|
--- |
|
language: |
|
- ar |
|
library_name: sentence-transformers |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة |
|
sentences: |
|
- رجل يقدم عرضاً |
|
- هناك رجل بالخارج قرب الشاطئ |
|
- رجل يجلس على أريكه |
|
- source_sentence: رجل يقفز إلى سريره القذر |
|
sentences: |
|
- السرير قذر. |
|
- رجل يضحك أثناء غسيل الملابس |
|
- الرجل على القمر |
|
- source_sentence: الفتيات بالخارج |
|
sentences: |
|
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات |
|
- فتيان يركبان في جولة متعة |
|
- >- |
|
ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة |
|
تتحدث إليهن |
|
- source_sentence: الرجل يرتدي قميصاً أزرق. |
|
sentences: |
|
- >- |
|
رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة |
|
حمراء مع الماء في الخلفية. |
|
- كتاب القصص مفتوح |
|
- رجل يرتدي قميص أسود يعزف على الجيتار. |
|
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة. |
|
sentences: |
|
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه |
|
- رجل يستلقي على وجهه على مقعد في الحديقة. |
|
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet |
|
results: |
|
- dataset: |
|
config: default |
|
name: MTEB BIOSSES (default) |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
split: test |
|
type: mteb/biosses-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 72.5081840952171 |
|
- type: cosine_spearman |
|
value: 69.41362982941537 |
|
- type: euclidean_pearson |
|
value: 67.45121490183709 |
|
- type: euclidean_spearman |
|
value: 67.15273493989758 |
|
- type: main_score |
|
value: 69.41362982941537 |
|
- type: manhattan_pearson |
|
value: 67.6119022794479 |
|
- type: manhattan_spearman |
|
value: 67.51659865246586 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-R (default) |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
split: test |
|
type: mteb/sickr-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 83.61591268324493 |
|
- type: cosine_spearman |
|
value: 79.61914245705792 |
|
- type: euclidean_pearson |
|
value: 81.32044881859483 |
|
- type: euclidean_spearman |
|
value: 79.04866675279919 |
|
- type: main_score |
|
value: 79.61914245705792 |
|
- type: manhattan_pearson |
|
value: 81.09220518201322 |
|
- type: manhattan_spearman |
|
value: 78.87590523907905 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS12 (default) |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
split: test |
|
type: mteb/sts12-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 84.59807803376341 |
|
- type: cosine_spearman |
|
value: 77.38689922564416 |
|
- type: euclidean_pearson |
|
value: 83.92034850646732 |
|
- type: euclidean_spearman |
|
value: 76.75857193093438 |
|
- type: main_score |
|
value: 77.38689922564416 |
|
- type: manhattan_pearson |
|
value: 83.97191863964667 |
|
- type: manhattan_spearman |
|
value: 76.89790070725708 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS13 (default) |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
split: test |
|
type: mteb/sts13-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 78.18664268536664 |
|
- type: cosine_spearman |
|
value: 79.58989311630421 |
|
- type: euclidean_pearson |
|
value: 79.25259731614729 |
|
- type: euclidean_spearman |
|
value: 80.1701122827397 |
|
- type: main_score |
|
value: 79.58989311630421 |
|
- type: manhattan_pearson |
|
value: 79.12601451996869 |
|
- type: manhattan_spearman |
|
value: 79.98999436073663 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS14 (default) |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
split: test |
|
type: mteb/sts14-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 80.97541876658141 |
|
- type: cosine_spearman |
|
value: 79.78614320477877 |
|
- type: euclidean_pearson |
|
value: 81.01514505747167 |
|
- type: euclidean_spearman |
|
value: 80.73664735567839 |
|
- type: main_score |
|
value: 79.78614320477877 |
|
- type: manhattan_pearson |
|
value: 80.8746560526314 |
|
- type: manhattan_spearman |
|
value: 80.67025673179079 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS15 (default) |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
split: test |
|
type: mteb/sts15-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 85.23661155813113 |
|
- type: cosine_spearman |
|
value: 86.21134464371615 |
|
- type: euclidean_pearson |
|
value: 85.82518684522182 |
|
- type: euclidean_spearman |
|
value: 86.43600784349509 |
|
- type: main_score |
|
value: 86.21134464371615 |
|
- type: manhattan_pearson |
|
value: 85.83101152371589 |
|
- type: manhattan_spearman |
|
value: 86.42228695679498 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS16 (default) |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
split: test |
|
type: mteb/sts16-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 79.20106689077852 |
|
- type: cosine_spearman |
|
value: 81.39570893867825 |
|
- type: euclidean_pearson |
|
value: 80.39578888768929 |
|
- type: euclidean_spearman |
|
value: 81.19950443340412 |
|
- type: main_score |
|
value: 81.39570893867825 |
|
- type: manhattan_pearson |
|
value: 80.2226679341839 |
|
- type: manhattan_spearman |
|
value: 80.99142422593823 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 (ar-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 81.05294851623468 |
|
- type: cosine_spearman |
|
value: 81.10570655134113 |
|
- type: euclidean_pearson |
|
value: 79.22292773537778 |
|
- type: euclidean_spearman |
|
value: 78.84204232638425 |
|
- type: main_score |
|
value: 81.10570655134113 |
|
- type: manhattan_pearson |
|
value: 79.43750460320484 |
|
- type: manhattan_spearman |
|
value: 79.33713593557482 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar |
|
name: MTEB STS22 (ar) |
|
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 45.96875498680092 |
|
- type: cosine_spearman |
|
value: 52.405509117149904 |
|
- type: euclidean_pearson |
|
value: 42.097450896728226 |
|
- type: euclidean_spearman |
|
value: 50.89022884113707 |
|
- type: main_score |
|
value: 52.405509117149904 |
|
- type: manhattan_pearson |
|
value: 42.22827727075534 |
|
- type: manhattan_spearman |
|
value: 50.912841055442634 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSBenchmark (default) |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
split: test |
|
type: mteb/stsbenchmark-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 83.13261516884116 |
|
- type: cosine_spearman |
|
value: 84.3492527221498 |
|
- type: euclidean_pearson |
|
value: 82.691603178401 |
|
- type: euclidean_spearman |
|
value: 83.0499566200785 |
|
- type: main_score |
|
value: 84.3492527221498 |
|
- type: manhattan_pearson |
|
value: 82.68307441014618 |
|
- type: manhattan_spearman |
|
value: 83.01315787964519 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SummEval (default) |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
split: test |
|
type: mteb/summeval |
|
metrics: |
|
- type: cosine_pearson |
|
value: 31.149232235402845 |
|
- type: cosine_spearman |
|
value: 30.685504130606255 |
|
- type: dot_pearson |
|
value: 27.466307571160375 |
|
- type: dot_spearman |
|
value: 28.93064261485915 |
|
- type: main_score |
|
value: 30.685504130606255 |
|
- type: pearson |
|
value: 31.149232235402845 |
|
- type: spearman |
|
value: 30.685504130606255 |
|
task: |
|
type: Summarization |
|
- name: >- |
|
SentenceTransformer based on |
|
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8264447022356382 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8386403752382455 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8219134931449013 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.825509659109493 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8223094468630248 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8260503151751462 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6375226884845725 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6287228614640888 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8264447022356382 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8386403752382455 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8209661910768973 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8347149482673766 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8082811559854036 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8148314269262763 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8093138512113149 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8156468458613929 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5795109620454884 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5760223026552876 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8209661910768973 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8347149482673766 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.808708530451336 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8217532539767914 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7876121380998453 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7969092304137347 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7902997966909958 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7987635968785215 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.495047136234386 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.49287000679901516 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.808708530451336 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8217532539767914 |
