Ogamon commited on
Commit
06ff3d1
·
verified ·
1 Parent(s): 8ca3ffc

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. README.md +60 -0
  3. added_tokens.json +24 -0
  4. all_results.json +9 -0
  5. checkpoint-22635/added_tokens.json +24 -0
  6. checkpoint-22635/config.json +29 -0
  7. checkpoint-22635/generation_config.json +14 -0
  8. checkpoint-22635/global_step22635/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-22635/global_step22635/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-22635/global_step22635/mp_rank_00_model_states.pt +3 -0
  11. checkpoint-22635/latest +1 -0
  12. checkpoint-22635/merges.txt +0 -0
  13. checkpoint-22635/model-00001-of-00004.safetensors +3 -0
  14. checkpoint-22635/model-00002-of-00004.safetensors +3 -0
  15. checkpoint-22635/model-00003-of-00004.safetensors +3 -0
  16. checkpoint-22635/model-00004-of-00004.safetensors +3 -0
  17. checkpoint-22635/model.safetensors.index.json +346 -0
  18. checkpoint-22635/rng_state_0.pth +3 -0
  19. checkpoint-22635/rng_state_1.pth +3 -0
  20. checkpoint-22635/scheduler.pt +3 -0
  21. checkpoint-22635/special_tokens_map.json +31 -0
  22. checkpoint-22635/tokenizer.json +3 -0
  23. checkpoint-22635/tokenizer_config.json +209 -0
  24. checkpoint-22635/trainer_state.json +0 -0
  25. checkpoint-22635/training_args.bin +3 -0
  26. checkpoint-22635/vocab.json +0 -0
  27. checkpoint-22635/zero_to_fp32.py +760 -0
  28. config.json +29 -0
  29. eval_2025-02-09-14-03-10/all_results.json +10 -0
  30. eval_2025-02-09-14-03-10/generated_predictions.jsonl +3 -0
  31. eval_2025-02-09-14-03-10/llamaboard_config.yaml +19 -0
  32. eval_2025-02-09-14-03-10/predict_results.json +10 -0
  33. eval_2025-02-09-14-03-10/running_log.txt +146 -0
  34. eval_2025-02-09-14-03-10/trainer_log.jsonl +270 -0
  35. eval_2025-02-09-14-03-10/training_args.yaml +19 -0
  36. generation_config.json +14 -0
  37. merges.txt +0 -0
  38. model-00001-of-00004.safetensors +3 -0
  39. model-00002-of-00004.safetensors +3 -0
  40. model-00003-of-00004.safetensors +3 -0
  41. model-00004-of-00004.safetensors +3 -0
  42. model.safetensors.index.json +346 -0
  43. running_log.txt +969 -0
  44. special_tokens_map.json +31 -0
  45. tokenizer.json +3 -0
  46. tokenizer_config.json +209 -0
  47. train_results.json +9 -0
  48. trainer_log.jsonl +0 -0
  49. trainer_state.json +0 -0
  50. training_args.bin +3 -0
.gitattributes CHANGED
@@ -37,3 +37,6 @@ checkpoint-5000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-10000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-15000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
  checkpoint-20000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
37
  checkpoint-10000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-15000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
  checkpoint-20000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-22635/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ eval_2025-02-09-14-03-10/generated_predictions.jsonl filter=lfs diff=lfs merge=lfs -text
42
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: train_2025-02-07-00-42-22_qwen
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # train_2025-02-07-00-42-22_qwen
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the train_hal_detection_1125 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-06
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 2
44
+ - total_train_batch_size: 2
45
+ - total_eval_batch_size: 16
46
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 3.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.3.0a0+ebedce2
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "num_input_tokens_seen": 44325984,
4
+ "total_flos": 1.8804729049283297e+18,
5
+ "train_loss": 0.11007208550827785,
6
+ "train_runtime": 220429.5839,
7
+ "train_samples_per_second": 0.205,
8
+ "train_steps_per_second": 0.103
9
+ }
checkpoint-22635/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-22635/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.2",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-22635/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
checkpoint-22635/global_step22635/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58fca8b8ab46926e151759ebcb2f68b727696bd69556fe682ebe84864089d8c0
3
+ size 45693717056
checkpoint-22635/global_step22635/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98308d9ae65aaf3b2a047459b5d7bf0c62ea317a7f4f02564c35a7f5739c8471
3
+ size 45693717120
checkpoint-22635/global_step22635/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f72a976a73691f114381411ec5254957ab141a9d449604429e8c1629c5b6a47d
3
+ size 15231325944
checkpoint-22635/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step22635
checkpoint-22635/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-22635/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8893ad23f6b4e25d558b7c3652f30827b46c172197c44cf04d009125dded5e
3
+ size 4877660776
checkpoint-22635/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96ab2dfbebcc95f38e511e5b0634de91a2856ee9f480edfcd2f88526397892d3
3
+ size 4932751008
checkpoint-22635/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e115bd279bb036f5fa3173fe465ab1a27f86506e63fc66e735f6b532b1649223
3
+ size 4330865200
checkpoint-22635/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481a0d59a11f12bacd51df1a156f2f59b5ff564682a2481c428fa925d81f79cc
3
+ size 1089994880
checkpoint-22635/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
checkpoint-22635/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34bcae41c589c7e4cab7b2ef263b878c90c2741404a6af11994dc31537b2319b
3
+ size 14512
checkpoint-22635/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d05dc84075e8f7dd1191c36f3be9dda12073208e12f7d2cef433c38d6336774a
3
+ size 14512
checkpoint-22635/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e33bbd4dda7e66662825ace3c1f6e43ac605769744e4e9d2a1226d5ad5f8385
3
+ size 1064
checkpoint-22635/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-22635/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-22635/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 2048,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-22635/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-22635/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3469befa03cfdc61d08fe4993d0b0451d621d80513a23011f8b231cbcb3efb30
3
+ size 7416
checkpoint-22635/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-22635/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.2",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
eval_2025-02-09-14-03-10/all_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_bleu-4": 78.68414603703702,
3
+ "predict_model_preparation_time": 0.0084,
4
+ "predict_rouge-1": 90.219668,
5
+ "predict_rouge-2": 87.06174974074074,
6
+ "predict_rouge-l": 89.22581688888889,
7
+ "predict_runtime": 909.0068,
8
+ "predict_samples_per_second": 2.97,
9
+ "predict_steps_per_second": 1.485
10
+ }
eval_2025-02-09-14-03-10/generated_predictions.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92736eac8ae008e3b9357df2e801a2ef0abdbdbcb4a4e797316f3a211b1c3801
3
+ size 11696749
eval_2025-02-09-14-03-10/llamaboard_config.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ eval.batch_size: 1
2
+ eval.cutoff_len: 2048
3
+ eval.dataset:
4
+ - test_hal_detection_1125
5
+ eval.dataset_dir: data
6
+ eval.max_new_tokens: 512
7
+ eval.max_samples: '100000'
8
+ eval.output_dir: eval_2025-02-09-14-03-10
9
+ eval.predict: true
10
+ eval.temperature: 0.95
11
+ eval.top_p: 0.7
12
+ top.booster: auto
13
+ top.checkpoint_path: train_2025-02-07-00-42-22_qwen
14
+ top.finetuning_type: full
15
+ top.model_name: Qwen2.5-7B-Instruct
16
+ top.quantization_bit: none
17
+ top.quantization_method: bitsandbytes
18
+ top.rope_scaling: none
19
+ top.template: qwen
eval_2025-02-09-14-03-10/predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_bleu-4": 78.68414603703702,
3
+ "predict_model_preparation_time": 0.0084,
4
+ "predict_rouge-1": 90.219668,
5
+ "predict_rouge-2": 87.06174974074074,
6
+ "predict_rouge-l": 89.22581688888889,
7
+ "predict_runtime": 909.0068,
8
+ "predict_samples_per_second": 2.97,
9
+ "predict_steps_per_second": 1.485
10
+ }
eval_2025-02-09-14-03-10/running_log.txt ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file added_tokens.json
2
+
3
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file special_tokens_map.json
4
+
5
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer_config.json
6
+
7
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file chat_template.jinja
8
+
9
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
10
+
11
+ [INFO|2025-02-09 14:04:47] configuration_utils.py:694 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
12
+
13
+ [INFO|2025-02-09 14:04:47] configuration_utils.py:768 >> Model config Qwen2Config {
14
+ "_name_or_path": "saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen",
15
+ "architectures": [
16
+ "Qwen2ForCausalLM"
17
+ ],
18
+ "attention_dropout": 0.0,
19
+ "bos_token_id": 151643,
20
+ "eos_token_id": 151645,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3584,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 18944,
25
+ "max_position_embeddings": 32768,
26
+ "max_window_layers": 28,
27
+ "model_type": "qwen2",
28
+ "num_attention_heads": 28,
29
+ "num_hidden_layers": 28,
30
+ "num_key_value_heads": 4,
31
+ "rms_norm_eps": 1e-06,
32
+ "rope_scaling": null,
33
+ "rope_theta": 1000000.0,
34
+ "sliding_window": null,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.48.2",
38
+ "use_cache": false,
39
+ "use_sliding_window": false,
40
+ "vocab_size": 152064
41
+ }
42
+
43
+
44
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file vocab.json
45
+
46
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file merges.txt
47
+
48
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer.json
49
+
50
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file added_tokens.json
51
+
52
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file special_tokens_map.json
53
+
54
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer_config.json
55
+
56
+ [INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file chat_template.jinja
57
+
58
+ [INFO|2025-02-09 14:04:48] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
59
+
60
+ [INFO|2025-02-09 14:04:48] logging.py:157 >> Add <|im_end|> to stop words.
61
+
62
+ [INFO|2025-02-09 14:04:48] logging.py:157 >> Loading dataset ragtruth_base_data/test_hallucination_detection_1125.json...
63
+
64
+ [INFO|2025-02-09 14:04:53] configuration_utils.py:694 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
65
+
66
+ [INFO|2025-02-09 14:04:53] configuration_utils.py:768 >> Model config Qwen2Config {
67
+ "_name_or_path": "saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen",
68
+ "architectures": [
69
+ "Qwen2ForCausalLM"
70
+ ],
71
+ "attention_dropout": 0.0,
72
+ "bos_token_id": 151643,
73
+ "eos_token_id": 151645,
74
+ "hidden_act": "silu",
75
+ "hidden_size": 3584,
76
+ "initializer_range": 0.02,
77
+ "intermediate_size": 18944,
78
+ "max_position_embeddings": 32768,
79
+ "max_window_layers": 28,
80
+ "model_type": "qwen2",
81
+ "num_attention_heads": 28,
82
+ "num_hidden_layers": 28,
83
+ "num_key_value_heads": 4,
84
+ "rms_norm_eps": 1e-06,
85
+ "rope_scaling": null,
86
+ "rope_theta": 1000000.0,
87
+ "sliding_window": null,
88
+ "tie_word_embeddings": false,
89
+ "torch_dtype": "bfloat16",
90
+ "transformers_version": "4.48.2",
91
+ "use_cache": false,
92
+ "use_sliding_window": false,
93
+ "vocab_size": 152064
94
+ }
95
+
96
+
97
+ [INFO|2025-02-09 14:04:53] logging.py:157 >> Using KV cache for faster generation.
