندسة الميكانيكية؟</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 14.87 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.54 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.14 tokens</li><li>max: 23 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0384 | 200 | 9.7813 | - | - | - | - | - | |
|
| 0.0768 | 400 | 4.4771 | - | - | - | - | - | |
|
| 0.1152 | 600 | 3.754 | - | - | - | - | - | |
|
| 0.1536 | 800 | 3.4086 | - | - | - | - | - | |
|
| 0.1920 | 1000 | 3.1323 | - | - | - | - | - | |
|
| 0.2304 | 1200 | 2.9257 | - | - | - | - | - | |
|
| 0.2688 | 1400 | 2.8363 | - | - | - | - | - | |
|
| 0.3072 | 1600 | 2.6156 | - | - | - | - | - | |
|
| 0.3456 | 1800 | 2.5428 | - | - | - | - | - | |
|
| 0.3840 | 2000 | 2.4927 | - | - | - | - | - | |
|
| 0.4223 | 2200 | 2.4 | - | - | - | - | - | |
|
| 0.4607 | 2400 | 2.3193 | - | - | - | - | - | |
|
| 0.4991 | 2600 | 2.2363 | - | - | - | - | - | |
|
| 0.5375 | 2800 | 2.1929 | - | - | - | - | - | |
|
| 0.5759 | 3000 | 2.1396 | - | - | - | - | - | |
|
| 0.6143 | 3200 | 2.0481 | - | - | - | - | - | |
|
| 0.6527 | 3400 | 2.0299 | - | - | - | - | - | |
|
| 0.6911 | 3600 | 1.9895 | - | - | - | - | - | |
|
| 0.7295 | 3800 | 1.9889 | - | - | - | - | - | |
|
| 0.7679 | 4000 | 1.9319 | - | - | - | - | - | |
|
| 0.8063 | 4200 | 1.8865 | - | - | - | - | - | |
|
| 0.8447 | 4400 | 1.8349 | - | - | - | - | - | |
|
| 0.8831 | 4600 | 1.8047 | - | - | - | - | - | |
|
| 0.9215 | 4800 | 1.8009 | - | - | - | - | - | |
|
| 0.9599 | 5000 | 1.7962 | - | - | - | - | - | |
|
| 0.9983 | 5200 | 1.7231 | - | - | - | - | - | |
|
| 1.0367 | 5400 | 0.0288 | - | - | - | - | - | |
|
| 1.0751 | 5600 | 0.0 | - | - | - | - | - | |
|
| 1.1135 | 5800 | 0.0 | - | - | - | - | - | |
|
| 1.1519 | 6000 | 0.0 | - | - | - | - | - | |
|
| 1.1902 | 6200 | 0.0 | - | - | - | - | - | |
|
| 1.0056 | 6400 | 0.2935 | - | - | - | - | - | |
|
| 1.0440 | 6600 | 1.7571 | - | - | - | - | - | |
|
| 1.0824 | 6800 | 1.6487 | - | - | - | - | - | |
|
| 1.1208 | 7000 | 1.6513 | - | - | - | - | - | |
|
| 1.1591 | 7200 | 1.5466 | - | - | - | - | - | |
|
| 1.1975 | 7400 | 1.4583 | - | - | - | - | - | |
|
| 1.2359 | 7600 | 1.3805 | - | - | - | - | - | |
|
| 1.2743 | 7800 | 1.3264 | - | - | - | - | - | |
|
| 1.3127 | 8000 | 1.1898 | - | - | - | - | - | |
|
| 1.3511 | 8200 | 1.1961 | - | - | - | - | - | |
|
| 1.3895 | 8400 | 1.1749 | - | - | - | - | - | |
|
| 1.4279 | 8600 | 1.1438 | - | - | - | - | - | |
|
| 1.4663 | 8800 | 1.1481 | - | - | - | - | - | |
|
| 1.5047 | 9000 | 1.089 | - | - | - | - | - | |
|
| 1.5431 | 9200 | 1.1063 | - | - | - | - | - | |
|
| 1.5815 | 9400 | 1.0759 | - | - | - | - | - | |
|
| 1.6199 | 9600 | 1.0215 | - | - | - | - | - | |
|
| 1.6583 | 9800 | 1.0244 | - | - | - | - | - | |
|
| 1.6967 | 10000 | 1.0546 | - | - | - | - | - | |
|
| 1.7351 | 10200 | 1.0355 | - | - | - | - | - | |
|
| 1.7735 | 10400 | 1.0078 | - | - | - | - | - | |
|
| 1.8119 | 10600 | 1.0102 | - | - | - | - | - | |
|
| 1.8503 | 10800 | 0.9899 | - | - | - | - | - | |
|
| 1.8887 | 11000 | 0.971 | - | - | - | - | - | |
|
| 1.9270 | 11200 | 0.9676 | - | - | - | - | - | |
|
| 1.9654 | 11400 | 0.9707 | - | - | - | - | - | |
|
| 2.0038 | 11600 | 0.8222 | - | - | - | - | - | |
|
| 2.0422 | 11800 | 0.0 | - | - | - | - | - | |
|
| 2.0806 | 12000 | 0.0 | - | - | - | - | - | |
|
| 2.1190 | 12200 | 0.0 | - | - | - | - | - | |
|
| 2.1574 | 12400 | 0.0 | - | - | - | - | - | |
|
| 2.1958 | 12600 | 0.0 | - | - | - | - | - | |
|
| 2.0111 | 12800 | 0.2783 | - | - | - | - | - | |
|
| 2.0495 | 13000 | 0.8261 | - | - | - | - | - | |
|
| 2.0879 | 13200 | 0.868 | - | - | - | - | - | |
|
| 2.1263 | 13400 | 0.8653 | - | - | - | - | - | |
|
| 2.1647 | 13600 | 0.8647 | - | - | - | - | - | |
|
| 2.2031 | 13800 | 0.8085 | - | - | - | - | - | |
|
| 2.2415 | 14000 | 0.8122 | - | - | - | - | - | |
|
| 2.2799 | 14200 | 0.7647 | - | - | - | - | - | |
|
| 2.3183 | 14400 | 0.6959 | - | - | - | - | - | |
|
| 2.3567 | 14600 | 0.7228 | - | - | - | - | - | |
|
| 2.3951 | 14800 | 0.7303 | - | - | - | - | - | |
|
| 2.4335 | 15000 | 0.7056 | - | - | - | - | - | |
|
| 2.4719 | 15200 | 0.737 | - | - | - | - | - | |
|
| 2.5103 | 15400 | 0.7016 | - | - | - | - | - | |
|
| 2.5487 | 15600 | 0.7183 | - | - | - | - | - | |
|
| 2.5538 | 15627 | - | 0.8129 | 0.8138 | 0.8138 | 0.8092 | 0.8140 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.43.1 |
|
- PyTorch: 2.2.2 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |