metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9332258064516129
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8587272727272727
verified: true
- name: Precision Macro
type: precision
value: 0.8619245385984416
verified: true
- name: Precision Micro
type: precision
value: 0.8587272727272727
verified: true
- name: Precision Weighted
type: precision
value: 0.8797945801452213
verified: true
- name: Recall Macro
type: recall
value: 0.9359690949227375
verified: true
- name: Recall Micro
type: recall
value: 0.8587272727272727
verified: true
- name: Recall Weighted
type: recall
value: 0.8587272727272727
verified: true
- name: F1 Macro
type: f1
value: 0.8922503214655346
verified: true
- name: F1 Micro
type: f1
value: 0.8587272727272727
verified: true
- name: F1 Weighted
type: f1
value: 0.8506829426037475
verified: true
- name: loss
type: loss
value: 0.9798759818077087
verified: true
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1259
- Accuracy: 0.9332
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 318 | 0.5952 | 0.7355 |
0.7663 | 2.0 | 636 | 0.3130 | 0.8742 |
0.7663 | 3.0 | 954 | 0.2024 | 0.9206 |
0.3043 | 4.0 | 1272 | 0.1590 | 0.9235 |
0.181 | 5.0 | 1590 | 0.1378 | 0.9303 |
0.181 | 6.0 | 1908 | 0.1287 | 0.9329 |
0.1468 | 7.0 | 2226 | 0.1259 | 0.9332 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0