98
+
99
+ [INFO|2025-02-09 14:04:53] modeling_utils.py:3901 >> loading weights file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/model.safetensors.index.json
100
+
101
+ [INFO|2025-02-09 14:04:53] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
102
+
103
+ [INFO|2025-02-09 14:04:53] configuration_utils.py:1140 >> Generate config GenerationConfig {
104
+ "bos_token_id": 151643,
105
+ "eos_token_id": 151645
106
+ }
107
+
108
+
109
+ [INFO|2025-02-09 14:04:56] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
110
+
111
+
112
+ [INFO|2025-02-09 14:04:56] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen.
113
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
114
+
115
+ [INFO|2025-02-09 14:04:57] configuration_utils.py:1093 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/generation_config.json
116
+
117
+ [INFO|2025-02-09 14:04:57] configuration_utils.py:1140 >> Generate config GenerationConfig {
118
+ "bos_token_id": 151643,
119
+ "do_sample": true,
120
+ "eos_token_id": [
121
+ 151645,
122
+ 151643
123
+ ],
124
+ "pad_token_id": 151643,
125
+ "repetition_penalty": 1.05,
126
+ "temperature": 0.7,
127
+ "top_k": 20,
128
+ "top_p": 0.8
129
+ }
130
+
131
+
132
+ [INFO|2025-02-09 14:04:57] logging.py:157 >> Using torch SDPA for faster training and inference.
133
+
134
+ [INFO|2025-02-09 14:04:57] logging.py:157 >> all params: 7,615,616,512
135
+
136
+ [WARNING|2025-02-09 14:04:57] logging.py:168 >> Batch generation can be very slow. Consider using `scripts/vllm_infer.py` instead.
137
+
138
+ [INFO|2025-02-09 14:04:57] trainer.py:4226 >>
139
+ ***** Running Prediction *****
140
+
141
+ [INFO|2025-02-09 14:04:57] trainer.py:4228 >> Num examples = 2700
142
+
143
+ [INFO|2025-02-09 14:04:57] trainer.py:4231 >> Batch size = 1
144
+
145
+ [INFO|2025-02-09 14:20:06] logging.py:157 >> Saving prediction results to saves/Qwen2.5-7B-Instruct/full/eval_2025-02-09-14-03-10/generated_predictions.jsonl
146
+
eval_2025-02-09-14-03-10/trainer_log.jsonl ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 5, "total_steps": 1350, "percentage": 0.37, "elapsed_time": "0:00:02", "remaining_time": "0:13:10"}
2
+ {"current_steps": 10, "total_steps": 1350, "percentage": 0.74, "elapsed_time": "0:00:04", "remaining_time": "0:10:21"}
3
+ {"current_steps": 15, "total_steps": 1350, "percentage": 1.11, "elapsed_time": "0:00:09", "remaining_time": "0:14:07"}
4
+ {"current_steps": 20, "total_steps": 1350, "percentage": 1.48, "elapsed_time": "0:00:11", "remaining_time": "0:12:28"}
5
+ {"current_steps": 25, "total_steps": 1350, "percentage": 1.85, "elapsed_time": "0:00:13", "remaining_time": "0:11:46"}
6
+ {"current_steps": 30, "total_steps": 1350, "percentage": 2.22, "elapsed_time": "0:00:15", "remaining_time": "0:11:24"}
7
+ {"current_steps": 35, "total_steps": 1350, "percentage": 2.59, "elapsed_time": "0:00:18", "remaining_time": "0:11:47"}
8
+ {"current_steps": 40, "total_steps": 1350, "percentage": 2.96, "elapsed_time": "0:00:21", "remaining_time": "0:11:37"}
9
+ {"current_steps": 45, "total_steps": 1350, "percentage": 3.33, "elapsed_time": "0:00:24", "remaining_time": "0:11:36"}
10
+ {"current_steps": 50, "total_steps": 1350, "percentage": 3.7, "elapsed_time": "0:00:25", "remaining_time": "0:11:06"}
11
+ {"current_steps": 55, "total_steps": 1350, "percentage": 4.07, "elapsed_time": "0:00:28", "remaining_time": "0:11:14"}
12
+ {"current_steps": 60, "total_steps": 1350, "percentage": 4.44, "elapsed_time": "0:00:32", "remaining_time": "0:11:44"}
13
+ {"current_steps": 65, "total_steps": 1350, "percentage": 4.81, "elapsed_time": "0:00:40", "remaining_time": "0:13:25"}
14
+ {"current_steps": 70, "total_steps": 1350, "percentage": 5.19, "elapsed_time": "0:00:42", "remaining_time": "0:12:54"}
15
+ {"current_steps": 75, "total_steps": 1350, "percentage": 5.56, "elapsed_time": "0:00:44", "remaining_time": "0:12:35"}
16
+ {"current_steps": 80, "total_steps": 1350, "percentage": 5.93, "elapsed_time": "0:00:49", "remaining_time": "0:13:05"}
17
+ {"current_steps": 85, "total_steps": 1350, "percentage": 6.3, "elapsed_time": "0:00:51", "remaining_time": "0:12:53"}
18
+ {"current_steps": 90, "total_steps": 1350, "percentage": 6.67, "elapsed_time": "0:00:56", "remaining_time": "0:13:06"}
19
+ {"current_steps": 95, "total_steps": 1350, "percentage": 7.04, "elapsed_time": "0:00:57", "remaining_time": "0:12:44"}
20
+ {"current_steps": 100, "total_steps": 1350, "percentage": 7.41, "elapsed_time": "0:01:06", "remaining_time": "0:13:56"}
21
+ {"current_steps": 105, "total_steps": 1350, "percentage": 7.78, "elapsed_time": "0:01:19", "remaining_time": "0:15:37"}
22
+ {"current_steps": 110, "total_steps": 1350, "percentage": 8.15, "elapsed_time": "0:01:24", "remaining_time": "0:15:52"}
23
+ {"current_steps": 115, "total_steps": 1350, "percentage": 8.52, "elapsed_time": "0:01:36", "remaining_time": "0:17:12"}
24
+ {"current_steps": 120, "total_steps": 1350, "percentage": 8.89, "elapsed_time": "0:01:37", "remaining_time": "0:16:43"}
25
+ {"current_steps": 125, "total_steps": 1350, "percentage": 9.26, "elapsed_time": "0:01:39", "remaining_time": "0:16:18"}
26
+ {"current_steps": 130, "total_steps": 1350, "percentage": 9.63, "elapsed_time": "0:01:41", "remaining_time": "0:15:53"}
27
+ {"current_steps": 135, "total_steps": 1350, "percentage": 10.0, "elapsed_time": "0:01:45", "remaining_time": "0:15:48"}
28
+ {"current_steps": 140, "total_steps": 1350, "percentage": 10.37, "elapsed_time": "0:01:47", "remaining_time": "0:15:27"}
29
+ {"current_steps": 145, "total_steps": 1350, "percentage": 10.74, "elapsed_time": "0:01:49", "remaining_time": "0:15:11"}
30
+ {"current_steps": 150, "total_steps": 1350, "percentage": 11.11, "elapsed_time": "0:01:51", "remaining_time": "0:14:55"}
31
+ {"current_steps": 155, "total_steps": 1350, "percentage": 11.48, "elapsed_time": "0:01:53", "remaining_time": "0:14:38"}
32
+ {"current_steps": 160, "total_steps": 1350, "percentage": 11.85, "elapsed_time": "0:01:58", "remaining_time": "0:14:43"}
33
+ {"current_steps": 165, "total_steps": 1350, "percentage": 12.22, "elapsed_time": "0:02:00", "remaining_time": "0:14:26"}
34
+ {"current_steps": 170, "total_steps": 1350, "percentage": 12.59, "elapsed_time": "0:02:02", "remaining_time": "0:14:10"}
35
+ {"current_steps": 175, "total_steps": 1350, "percentage": 12.96, "elapsed_time": "0:02:08", "remaining_time": "0:14:22"}
36
+ {"current_steps": 180, "total_steps": 1350, "percentage": 13.33, "elapsed_time": "0:02:10", "remaining_time": "0:14:11"}
37
+ {"current_steps": 185, "total_steps": 1350, "percentage": 13.7, "elapsed_time": "0:02:16", "remaining_time": "0:14:21"}
38
+ {"current_steps": 190, "total_steps": 1350, "percentage": 14.07, "elapsed_time": "0:02:18", "remaining_time": "0:14:05"}
39
+ {"current_steps": 195, "total_steps": 1350, "percentage": 14.44, "elapsed_time": "0:02:21", "remaining_time": "0:14:00"}
40
+ {"current_steps": 200, "total_steps": 1350, "percentage": 14.81, "elapsed_time": "0:02:25", "remaining_time": "0:13:59"}
41
+ {"current_steps": 205, "total_steps": 1350, "percentage": 15.19, "elapsed_time": "0:02:27", "remaining_time": "0:13:46"}
42
+ {"current_steps": 210, "total_steps": 1350, "percentage": 15.56, "elapsed_time": "0:02:32", "remaining_time": "0:13:47"}
43
+ {"current_steps": 215, "total_steps": 1350, "percentage": 15.93, "elapsed_time": "0:02:36", "remaining_time": "0:13:44"}
44
+ {"current_steps": 220, "total_steps": 1350, "percentage": 16.3, "elapsed_time": "0:02:39", "remaining_time": "0:13:37"}
45
+ {"current_steps": 225, "total_steps": 1350, "percentage": 16.67, "elapsed_time": "0:02:42", "remaining_time": "0:13:32"}
46
+ {"current_steps": 230, "total_steps": 1350, "percentage": 17.04, "elapsed_time": "0:02:48", "remaining_time": "0:13:39"}
47
+ {"current_steps": 235, "total_steps": 1350, "percentage": 17.41, "elapsed_time": "0:02:50", "remaining_time": "0:13:28"}
48
+ {"current_steps": 240, "total_steps": 1350, "percentage": 17.78, "elapsed_time": "0:02:53", "remaining_time": "0:13:21"}
49
+ {"current_steps": 245, "total_steps": 1350, "percentage": 18.15, "elapsed_time": "0:02:54", "remaining_time": "0:13:08"}
50
+ {"current_steps": 250, "total_steps": 1350, "percentage": 18.52, "elapsed_time": "0:02:57", "remaining_time": "0:13:02"}
51
+ {"current_steps": 255, "total_steps": 1350, "percentage": 18.89, "elapsed_time": "0:03:01", "remaining_time": "0:12:59"}
52