|
name: Spearman Max |
|
license: apache-2.0 |
|
datasets: |
|
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/MiniLM-L12-v2-all-nli-triplet") |
|
# Run inference |
|
sentences = [ |
|
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', |
|
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', |
|
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8264 | |
|
| **spearman_cosine** | **0.8386** | |
|
| pearson_manhattan | 0.8219 | |
|
| spearman_manhattan | 0.8255 | |
|
| pearson_euclidean | 0.8223 | |
|
| spearman_euclidean | 0.8261 | |
|
| pearson_dot | 0.6375 | |
|
| spearman_dot | 0.6287 | |
|
| pearson_max | 0.8264 | |
|
| spearman_max | 0.8386 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.821 | |
|
| **spearman_cosine** | **0.8347** | |
|
| pearson_manhattan | 0.8083 | |
|
| spearman_manhattan | 0.8148 | |
|
| pearson_euclidean | 0.8093 | |
|
| spearman_euclidean | 0.8156 | |
|
| pearson_dot | 0.5795 | |
|
| spearman_dot | 0.576 | |
|
| pearson_max | 0.821 | |
|
| spearman_max | 0.8347 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8087 | |
|
| **spearman_cosine** | **0.8218** | |
|
| pearson_manhattan | 0.7876 | |
|
| spearman_manhattan | 0.7969 | |
|
| pearson_euclidean | 0.7903 | |
|
| spearman_euclidean | 0.7988 | |
|
| pearson_dot | 0.495 | |
|
| spearman_dot | 0.4929 | |
|
| pearson_max | 0.8087 | |
|
| spearman_max | 0.8218 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 10.33 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.21 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.32 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 21.86 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.22 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.2 tokens</li><li>max: 33 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | |
|
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:| |
|
| 0.0229 | 200 | 6.2204 | - | - | - | |
|
| 0.0459 | 400 | 4.9559 | - | - | - | |
|
| 0.0688 | 600 | 4.7835 | - | - | - | |
|
| 0.0918 | 800 | 4.2725 | - | - | - | |
|
| 0.1147 | 1000 | 4.291 | - | - | - | |
|
| 0.1377 | 1200 | 4.0704 | - | - | - | |
|
| 0.1606 | 1400 | 3.7962 | - | - | - | |
|
| 0.1835 | 1600 | 3.7447 | - | - | - | |
|
| 0.2065 | 1800 | 3.569 | - | - | - | |
|
| 0.2294 | 2000 | 3.5373 | - | - | - | |
|
| 0.2524 | 2200 | 3.608 | - | - | - | |
|
| 0.2753 | 2400 | 3.5609 | - | - | - | |
|
| 0.2983 | 2600 | 3.5231 | - | - | - | |
|
| 0.3212 | 2800 | 3.3312 | - | - | - | |
|
| 0.3442 | 3000 | 3.4803 | - | - | - | |
|
| 0.3671 | 3200 | 3.3552 | - | - | - | |
|
| 0.3900 | 3400 | 3.3024 | - | - | - | |
|
| 0.4130 | 3600 | 3.2559 | - | - | - | |
|
| 0.4359 | 3800 | 3.1882 | - | - | - | |
|
| 0.4589 | 4000 | 3.227 | - | - | - | |
|
| 0.4818 | 4200 | 3.0889 | - | - | - | |
|
| 0.5048 | 4400 | 3.0861 | - | - | - | |
|
| 0.5277 | 4600 | 3.0178 | - | - | - | |
|
| 0.5506 | 4800 | 3.231 | - | - | - | |
|
| 0.5736 | 5000 | 3.1593 | - | - | - | |
|
| 0.5965 | 5200 | 3.1101 | - | - | - | |
|
| 0.6195 | 5400 | 3.1307 | - | - | - | |
|
| 0.6424 | 5600 | 3.1265 | - | - | - | |
|
| 0.6654 | 5800 | 3.1116 | - | - | - | |
|
| 0.6883 | 6000 | 3.1417 | - | - | - | |
|
| 0.7113 | 6200 | 3.0862 | - | - | - | |
|
| 0.7342 | 6400 | 2.9652 | - | - | - | |
|
| 0.7571 | 6600 | 2.8466 | - | - | - | |
|
| 0.7801 | 6800 | 2.271 | - | - | - | |
|
| 0.8030 | 7000 | 2.046 | - | - | - | |
|
| 0.8260 | 7200 | 1.9634 | - | - | - | |
|
| 0.8489 | 7400 | 1.8875 | - | - | - | |
|
| 0.8719 | 7600 | 1.7655 | - | - | - | |
|
| 0.8948 | 7800 | 1.6874 | - | - | - | |
|
| 0.9177 | 8000 | 1.7315 | - | - | - | |
|
| 0.9407 | 8200 | 1.6674 | - | - | - | |
|
| 0.9636 | 8400 | 1.6574 | - | - | - | |
|
| 0.9866 | 8600 | 1.6142 | - | - | - | |
|
| 1.0 | 8717 | - | 0.8347 | 0.8386 | 0.8218 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
```markdown |
|
## Citation |
|
|
|
If you use the Arabic Matryoshka Embeddings Model, please cite it as follows: |
|
|
|
```bibtex |
|
@software{nacar2024, |
|
author = {Omer Nacar}, |
|
title = {Arabic Matryoshka Embeddings Model - Arabic MiniLM L12 v2 All Nli Triplet}, |
|
year = 2024, |
|
url = {https://huggingface.co/Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet}, |
|
version = {1.0.0}, |
|
} |