+ {"current_steps": 260, "total_steps": 1350, "percentage": 19.26, "elapsed_time": "0:03:03", "remaining_time": "0:12:48"}
53
+ {"current_steps": 265, "total_steps": 1350, "percentage": 19.63, "elapsed_time": "0:03:05", "remaining_time": "0:12:37"}
54
+ {"current_steps": 270, "total_steps": 1350, "percentage": 20.0, "elapsed_time": "0:03:09", "remaining_time": "0:12:36"}
55
+ {"current_steps": 275, "total_steps": 1350, "percentage": 20.37, "elapsed_time": "0:03:12", "remaining_time": "0:12:33"}
56
+ {"current_steps": 280, "total_steps": 1350, "percentage": 20.74, "elapsed_time": "0:03:14", "remaining_time": "0:12:25"}
57
+ {"current_steps": 285, "total_steps": 1350, "percentage": 21.11, "elapsed_time": "0:03:18", "remaining_time": "0:12:21"}
58
+ {"current_steps": 290, "total_steps": 1350, "percentage": 21.48, "elapsed_time": "0:03:20", "remaining_time": "0:12:14"}
59
+ {"current_steps": 295, "total_steps": 1350, "percentage": 21.85, "elapsed_time": "0:03:25", "remaining_time": "0:12:16"}
60
+ {"current_steps": 300, "total_steps": 1350, "percentage": 22.22, "elapsed_time": "0:03:35", "remaining_time": "0:12:32"}
61
+ {"current_steps": 305, "total_steps": 1350, "percentage": 22.59, "elapsed_time": "0:03:38", "remaining_time": "0:12:27"}
62
+ {"current_steps": 310, "total_steps": 1350, "percentage": 22.96, "elapsed_time": "0:03:41", "remaining_time": "0:12:22"}
63
+ {"current_steps": 315, "total_steps": 1350, "percentage": 23.33, "elapsed_time": "0:03:43", "remaining_time": "0:12:14"}
64
+ {"current_steps": 320, "total_steps": 1350, "percentage": 23.7, "elapsed_time": "0:03:45", "remaining_time": "0:12:07"}
65
+ {"current_steps": 325, "total_steps": 1350, "percentage": 24.07, "elapsed_time": "0:03:47", "remaining_time": "0:11:58"}
66
+ {"current_steps": 330, "total_steps": 1350, "percentage": 24.44, "elapsed_time": "0:03:52", "remaining_time": "0:11:59"}
67
+ {"current_steps": 335, "total_steps": 1350, "percentage": 24.81, "elapsed_time": "0:03:54", "remaining_time": "0:11:50"}
68
+ {"current_steps": 340, "total_steps": 1350, "percentage": 25.19, "elapsed_time": "0:03:59", "remaining_time": "0:11:50"}
69
+ {"current_steps": 345, "total_steps": 1350, "percentage": 25.56, "elapsed_time": "0:04:02", "remaining_time": "0:11:45"}
70
+ {"current_steps": 350, "total_steps": 1350, "percentage": 25.93, "elapsed_time": "0:04:05", "remaining_time": "0:11:40"}
71
+ {"current_steps": 355, "total_steps": 1350, "percentage": 26.3, "elapsed_time": "0:04:07", "remaining_time": "0:11:34"}
72
+ {"current_steps": 360, "total_steps": 1350, "percentage": 26.67, "elapsed_time": "0:04:09", "remaining_time": "0:11:25"}
73
+ {"current_steps": 365, "total_steps": 1350, "percentage": 27.04, "elapsed_time": "0:04:17", "remaining_time": "0:11:33"}
74
+ {"current_steps": 370, "total_steps": 1350, "percentage": 27.41, "elapsed_time": "0:04:20", "remaining_time": "0:11:30"}
75
+ {"current_steps": 375, "total_steps": 1350, "percentage": 27.78, "elapsed_time": "0:04:32", "remaining_time": "0:11:48"}
76
+ {"current_steps": 380, "total_steps": 1350, "percentage": 28.15, "elapsed_time": "0:04:34", "remaining_time": "0:11:40"}
77
+ {"current_steps": 385, "total_steps": 1350, "percentage": 28.52, "elapsed_time": "0:04:37", "remaining_time": "0:11:35"}
78
+ {"current_steps": 390, "total_steps": 1350, "percentage": 28.89, "elapsed_time": "0:04:39", "remaining_time": "0:11:27"}
79
+ {"current_steps": 395, "total_steps": 1350, "percentage": 29.26, "elapsed_time": "0:04:45", "remaining_time": "0:11:30"}
80
+ {"current_steps": 400, "total_steps": 1350, "percentage": 29.63, "elapsed_time": "0:04:47", "remaining_time": "0:11:23"}
81
+ {"current_steps": 405, "total_steps": 1350, "percentage": 30.0, "elapsed_time": "0:04:49", "remaining_time": "0:11:16"}
82
+ {"current_steps": 410, "total_steps": 1350, "percentage": 30.37, "elapsed_time": "0:04:51", "remaining_time": "0:11:08"}
83
+ {"current_steps": 415, "total_steps": 1350, "percentage": 30.74, "elapsed_time": "0:04:53", "remaining_time": "0:11:00"}
84
+ {"current_steps": 420, "total_steps": 1350, "percentage": 31.11, "elapsed_time": "0:05:02", "remaining_time": "0:11:09"}
85
+ {"current_steps": 425, "total_steps": 1350, "percentage": 31.48, "elapsed_time": "0:05:03", "remaining_time": "0:11:01"}
86
+ {"current_steps": 430, "total_steps": 1350, "percentage": 31.85, "elapsed_time": "0:05:05", "remaining_time": "0:10:53"}
87
+ {"current_steps": 435, "total_steps": 1350, "percentage": 32.22, "elapsed_time": "0:05:10", "remaining_time": "0:10:52"}
88
+ {"current_steps": 440, "total_steps": 1350, "percentage": 32.59, "elapsed_time": "0:05:12", "remaining_time": "0:10:45"}
89
+ {"current_steps": 445, "total_steps": 1350, "percentage": 32.96, "elapsed_time": "0:05:15", "remaining_time": "0:10:42"}
90
+ {"current_steps": 450, "total_steps": 1350, "percentage": 33.33, "elapsed_time": "0:05:17", "remaining_time": "0:10:35"}
91
+ {"current_steps": 455, "total_steps": 1350, "percentage": 33.7, "elapsed_time": "0:05:19", "remaining_time": "0:10:28"}
92
+ {"current_steps": 460, "total_steps": 1350, "percentage": 34.07, "elapsed_time": "0:05:22", "remaining_time": "0:10:23"}
93
+ {"current_steps": 465, "total_steps": 1350, "percentage": 34.44, "elapsed_time": "0:05:24", "remaining_time": "0:10:17"}
94
+ {"current_steps": 470, "total_steps": 1350, "percentage": 34.81, "elapsed_time": "0:05:26", "remaining_time": "0:10:11"}
95
+ {"current_steps": 475, "total_steps": 1350, "percentage": 35.19, "elapsed_time": "0:05:29", "remaining_time": "0:10:06"}
96
+ {"current_steps": 480, "total_steps": 1350, "percentage": 35.56, "elapsed_time": "0:05:31", "remaining_time": "0:10:01"}
97
+ {"current_steps": 485, "total_steps": 1350, "percentage": 35.93, "elapsed_time": "0:05:34", "remaining_time": "0:09:55"}
98
+ {"current_steps": 490, "total_steps": 1350, "percentage": 36.3, "elapsed_time": "0:05:36", "remaining_time": "0:09:49"}
99
+ {"current_steps": 495, "total_steps": 1350, "percentage": 36.67, "elapsed_time": "0:05:38", "remaining_time": "0:09:44"}
100
+ {"current_steps": 500, "total_steps": 1350, "percentage": 37.04, "elapsed_time": "0:05:40", "remaining_time": "0:09:38"}
101
+ {"current_steps": 505, "total_steps": 1350, "percentage": 37.41, "elapsed_time": "0:05:45", "remaining_time": "0:09:37"}
102
+ {"current_steps": 510, "total_steps": 1350, "percentage": 37.78, "elapsed_time": "0:05:47", "remaining_time": "0:09:32"}
103
+ {"current_steps": 515, "total_steps": 1350, "percentage": 38.15, "elapsed_time": "0:05:50", "remaining_time": "0:09:28"}
104
+ {"current_steps": 520, "total_steps": 1350, "percentage": 38.52, "elapsed_time": "0:05:53", "remaining_time": "0:09:24"}
105
+ {"current_steps": 525, "total_steps": 1350, "percentage": 38.89, "elapsed_time": "0:05:55", "remaining_time": "0:09:19"}
106
+ {"current_steps": 530, "total_steps": 1350, "percentage": 39.26, "elapsed_time": "0:05:58", "remaining_time": "0:09:14"}
107
+ {"current_steps": 535, "total_steps": 1350, "percentage": 39.63, "elapsed_time": "0:06:01", "remaining_time": "0:09:10"}
108
+ {"current_steps": 540, "total_steps": 1350, "percentage": 40.0, "elapsed_time": "0:06:03", "remaining_time": "0:09:05"}
109
+ {"current_steps": 545, "total_steps": 1350, "percentage": 40.37, "elapsed_time": "0:06:06", "remaining_time": "0:09:01"}
110
+ {"current_steps": 550, "total_steps": 1350, "percentage": 40.74, "elapsed_time": "0:06:10", "remaining_time": "0:08:58"}
111
+ {"current_steps": 555, "total_steps": 1350, "percentage": 41.11, "elapsed_time": "0:06:12", "remaining_time": "0:08:52"}
112
+ {"current_steps": 560, "total_steps": 1350, "percentage": 41.48, "elapsed_time": "0:06:14", "remaining_time": "0:08:47"}
113
+ {"current_steps": 565, "total_steps": 1350, "percentage": 41.85, "elapsed_time": "0:06:15", "remaining_time": "0:08:42"}
114
+ {"current_steps": 570, "total_steps": 1350, "percentage": 42.22, "elapsed_time": "0:06:20", "remaining_time": "0:08:40"}
115
+ {"current_steps": 575, "total_steps": 1350, "percentage": 42.59, "elapsed_time": "0:06:22", "remaining_time": "0:08:35"}
116
+ {"current_steps": 580, "total_steps": 1350, "percentage": 42.96, "elapsed_time": "0:06:24", "remaining_time": "0:08:30"}
117
+ {"current_steps": 585, "total_steps": 1350, "percentage": 43.33, "elapsed_time": "0:06:28", "remaining_time": "0:08:28"}
118
+ {"current_steps": 590, "total_steps": 1350, "percentage": 43.7, "elapsed_time": "0:06:30", "remaining_time": "0:08:23"}
119
+ {"current_steps": 595, "total_steps": 1350, "percentage": 44.07, "elapsed_time": "0:06:33", "remaining_time": "0:08:18"}
120
+ {"current_steps": 600, "total_steps": 1350, "percentage": 44.44, "elapsed_time": "0:06:35", "remaining_time": "0:08:14"}
121
+ {"current_steps": 605, "total_steps": 1350, "percentage": 44.81, "elapsed_time": "0:06:38", "remaining_time": "0:08:11"}
122
+ {"current_steps": 610, "total_steps": 1350, "percentage": 45.19, "elapsed_time": "0:06:41", "remaining_time": "0:08:07"}
123
+ {"current_steps": 615, "total_steps": 1350, "percentage": 45.56, "elapsed_time": "0:06:45", "remaining_time": "0:08:04"}
124
+ {"current_steps": 620, "total_steps": 1350, "percentage": 45.93, "elapsed_time": "0:06:48", "remaining_time": "0:08:01"}
125
+ {"current_steps": 625, "total_steps": 1350, "percentage": 46.3, "elapsed_time": "0:06:51", "remaining_time": "0:07:56"}
126
+ {"current_steps": 630, "total_steps": 1350, "percentage": 46.67, "elapsed_time": "0:06:53", "remaining_time": "0:07:52"}
127
+ {"current_steps": 635, "total_steps": 1350, "percentage": 47.04, "elapsed_time": "0:06:55", "remaining_time": "0:07:48"}
128
+ {"current_steps": 640, "total_steps": 1350, "percentage": 47.41, "elapsed_time": "0:06:57", "remaining_time": "0:07:43"}
129
+ {"current_steps": 645, "total_steps": 1350, "percentage": 47.78, "elapsed_time": "0:07:01", "remaining_time": "0:07:40"}
130
+ {"current_steps": 650, "total_steps": 1350, "percentage": 48.15, "elapsed_time": "0:07:03", "remaining_time": "0:07:35"}
131
+ {"current_steps": 655, "total_steps": 1350, "percentage": 48.52, "elapsed_time": "0:07:05", "remaining_time": "0:07:31"}
132
+ {"current_steps": 660, "total_steps": 1350, "percentage": 48.89, "elapsed_time": "0:07:07", "remaining_time": "0:07:27"}
133
+ {"current_steps": 665, "total_steps": 1350, "percentage": 49.26, "elapsed_time": "0:07:11", "remaining_time": "0:07:24"}
134
+ {"current_steps": 670, "total_steps": 1350, "percentage": 49.63, "elapsed_time": "0:07:13", "remaining_time": "0:07:19"}
135
+ {"current_steps": 675, "total_steps": 1350, "percentage": 50.0, "elapsed_time": "0:07:15", "remaining_time": "0:07:15"}
136
+ {"current_steps": 680, "total_steps": 1350, "percentage": 50.37, "elapsed_time": "0:07:20", "remaining_time": "0:07:13"}
137
+ {"current_steps": 685, "total_steps": 1350, "percentage": 50.74, "elapsed_time": "0:07:22", "remaining_time": "0:07:09"}
138
+ {"current_steps": 690, "total_steps": 1350, "percentage": 51.11, "elapsed_time": "0:07:23", "remaining_time": "0:07:04"}
139
+ {"current_steps": 695, "total_steps": 1350, "percentage": 51.48, "elapsed_time": "0:07:26", "remaining_time": "0:07:00"}
140
+ {"current_steps": 700, "total_steps": 1350, "percentage": 51.85, "elapsed_time": "0:07:28", "remaining_time": "0:06:56"}
141
+ {"current_steps": 705, "total_steps": 1350, "percentage": 52.22, "elapsed_time": "0:07:30", "remaining_time": "0:06:52"}
142
+ {"current_steps": 710, "total_steps": 1350, "percentage": 52.59, "elapsed_time": "0:07:33", "remaining_time": "0:06:48"}
143
+ {"current_steps": 715, "total_steps": 1350, "percentage": 52.96, "elapsed_time": "0:07:34", "remaining_time": "0:06:43"}
144
+ {"current_steps": 720, "total_steps": 1350, "percentage": 53.33, "elapsed_time": "0:07:38", "remaining_time": "0:06:41"}
145
+ {"current_steps": 725, "total_steps": 1350, "percentage": 53.7, "elapsed_time": "0:07:41", "remaining_time": "0:06:38"}
146
+ {"current_steps": 730, "total_steps": 1350, "percentage": 54.07, "elapsed_time": "0:07:44", "remaining_time": "0:06:34"}
147
+ {"current_steps": 735, "total_steps": 1350, "percentage": 54.44, "elapsed_time": "0:07:47", "remaining_time": "0:06:30"}
148
+ {"current_steps": 740, "total_steps": 1350, "percentage": 54.81, "elapsed_time": "0:07:51", "remaining_time": "0:06:28"}
149
+ {"current_steps": 745, "total_steps": 1350, "percentage": 55.19, "elapsed_time": "0:07:53", "remaining_time": "0:06:24"}
150
+ {"current_steps": 750, "total_steps": 1350, "percentage": 55.56, "elapsed_time": "0:07:57", "remaining_time": "0:06:21"}
151
+ {"current_steps": 755, "total_steps": 1350, "percentage": 55.93, "elapsed_time": "0:08:00", "remaining_time": "0:06:18"}
152
+ {"current_steps": 760, "total_steps": 1350, "percentage": 56.3, "elapsed_time": "0:08:02", "remaining_time": "0:06:14"}
153
+ {"current_steps": 765, "total_steps": 1350, "percentage": 56.67, "elapsed_time": "0:08:04", "remaining_time": "0:06:10"}
154
+ {"current_steps": 770, "total_steps": 1350, "percentage": 57.04, "elapsed_time": "0:08:06", "remaining_time": "0:06:06"}
155
+ {"current_steps": 775, "total_steps": 1350, "percentage": 57.41, "elapsed_time": "0:08:09", "remaining_time": "0:06:03"}
156
+ {"current_steps": 780, "total_steps": 1350, "percentage": 57.78, "elapsed_time": "0:08:11", "remaining_time": "0:05:58"}
157
+ {"current_steps": 785, "total_steps": 1350, "percentage": 58.15, "elapsed_time": "0:08:12", "remaining_time": "0:05:54"}
158
+ {"current_steps": 790, "total_steps": 1350, "percentage": 58.52, "elapsed_time": "0:08:15", "remaining_time": "0:05:51"}
159
+ {"current_steps": 795, "total_steps": 1350, "percentage": 58.89, "elapsed_time": "0:08:16", "remaining_time": "0:05:46"}
160
+ {"current_steps": 800, "total_steps": 1350, "percentage": 59.26, "elapsed_time": "0:08:19", "remaining_time": "0:05:43"}
161
+ {"current_steps": 805, "total_steps": 1350, "percentage": 59.63, "elapsed_time": "0:08:22", "remaining_time": "0:05:40"}
162
+ {"current_steps": 810, "total_steps": 1350, "percentage": 60.0, "elapsed_time": "0:08:24", "remaining_time": "0:05:36"}
163
+ {"current_steps": 815, "total_steps": 1350, "percentage": 60.37, "elapsed_time": "0:08:26", "remaining_time": "0:05:32"}
164
+ {"current_steps": 820, "total_steps": 1350, "percentage": 60.74, "elapsed_time": "0:08:29", "remaining_time": "0:05:29"}
165
+ {"current_steps": 825, "total_steps": 1350, "percentage": 61.11, "elapsed_time": "0:08:31", "remaining_time": "0:05:25"}
166
+ {"current_steps": 830, "total_steps": 1350, "percentage": 61.48, "elapsed_time": "0:08:33", "remaining_time": "0:05:21"}
167
+ {"current_steps": 835, "total_steps": 1350, "percentage": 61.85, "elapsed_time": "0:08:35", "remaining_time": "0:05:17"}
168
+ {"current_steps": 840, "total_steps": 1350, "percentage": 62.22, "elapsed_time": "0:08:37", "remaining_time": "0:05:14"}
169
+ {"current_steps": 845, "total_steps": 1350, "percentage": 62.59, "elapsed_time": "0:08:40", "remaining_time": "0:05:10"}
170
+ {"current_steps": 850, "total_steps": 1350, "percentage": 62.96, "elapsed_time": "0:08:41", "remaining_time": "0:05:06"}
171
+ {"current_steps": 855, "total_steps": 1350, "percentage": 63.33, "elapsed_time": "0:08:43", "remaining_time": "0:05:03"}
172
+ {"current_steps": 860, "total_steps": 1350, "percentage": 63.7, "elapsed_time": "0:08:46", "remaining_time": "0:04:59"}
173
+ {"current_steps": 865, "total_steps": 1350, "percentage": 64.07, "elapsed_time": "0:08:48", "remaining_time": "0:04:56"}
174
+ {"current_steps": 870, "total_steps": 1350, "percentage": 64.44, "elapsed_time": "0:08:50", "remaining_time": "0:04:52"}
175
+ {"current_steps": 875, "total_steps": 1350, "percentage": 64.81, "elapsed_time": "0:08:52", "remaining_time": "0:04:48"}
176
+ {"current_steps": 880, "total_steps": 1350, "percentage": 65.19, "elapsed_time": "0:08:54", "remaining_time": "0:04:45"}
177
+ {"current_steps": 885, "total_steps": 1350, "percentage": 65.56, "elapsed_time": "0:08:56", "remaining_time": "0:04:41"}
178
+ {"current_steps": 890, "total_steps": 1350, "percentage": 65.93, "elapsed_time": "0:08:58", "remaining_time": "0:04:38"}
179
+ {"current_steps": 895, "total_steps": 1350, "percentage": 66.3, "elapsed_time": "0:09:01", "remaining_time": "0:04:35"}
180
+ {"current_steps": 900, "total_steps": 1350, "percentage": 66.67, "elapsed_time": "0:09:03", "remaining_time": "0:04:31"}
181
+ {"current_steps": 905, "total_steps": 1350, "percentage": 67.04, "elapsed_time": "0:09:07", "remaining_time": "0:04:29"}
182
+ {"current_steps": 910, "total_steps": 1350, "percentage": 67.41, "elapsed_time": "0:09:11", "remaining_time": "0:04:26"}
183
+ {"current_steps": 915, "total_steps": 1350, "percentage": 67.78, "elapsed_time": "0:09:15", "remaining_time": "0:04:24"}
184
+ {"current_steps": 920, "total_steps": 1350, "percentage": 68.15, "elapsed_time": "0:09:18", "remaining_time": "0:04:21"}
185
+ {"current_steps": 925, "total_steps": 1350, "percentage": 68.52, "elapsed_time": "0:09:22", "remaining_time": "0:04:18"}
186
+ {"current_steps": 930, "total_steps": 1350, "percentage": 68.89, "elapsed_time": "0:09:26", "remaining_time": "0:04:15"}
187
+ {"current_steps": 935, "total_steps": 1350, "percentage": 69.26, "elapsed_time": "0:09:30", "remaining_time": "0:04:13"}
188
+ {"current_steps": 940, "total_steps": 1350, "percentage": 69.63, "elapsed_time": "0:09:33", "remaining_time": "0:04:10"}
189
+ {"current_steps": 945, "total_steps": 1350, "percentage": 70.0, "elapsed_time": "0:09:36", "remaining_time": "0:04:07"}
190
+ {"current_steps": 950, "total_steps": 1350, "percentage": 70.37, "elapsed_time": "0:09:40", "remaining_time": "0:04:04"}
191
+ {"current_steps": 955, "total_steps": 1350, "percentage": 70.74, "elapsed_time": "0:09:44", "remaining_time": "0:04:01"}
192
+ {"current_steps": 960, "total_steps": 1350, "percentage": 71.11, "elapsed_time": "0:09:50", "remaining_time": "0:04:00"}
193
+ {"current_steps": 965, "total_steps": 1350, "percentage": 71.48, "elapsed_time": "0:09:54", "remaining_time": "0:03:57"}
194
+ {"current_steps": 970, "total_steps": 1350, "percentage": 71.85, "elapsed_time": "0:09:59", "remaining_time": "0:03:54"}
195
+ {"current_steps": 975, "total_steps": 1350, "percentage": 72.22, "elapsed_time": "0:10:03", "remaining_time": "0:03:52"}
196
+ {"current_steps": 980, "total_steps": 1350, "percentage": 72.59, "elapsed_time": "0:10:06", "remaining_time": "0:03:49"}
197
+ {"current_steps": 985, "total_steps": 1350, "percentage": 72.96, "elapsed_time": "0:10:12", "remaining_time": "0:03:47"}
198
+ {"current_steps": 990, "total_steps": 1350, "percentage": 73.33, "elapsed_time": "0:10:16", "remaining_time": "0:03:44"}
199
+ {"current_steps": 995, "total_steps": 1350, "percentage": 73.7, "elapsed_time": "0:10:19", "remaining_time": "0:03:40"}
200
+ {"current_steps": 1000, "total_steps": 1350, "percentage": 74.07, "elapsed_time": "0:10:22", "remaining_time": "0:03:37"}
201
+ {"current_steps": 1005, "total_steps": 1350, "percentage": 74.44, "elapsed_time": "0:10:26", "remaining_time": "0:03:35"}
202
+ {"current_steps": 1010, "total_steps": 1350, "percentage": 74.81, "elapsed_time": "0:10:30", "remaining_time": "0:03:32"}
203
+ {"current_steps": 1015, "total_steps": 1350, "percentage": 75.19, "elapsed_time": "0:10:34", "remaining_time": "0:03:29"}
204
+ {"current_steps": 1020, "total_steps": 1350, "percentage": 75.56, "elapsed_time": "0:10:40", "remaining_time": "0:03:27"}
205
+ {"current_steps": 1025, "total_steps": 1350, "percentage": 75.93, "elapsed_time": "0:10:43", "remaining_time": "0:03:24"}
206
+ {"current_steps": 1030, "total_steps": 1350, "percentage": 76.3, "elapsed_time": "0:10:47", "remaining_time": "0:03:21"}
207
+ {"current_steps": 1035, "total_steps": 1350, "percentage": 76.67, "elapsed_time": "0:10:53", "remaining_time": "0:03:18"}
208
+ {"current_steps": 1040, "total_steps": 1350, "percentage": 77.04, "elapsed_time": "0:10:56", "remaining_time": "0:03:15"}
209
+ {"current_steps": 1045, "total_steps": 1350, "percentage": 77.41, "elapsed_time": "0:11:00", "remaining_time": "0:03:12"}
210
+ {"current_steps": 1050, "total_steps": 1350, "percentage": 77.78, "elapsed_time": "0:11:05", "remaining_time": "0:03:10"}
211
+ {"current_steps": 1055, "total_steps": 1350, "percentage": 78.15, "elapsed_time": "0:11:09", "remaining_time": "0:03:07"}
212
+ {"current_steps": 1060, "total_steps": 1350, "percentage": 78.52, "elapsed_time": "0:11:14", "remaining_time": "0:03:04"}
213
+ {"current_steps": 1065, "total_steps": 1350, "percentage": 78.89, "elapsed_time": "0:11:18", "remaining_time": "0:03:01"}
214
+ {"current_steps": 1070, "total_steps": 1350, "percentage": 79.26, "elapsed_time": "0:11:22", "remaining_time": "0:02:58"}
215
+ {"current_steps": 1075, "total_steps": 1350, "percentage": 79.63, "elapsed_time": "0:11:26", "remaining_time": "0:02:55"}
216
+ {"current_steps": 1080, "total_steps": 1350, "percentage": 80.0, "elapsed_time": "0:11:32", "remaining_time": "0:02:53"}
217
+ {"current_steps": 1085, "total_steps": 1350, "percentage": 80.37, "elapsed_time": "0:11:37", "remaining_time": "0:02:50"}
218
+ {"current_steps": 1090, "total_steps": 1350, "percentage": 80.74, "elapsed_time": "0:11:41", "remaining_time": "0:02:47"}
219
+ {"current_steps": 1095, "total_steps": 1350, "percentage": 81.11, "elapsed_time": "0:11:45", "remaining_time": "0:02:44"}
220
+ {"current_steps": 1100, "total_steps": 1350, "percentage": 81.48, "elapsed_time": "0:11:49", "remaining_time": "0:02:41"}
221
+ {"current_steps": 1105, "total_steps": 1350, "percentage": 81.85, "elapsed_time": "0:11:53", "remaining_time": "0:02:38"}
222
+ {"current_steps": 1110, "total_steps": 1350, "percentage": 82.22, "elapsed_time": "0:11:56", "remaining_time": "0:02:35"}
223
+ {"current_steps": 1115, "total_steps": 1350, "percentage": 82.59, "elapsed_time": "0:12:01", "remaining_time": "0:02:31"}
224
+ {"current_steps": 1120, "total_steps": 1350, "percentage": 82.96, "elapsed_time": "0:12:06", "remaining_time": "0:02:29"}
225
+ {"current_steps": 1125, "total_steps": 1350, "percentage": 83.33, "elapsed_time": "0:12:11", "remaining_time": "0:02:26"}
226
+ {"current_steps": 1130, "total_steps": 1350, "percentage": 83.7, "elapsed_time": "0:12:16", "remaining_time": "0:02:23"}
227
+ {"current_steps": 1135, "total_steps": 1350, "percentage": 84.07, "elapsed_time": "0:12:20", "remaining_time": "0:02:20"}
228
+ {"current_steps": 1140, "total_steps": 1350, "percentage": 84.44, "elapsed_time": "0:12:23", "remaining_time": "0:02:17"}
229
+ {"current_steps": 1145, "total_steps": 1350, "percentage": 84.81, "elapsed_time": "0:12:26", "remaining_time": "0:02:13"}
230
+ {"current_steps": 1150, "total_steps": 1350, "percentage": 85.19, "elapsed_time": "0:12:30", "remaining_time": "0:02:10"}
231
+ {"current_steps": 1155, "total_steps": 1350, "percentage": 85.56, "elapsed_time": "0:12:35", "remaining_time": "0:02:07"}
232
+ {"current_steps": 1160, "total_steps": 1350, "percentage": 85.93, "elapsed_time": "0:12:38", "remaining_time": "0:02:04"}
233
+ {"current_steps": 1165, "total_steps": 1350, "percentage": 86.3, "elapsed_time": "0:12:44", "remaining_time": "0:02:01"}
234
+ {"current_steps": 1170, "total_steps": 1350, "percentage": 86.67, "elapsed_time": "0:12:48", "remaining_time": "0:01:58"}
235
+ {"current_steps": 1175, "total_steps": 1350, "percentage": 87.04, "elapsed_time": "0:12:51", "remaining_time": "0:01:54"}
236
+ {"current_steps": 1180, "total_steps": 1350, "percentage": 87.41, "elapsed_time": "0:12:56", "remaining_time": "0:01:51"}
237
+ {"current_steps": 1185, "total_steps": 1350, "percentage": 87.78, "elapsed_time": "0:12:59", "remaining_time": "0:01:48"}
238
+ {"current_steps": 1190, "total_steps": 1350, "percentage": 88.15, "elapsed_time": "0:13:04", "remaining_time": "0:01:45"}
239
+ {"current_steps": 1195, "total_steps": 1350, "percentage": 88.52, "elapsed_time": "0:13:06", "remaining_time": "0:01:42"}
240
+ {"current_steps": 1200, "total_steps": 1350, "percentage": 88.89, "elapsed_time": "0:13:10", "remaining_time": "0:01:38"}
241
+ {"current_steps": 1205, "total_steps": 1350, "percentage": 89.26, "elapsed_time": "0:13:14", "remaining_time": "0:01:35"}
242
+ {"current_steps": 1210, "total_steps": 1350, "percentage": 89.63, "elapsed_time": "0:13:17", "remaining_time": "0:01:32"}
243
+ {"current_steps": 1215, "total_steps": 1350, "percentage": 90.0, "elapsed_time": "0:13:22", "remaining_time": "0:01:29"}
244
+ {"current_steps": 1220, "total_steps": 1350, "percentage": 90.37, "elapsed_time": "0:13:25", "remaining_time": "0:01:25"}
245
+ {"current_steps": 1225, "total_steps": 1350, "percentage": 90.74, "elapsed_time": "0:13:28", "remaining_time": "0:01:22"}
246
+ {"current_steps": 1230, "total_steps": 1350, "percentage": 91.11, "elapsed_time": "0:13:32", "remaining_time": "0:01:19"}
247
+ {"current_steps": 1235, "total_steps": 1350, "percentage": 91.48, "elapsed_time": "0:13:35", "remaining_time": "0:01:15"}
248
+ {"current_steps": 1240, "total_steps": 1350, "percentage": 91.85, "elapsed_time": "0:13:37", "remaining_time": "0:01:12"}
249
+ {"current_steps": 1245, "total_steps": 1350, "percentage": 92.22, "elapsed_time": "0:13:44", "remaining_time": "0:01:09"}
250
+ {"current_steps": 1250, "total_steps": 1350, "percentage": 92.59, "elapsed_time": "0:13:48", "remaining_time": "0:01:06"}
251
+ {"current_steps": 1255, "total_steps": 1350, "percentage": 92.96, "elapsed_time": "0:13:52", "remaining_time": "0:01:03"}
252
+ {"current_steps": 1260, "total_steps": 1350, "percentage": 93.33, "elapsed_time": "0:13:55", "remaining_time": "0:00:59"}
253
+ {"current_steps": 1265, "total_steps": 1350, "percentage": 93.7, "elapsed_time": "0:13:59", "remaining_time": "0:00:56"}
254
+ {"current_steps": 1270, "total_steps": 1350, "percentage": 94.07, "elapsed_time": "0:14:03", "remaining_time": "0:00:53"}
255
+ {"current_steps": 1275, "total_steps": 1350, "percentage": 94.44, "elapsed_time": "0:14:08", "remaining_time": "0:00:49"}
256
+ {"current_steps": 1280, "total_steps": 1350, "percentage": 94.81, "elapsed_time": "0:14:10", "remaining_time": "0:00:46"}
257
+ {"current_steps": 1285, "total_steps": 1350, "percentage": 95.19, "elapsed_time": "0:14:14", "remaining_time": "0:00:43"}
258
+ {"current_steps": 1290, "total_steps": 1350, "percentage": 95.56, "elapsed_time": "0:14:17", "remaining_time": "0:00:39"}
259
+ {"current_steps": 1295, "total_steps": 1350, "percentage": 95.93, "elapsed_time": "0:14:20", "remaining_time": "0:00:36"}
260
+ {"current_steps": 1300, "total_steps": 1350, "percentage": 96.3, "elapsed_time": "0:14:25", "remaining_time": "0:00:33"}
261
+ {"current_steps": 1305, "total_steps": 1350, "percentage": 96.67, "elapsed_time": "0:14:29", "remaining_time": "0:00:29"}
262
+ {"current_steps": 1310, "total_steps": 1350, "percentage": 97.04, "elapsed_time": "0:14:32", "remaining_time": "0:00:26"}
263
+ {"current_steps": 1315, "total_steps": 1350, "percentage": 97.41, "elapsed_time": "0:14:36", "remaining_time": "0:00:23"}
264
+ {"current_steps": 1320, "total_steps": 1350, "percentage": 97.78, "elapsed_time": "0:14:40", "remaining_time": "0:00:20"}
265
+ {"current_steps": 1325, "total_steps": 1350, "percentage": 98.15, "elapsed_time": "0:14:43", "remaining_time": "0:00:16"}
266
+ {"current_steps": 1330, "total_steps": 1350, "percentage": 98.52, "elapsed_time": "0:14:47", "remaining_time": "0:00:13"}
267
+ {"current_steps": 1335, "total_steps": 1350, "percentage": 98.89, "elapsed_time": "0:14:50", "remaining_time": "0:00:10"}
268
+ {"current_steps": 1340, "total_steps": 1350, "percentage": 99.26, "elapsed_time": "0:14:55", "remaining_time": "0:00:06"}
269
+ {"current_steps": 1345, "total_steps": 1350, "percentage": 99.63, "elapsed_time": "0:14:59", "remaining_time": "0:00:03"}
270
+ {"current_steps": 1350, "total_steps": 1350, "percentage": 100.0, "elapsed_time": "0:15:03", "remaining_time": "0:00:00"}
eval_2025-02-09-14-03-10/training_args.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cutoff_len: 2048
2
+ dataset_dir: data
3
+ do_predict: true
4
+ eval_dataset: test_hal_detection_1125
5
+ finetuning_type: full
6
+ flash_attn: auto
7
+ max_new_tokens: 512
8
+ max_samples: 100000
9
+ model_name_or_path: saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen
10
+ output_dir: saves/Qwen2.5-7B-Instruct/full/eval_2025-02-09-14-03-10
11
+ per_device_eval_batch_size: 1
12
+ predict_with_generate: true
13
+ preprocessing_num_workers: 16
14
+ quantization_method: bitsandbytes
15
+ stage: sft
16
+ temperature: 0.95
17
+ template: qwen
18
+ top_p: 0.7
19
+ trust_remote_code: true
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8893ad23f6b4e25d558b7c3652f30827b46c172197c44cf04d009125dded5e
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96ab2dfbebcc95f38e511e5b0634de91a2856ee9f480edfcd2f88526397892d3
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e115bd279bb036f5fa3173fe465ab1a27f86506e63fc66e735f6b532b1649223
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481a0d59a11f12bacd51df1a156f2f59b5ff564682a2481c428fa925d81f79cc
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
running_log.txt CHANGED
@@ -44582,3 +44582,972 @@ If your task is similar to the task the model of the checkpoint was trained on,
44582
 
44583
  [INFO|2025-02-09 12:44:33] logging.py:157 >> {'loss': 0.0269, 'learning_rate': 5.2318e-09, 'epoch': 2.94, 'throughput': 201.07}
44584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44582
 
44583
  [INFO|2025-02-09 12:44:33] logging.py:157 >> {'loss': 0.0269, 'learning_rate': 5.2318e-09, 'epoch': 2.94, 'throughput': 201.07}
44584
 
44585
+ [INFO|2025-02-09 12:44:43] logging.py:157 >> {'loss': 0.2277, 'learning_rate': 5.2094e-09, 'epoch': 2.94, 'throughput': 201.07}
44586
+
44587
+ [INFO|2025-02-09 12:44:52] logging.py:157 >> {'loss': 0.0273, 'learning_rate': 5.1870e-09, 'epoch': 2.94, 'throughput': 201.07}
44588
+
44589
+ [INFO|2025-02-09 12:45:02] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 5.1647e-09, 'epoch': 2.94, 'throughput': 201.07}
44590
+
44591
+ [INFO|2025-02-09 12:45:11] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.1424e-09, 'epoch': 2.94, 'throughput': 201.07}
44592
+
44593
+ [INFO|2025-02-09 12:45:21] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.1202e-09, 'epoch': 2.94, 'throughput': 201.07}
44594
+
44595
+ [INFO|2025-02-09 12:45:31] logging.py:157 >> {'loss': 0.2074, 'learning_rate': 5.0980e-09, 'epoch': 2.94, 'throughput': 201.07}
44596
+
44597
+ [INFO|2025-02-09 12:45:40] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.0759e-09, 'epoch': 2.94, 'throughput': 201.07}
44598
+
44599
+ [INFO|2025-02-09 12:45:49] logging.py:157 >> {'loss': 0.0410, 'learning_rate': 5.0538e-09, 'epoch': 2.94, 'throughput': 201.07}
44600
+
44601
+ [INFO|2025-02-09 12:45:58] logging.py:157 >> {'loss': 0.0204, 'learning_rate': 5.0318e-09, 'epoch': 2.94, 'throughput': 201.07}
44602
+
44603
+ [INFO|2025-02-09 12:46:07] logging.py:157 >> {'loss': 0.0695, 'learning_rate': 5.0098e-09, 'epoch': 2.94, 'throughput': 201.07}
44604
+
44605
+ [INFO|2025-02-09 12:46:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.9878e-09, 'epoch': 2.94, 'throughput': 201.07}
44606
+
44607
+ [INFO|2025-02-09 12:46:25] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 4.9659e-09, 'epoch': 2.94, 'throughput': 201.07}
44608
+
44609
+ [INFO|2025-02-09 12:46:35] logging.py:157 >> {'loss': 0.3224, 'learning_rate': 4.9441e-09, 'epoch': 2.94, 'throughput': 201.07}
44610
+
44611
+ [INFO|2025-02-09 12:46:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.9223e-09, 'epoch': 2.94, 'throughput': 201.07}
44612
+
44613
+ [INFO|2025-02-09 12:46:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.9005e-09, 'epoch': 2.94, 'throughput': 201.06}
44614
+
44615
+ [INFO|2025-02-09 12:47:03] logging.py:157 >> {'loss': 0.0433, 'learning_rate': 4.8788e-09, 'epoch': 2.94, 'throughput': 201.07}
44616
+
44617
+ [INFO|2025-02-09 12:47:13] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.8572e-09, 'epoch': 2.94, 'throughput': 201.08}
44618
+
44619
+ [INFO|2025-02-09 12:47:23] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 4.8356e-09, 'epoch': 2.94, 'throughput': 201.08}
44620
+
44621
+ [INFO|2025-02-09 12:47:32] logging.py:157 >> {'loss': 0.3077, 'learning_rate': 4.8140e-09, 'epoch': 2.94, 'throughput': 201.08}
44622
+
44623
+ [INFO|2025-02-09 12:47:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.7925e-09, 'epoch': 2.94, 'throughput': 201.08}
44624
+
44625
+ [INFO|2025-02-09 12:47:52] logging.py:157 >> {'loss': 0.0165, 'learning_rate': 4.7711e-09, 'epoch': 2.94, 'throughput': 201.08}
44626
+
44627
+ [INFO|2025-02-09 12:48:01] logging.py:157 >> {'loss': 0.0132, 'learning_rate': 4.7496e-09, 'epoch': 2.94, 'throughput': 201.08}
44628
+
44629
+ [INFO|2025-02-09 12:48:10] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.7283e-09, 'epoch': 2.94, 'throughput': 201.08}
44630
+
44631
+ [INFO|2025-02-09 12:48:19] logging.py:157 >> {'loss': 0.0192, 'learning_rate': 4.7070e-09, 'epoch': 2.94, 'throughput': 201.08}
44632
+
44633
+ [INFO|2025-02-09 12:48:29] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 4.6857e-09, 'epoch': 2.94, 'throughput': 201.08}
44634
+
44635
+ [INFO|2025-02-09 12:48:39] logging.py:157 >> {'loss': 0.2126, 'learning_rate': 4.6645e-09, 'epoch': 2.94, 'throughput': 201.09}
44636
+
44637
+ [INFO|2025-02-09 12:48:49] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.6433e-09, 'epoch': 2.94, 'throughput': 201.09}
44638
+
44639
+ [INFO|2025-02-09 12:48:58] logging.py:157 >> {'loss': 0.0016, 'learning_rate': 4.6222e-09, 'epoch': 2.94, 'throughput': 201.09}
44640
+
44641
+ [INFO|2025-02-09 12:49:08] logging.py:157 >> {'loss': 0.0036, 'learning_rate': 4.6011e-09, 'epoch': 2.94, 'throughput': 201.10}
44642
+
44643
+ [INFO|2025-02-09 12:49:19] logging.py:157 >> {'loss': 0.1609, 'learning_rate': 4.5801e-09, 'epoch': 2.94, 'throughput': 201.10}
44644
+
44645
+ [INFO|2025-02-09 12:49:27] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.5591e-09, 'epoch': 2.94, 'throughput': 201.10}
44646
+
44647
+ [INFO|2025-02-09 12:49:37] logging.py:157 >> {'loss': 0.0485, 'learning_rate': 4.5382e-09, 'epoch': 2.94, 'throughput': 201.10}
44648
+
44649
+ [INFO|2025-02-09 12:49:46] logging.py:157 >> {'loss': 0.0075, 'learning_rate': 4.5173e-09, 'epoch': 2.94, 'throughput': 201.10}
44650
+
44651
+ [INFO|2025-02-09 12:49:56] logging.py:157 >> {'loss': 0.1725, 'learning_rate': 4.4965e-09, 'epoch': 2.94, 'throughput': 201.10}
44652
+
44653
+ [INFO|2025-02-09 12:50:06] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.4757e-09, 'epoch': 2.94, 'throughput': 201.10}
44654
+
44655
+ [INFO|2025-02-09 12:50:14] logging.py:157 >> {'loss': 0.1437, 'learning_rate': 4.4549e-09, 'epoch': 2.94, 'throughput': 201.10}
44656
+
44657
+ [INFO|2025-02-09 12:50:24] logging.py:157 >> {'loss': 0.0232, 'learning_rate': 4.4342e-09, 'epoch': 2.94, 'throughput': 201.10}
44658
+
44659
+ [INFO|2025-02-09 12:50:33] logging.py:157 >> {'loss': 0.2381, 'learning_rate': 4.4136e-09, 'epoch': 2.94, 'throughput': 201.10}
44660
+
44661
+ [INFO|2025-02-09 12:50:42] logging.py:157 >> {'loss': 0.0521, 'learning_rate': 4.3930e-09, 'epoch': 2.94, 'throughput': 201.10}
44662
+
44663
+ [INFO|2025-02-09 12:50:51] logging.py:157 >> {'loss': 0.0143, 'learning_rate': 4.3725e-09, 'epoch': 2.94, 'throughput': 201.10}
44664
+
44665
+ [INFO|2025-02-09 12:51:01] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.3520e-09, 'epoch': 2.94, 'throughput': 201.10}
44666
+
44667
+ [INFO|2025-02-09 12:51:11] logging.py:157 >> {'loss': 0.0056, 'learning_rate': 4.3315e-09, 'epoch': 2.94, 'throughput': 201.10}
44668
+
44669
+ [INFO|2025-02-09 12:51:20] logging.py:157 >> {'loss': 0.2447, 'learning_rate': 4.3111e-09, 'epoch': 2.94, 'throughput': 201.11}
44670
+
44671
+ [INFO|2025-02-09 12:51:31] logging.py:157 >> {'loss': 0.0752, 'learning_rate': 4.2908e-09, 'epoch': 2.94, 'throughput': 201.12}
44672
+
44673
+ [INFO|2025-02-09 12:51:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.2704e-09, 'epoch': 2.94, 'throughput': 201.12}
44674
+
44675
+ [INFO|2025-02-09 12:51:49] logging.py:157 >> {'loss': 0.0647, 'learning_rate': 4.2502e-09, 'epoch': 2.94, 'throughput': 201.12}
44676
+
44677
+ [INFO|2025-02-09 12:52:00] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 4.2300e-09, 'epoch': 2.94, 'throughput': 201.12}
44678
+
44679
+ [INFO|2025-02-09 12:52:09] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.2098e-09, 'epoch': 2.94, 'throughput': 201.11}
44680
+
44681
+ [INFO|2025-02-09 12:52:19] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.1897e-09, 'epoch': 2.94, 'throughput': 201.11}
44682
+
44683
+ [INFO|2025-02-09 12:52:29] logging.py:157 >> {'loss': 0.0024, 'learning_rate': 4.1696e-09, 'epoch': 2.94, 'throughput': 201.12}
44684
+
44685
+ [INFO|2025-02-09 12:52:38] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.1496e-09, 'epoch': 2.94, 'throughput': 201.12}
44686
+
44687
+ [INFO|2025-02-09 12:52:49] logging.py:157 >> {'loss': 0.0597, 'learning_rate': 4.1297e-09, 'epoch': 2.95, 'throughput': 201.12}
44688
+
44689
+ [INFO|2025-02-09 12:52:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.1097e-09, 'epoch': 2.95, 'throughput': 201.12}
44690
+
44691
+ [INFO|2025-02-09 12:53:09] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0899e-09, 'epoch': 2.95, 'throughput': 201.12}
44692
+
44693
+ [INFO|2025-02-09 12:53:19] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.0700e-09, 'epoch': 2.95, 'throughput': 201.12}
44694
+
44695
+ [INFO|2025-02-09 12:53:29] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0503e-09, 'epoch': 2.95, 'throughput': 201.12}
44696
+
44697
+ [INFO|2025-02-09 12:53:38] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0305e-09, 'epoch': 2.95, 'throughput': 201.12}
44698
+
44699
+ [INFO|2025-02-09 12:53:48] logging.py:157 >> {'loss': 0.0426, 'learning_rate': 4.0109e-09, 'epoch': 2.95, 'throughput': 201.12}
44700
+
44701
+ [INFO|2025-02-09 12:53:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.9912e-09, 'epoch': 2.95, 'throughput': 201.11}
44702
+
44703
+ [INFO|2025-02-09 12:54:08] logging.py:157 >> {'loss': 0.0149, 'learning_rate': 3.9716e-09, 'epoch': 2.95, 'throughput': 201.11}
44704
+
44705
+ [INFO|2025-02-09 12:54:18] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.9521e-09, 'epoch': 2.95, 'throughput': 201.11}
44706
+
44707
+ [INFO|2025-02-09 12:54:27] logging.py:157 >> {'loss': 0.0262, 'learning_rate': 3.9326e-09, 'epoch': 2.95, 'throughput': 201.12}
44708
+
44709
+ [INFO|2025-02-09 12:54:37] logging.py:157 >> {'loss': 0.0317, 'learning_rate': 3.9132e-09, 'epoch': 2.95, 'throughput': 201.12}
44710
+
44711
+ [INFO|2025-02-09 12:54:46] logging.py:157 >> {'loss': 0.0392, 'learning_rate': 3.8938e-09, 'epoch': 2.95, 'throughput': 201.12}
44712
+
44713
+ [INFO|2025-02-09 12:54:56] logging.py:157 >> {'loss': 0.0008, 'learning_rate': 3.8744e-09, 'epoch': 2.95, 'throughput': 201.11}
44714
+
44715
+ [INFO|2025-02-09 12:55:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8551e-09, 'epoch': 2.95, 'throughput': 201.11}
44716
+
44717
+ [INFO|2025-02-09 12:55:14] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.8359e-09, 'epoch': 2.95, 'throughput': 201.11}
44718
+
44719
+ [INFO|2025-02-09 12:55:24] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8167e-09, 'epoch': 2.95, 'throughput': 201.11}
44720
+
44721
+ [INFO|2025-02-09 12:55:33] logging.py:157 >> {'loss': 0.0733, 'learning_rate': 3.7976e-09, 'epoch': 2.95, 'throughput': 201.12}
44722
+
44723
+ [INFO|2025-02-09 12:55:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.7784e-09, 'epoch': 2.95, 'throughput': 201.11}
44724
+
44725
+ [INFO|2025-02-09 12:55:52] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.7594e-09, 'epoch': 2.95, 'throughput': 201.11}
44726
+
44727
+ [INFO|2025-02-09 12:56:02] logging.py:157 >> {'loss': 0.0075, 'learning_rate': 3.7404e-09, 'epoch': 2.95, 'throughput': 201.11}
44728
+
44729
+ [INFO|2025-02-09 12:56:12] logging.py:157 >> {'loss': 0.0856, 'learning_rate': 3.7214e-09, 'epoch': 2.95, 'throughput': 201.11}
44730
+
44731
+ [INFO|2025-02-09 12:56:20] logging.py:157 >> {'loss': 0.0888, 'learning_rate': 3.7025e-09, 'epoch': 2.95, 'throughput': 201.11}
44732
+
44733
+ [INFO|2025-02-09 12:56:31] logging.py:157 >> {'loss': 0.0841, 'learning_rate': 3.6837e-09, 'epoch': 2.95, 'throughput': 201.11}
44734
+
44735
+ [INFO|2025-02-09 12:56:40] logging.py:157 >> {'loss': 0.0604, 'learning_rate': 3.6648e-09, 'epoch': 2.95, 'throughput': 201.11}
44736
+
44737
+ [INFO|2025-02-09 12:56:50] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 3.6461e-09, 'epoch': 2.95, 'throughput': 201.11}
44738
+
44739
+ [INFO|2025-02-09 12:57:00] logging.py:157 >> {'loss': 0.0554, 'learning_rate': 3.6274e-09, 'epoch': 2.95, 'throughput': 201.11}
44740
+
44741
+ [INFO|2025-02-09 12:57:09] logging.py:157 >> {'loss': 0.0753, 'learning_rate': 3.6087e-09, 'epoch': 2.95, 'throughput': 201.12}
44742
+
44743
+ [INFO|2025-02-09 12:57:19] logging.py:157 >> {'loss': 0.1406, 'learning_rate': 3.5901e-09, 'epoch': 2.95, 'throughput': 201.11}
44744
+
44745
+ [INFO|2025-02-09 12:57:28] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.5715e-09, 'epoch': 2.95, 'throughput': 201.11}
44746
+
44747
+ [INFO|2025-02-09 12:57:38] logging.py:157 >> {'loss': 0.0037, 'learning_rate': 3.5530e-09, 'epoch': 2.95, 'throughput': 201.12}
44748
+
44749
+ [INFO|2025-02-09 12:57:47] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.5345e-09, 'epoch': 2.95, 'throughput': 201.12}
44750
+
44751
+ [INFO|2025-02-09 12:57:56] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.5161e-09, 'epoch': 2.95, 'throughput': 201.11}
44752
+
44753
+ [INFO|2025-02-09 12:58:06] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.4977e-09, 'epoch': 2.95, 'throughput': 201.11}
44754
+
44755
+ [INFO|2025-02-09 12:58:16] logging.py:157 >> {'loss': 0.1349, 'learning_rate': 3.4794e-09, 'epoch': 2.95, 'throughput': 201.11}
44756
+
44757
+ [INFO|2025-02-09 12:58:25] logging.py:157 >> {'loss': 0.0048, 'learning_rate': 3.4611e-09, 'epoch': 2.95, 'throughput': 201.11}
44758
+
44759
+ [INFO|2025-02-09 12:58:35] logging.py:157 >> {'loss': 0.0103, 'learning_rate': 3.4428e-09, 'epoch': 2.95, 'throughput': 201.11}
44760
+
44761
+ [INFO|2025-02-09 12:58:45] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.4246e-09, 'epoch': 2.95, 'throughput': 201.11}
44762
+
44763
+ [INFO|2025-02-09 12:58:56] logging.py:157 >> {'loss': 0.0027, 'learning_rate': 3.4065e-09, 'epoch': 2.95, 'throughput': 201.11}
44764
+
44765
+ [INFO|2025-02-09 12:59:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.3884e-09, 'epoch': 2.95, 'throughput': 201.11}
44766
+
44767
+ [INFO|2025-02-09 12:59:15] logging.py:157 >> {'loss': 0.0267, 'learning_rate': 3.3704e-09, 'epoch': 2.95, 'throughput': 201.11}
44768
+
44769
+ [INFO|2025-02-09 12:59:26] logging.py:157 >> {'loss': 0.0568, 'learning_rate': 3.3524e-09, 'epoch': 2.95, 'throughput': 201.11}
44770
+
44771
+ [INFO|2025-02-09 12:59:35] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.3344e-09, 'epoch': 2.95, 'throughput': 201.11}
44772
+
44773
+ [INFO|2025-02-09 12:59:44] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 3.3165e-09, 'epoch': 2.95, 'throughput': 201.11}
44774
+
44775
+ [INFO|2025-02-09 12:59:55] logging.py:157 >> {'loss': 0.0030, 'learning_rate': 3.2987e-09, 'epoch': 2.95, 'throughput': 201.11}
44776
+
44777
+ [INFO|2025-02-09 13:00:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.2809e-09, 'epoch': 2.95, 'throughput': 201.11}
44778
+
44779
+ [INFO|2025-02-09 13:00:15] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.2631e-09, 'epoch': 2.95, 'throughput': 201.11}
44780
+
44781
+ [INFO|2025-02-09 13:00:24] logging.py:157 >> {'loss': 0.1412, 'learning_rate': 3.2454e-09, 'epoch': 2.95, 'throughput': 201.11}
44782
+
44783
+ [INFO|2025-02-09 13:00:33] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.2278e-09, 'epoch': 2.95, 'throughput': 201.11}
44784
+
44785
+ [INFO|2025-02-09 13:00:44] logging.py:157 >> {'loss': 0.1279, 'learning_rate': 3.2102e-09, 'epoch': 2.95, 'throughput': 201.11}
44786
+
44787
+ [INFO|2025-02-09 13:00:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.1926e-09, 'epoch': 2.95, 'throughput': 201.11}
44788
+
44789
+ [INFO|2025-02-09 13:01:02] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.1751e-09, 'epoch': 2.95, 'throughput': 201.11}
44790
+
44791
+ [INFO|2025-02-09 13:01:12] logging.py:157 >> {'loss': 0.0123, 'learning_rate': 3.1576e-09, 'epoch': 2.95, 'throughput': 201.11}
44792
+
44793
+ [INFO|2025-02-09 13:01:21] logging.py:157 >> {'loss': 0.0935, 'learning_rate': 3.1402e-09, 'epoch': 2.95, 'throughput': 201.11}
44794
+
44795
+ [INFO|2025-02-09 13:01:31] logging.py:157 >> {'loss': 0.0270, 'learning_rate': 3.1228e-09, 'epoch': 2.95, 'throughput': 201.11}
44796
+
44797
+ [INFO|2025-02-09 13:01:40] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.1055e-09, 'epoch': 2.95, 'throughput': 201.11}
44798
+
44799
+ [INFO|2025-02-09 13:01:49] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 3.0882e-09, 'epoch': 2.95, 'throughput': 201.11}
44800
+
44801
+ [INFO|2025-02-09 13:01:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.0710e-09, 'epoch': 2.95, 'throughput': 201.11}
44802
+
44803
+ [INFO|2025-02-09 13:02:08] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.0538e-09, 'epoch': 2.95, 'throughput': 201.12}
44804
+
44805
+ [INFO|2025-02-09 13:02:18] logging.py:157 >> {'loss': 0.0218, 'learning_rate': 3.0367e-09, 'epoch': 2.95, 'throughput': 201.12}
44806
+
44807
+ [INFO|2025-02-09 13:02:26] logging.py:157 >> {'loss': 0.0393, 'learning_rate': 3.0196e-09, 'epoch': 2.95, 'throughput': 201.12}
44808
+
44809
+ [INFO|2025-02-09 13:02:36] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.0026e-09, 'epoch': 2.95, 'throughput': 201.12}
44810
+
44811
+ [INFO|2025-02-09 13:02:46] logging.py:157 >> {'loss': 0.0291, 'learning_rate': 2.9856e-09, 'epoch': 2.95, 'throughput': 201.12}
44812
+
44813
+ [INFO|2025-02-09 13:02:55] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.9687e-09, 'epoch': 2.95, 'throughput': 201.12}
44814
+
44815
+ [INFO|2025-02-09 13:03:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.9518e-09, 'epoch': 2.95, 'throughput': 201.12}
44816
+
44817
+ [INFO|2025-02-09 13:03:13] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.9349e-09, 'epoch': 2.95, 'throughput': 201.12}
44818
+
44819
+ [INFO|2025-02-09 13:03:23] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.9181e-09, 'epoch': 2.95, 'throughput': 201.12}
44820
+
44821
+ [INFO|2025-02-09 13:03:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.9014e-09, 'epoch': 2.95, 'throughput': 201.13}
44822
+
44823
+ [INFO|2025-02-09 13:03:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8847e-09, 'epoch': 2.95, 'throughput': 201.12}
44824
+
44825
+ [INFO|2025-02-09 13:03:52] logging.py:157 >> {'loss': 0.0238, 'learning_rate': 2.8681e-09, 'epoch': 2.95, 'throughput': 201.12}
44826
+
44827
+ [INFO|2025-02-09 13:04:00] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.8515e-09, 'epoch': 2.95, 'throughput': 201.12}
44828
+
44829
+ [INFO|2025-02-09 13:04:10] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8349e-09, 'epoch': 2.95, 'throughput': 201.12}
44830
+
44831
+ [INFO|2025-02-09 13:04:19] logging.py:157 >> {'loss': 0.0048, 'learning_rate': 2.8184e-09, 'epoch': 2.95, 'throughput': 201.12}
44832
+
44833
+ [INFO|2025-02-09 13:04:28] logging.py:157 >> {'loss': 0.0437, 'learning_rate': 2.8019e-09, 'epoch': 2.95, 'throughput': 201.12}
44834
+
44835
+ [INFO|2025-02-09 13:04:38] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.7855e-09, 'epoch': 2.95, 'throughput': 201.12}
44836
+
44837
+ [INFO|2025-02-09 13:04:47] logging.py:157 >> {'loss': 0.0716, 'learning_rate': 2.7692e-09, 'epoch': 2.96, 'throughput': 201.12}
44838
+
44839
+ [INFO|2025-02-09 13:04:57] logging.py:157 >> {'loss': 0.0523, 'learning_rate': 2.7529e-09, 'epoch': 2.96, 'throughput': 201.12}
44840
+
44841
+ [INFO|2025-02-09 13:05:06] logging.py:157 >> {'loss': 0.2490, 'learning_rate': 2.7366e-09, 'epoch': 2.96, 'throughput': 201.12}
44842
+
44843
+ [INFO|2025-02-09 13:05:15] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.7204e-09, 'epoch': 2.96, 'throughput': 201.12}
44844
+
44845
+ [INFO|2025-02-09 13:05:26] logging.py:157 >> {'loss': 0.0184, 'learning_rate': 2.7042e-09, 'epoch': 2.96, 'throughput': 201.12}
44846
+
44847
+ [INFO|2025-02-09 13:05:35] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.6881e-09, 'epoch': 2.96, 'throughput': 201.12}
44848
+
44849
+ [INFO|2025-02-09 13:05:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.6720e-09, 'epoch': 2.96, 'throughput': 201.12}
44850
+
44851
+ [INFO|2025-02-09 13:05:55] logging.py:157 >> {'loss': 0.0389, 'learning_rate': 2.6560e-09, 'epoch': 2.96, 'throughput': 201.12}
44852
+
44853
+ [INFO|2025-02-09 13:06:04] logging.py:157 >> {'loss': 0.0542, 'learning_rate': 2.6400e-09, 'epoch': 2.96, 'throughput': 201.13}
44854
+
44855
+ [INFO|2025-02-09 13:06:15] logging.py:157 >> {'loss': 0.0775, 'learning_rate': 2.6241e-09, 'epoch': 2.96, 'throughput': 201.13}
44856
+
44857
+ [INFO|2025-02-09 13:06:25] logging.py:157 >> {'loss': 0.2101, 'learning_rate': 2.6082e-09, 'epoch': 2.96, 'throughput': 201.13}
44858
+
44859
+ [INFO|2025-02-09 13:06:34] logging.py:157 >> {'loss': 0.0641, 'learning_rate': 2.5924e-09, 'epoch': 2.96, 'throughput': 201.13}
44860
+
44861
+ [INFO|2025-02-09 13:06:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.5766e-09, 'epoch': 2.96, 'throughput': 201.13}
44862
+
44863
+ [INFO|2025-02-09 13:06:54] logging.py:157 >> {'loss': 0.0166, 'learning_rate': 2.5609e-09, 'epoch': 2.96, 'throughput': 201.13}
44864
+
44865
+ [INFO|2025-02-09 13:07:04] logging.py:157 >> {'loss': 0.0239, 'learning_rate': 2.5452e-09, 'epoch': 2.96, 'throughput': 201.13}
44866
+
44867
+ [INFO|2025-02-09 13:07:14] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 2.5296e-09, 'epoch': 2.96, 'throughput': 201.14}
44868
+
44869
+ [INFO|2025-02-09 13:07:23] logging.py:157 >> {'loss': 0.0411, 'learning_rate': 2.5140e-09, 'epoch': 2.96, 'throughput': 201.14}
44870
+
44871
+ [INFO|2025-02-09 13:07:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4985e-09, 'epoch': 2.96, 'throughput': 201.14}
44872
+
44873
+ [INFO|2025-02-09 13:07:43] logging.py:157 >> {'loss': 0.0281, 'learning_rate': 2.4830e-09, 'epoch': 2.96, 'throughput': 201.14}
44874
+
44875
+ [INFO|2025-02-09 13:07:54] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 2.4675e-09, 'epoch': 2.96, 'throughput': 201.14}
44876
+
44877
+ [INFO|2025-02-09 13:08:04] logging.py:157 >> {'loss': 0.0235, 'learning_rate': 2.4521e-09, 'epoch': 2.96, 'throughput': 201.14}
44878
+
44879
+ [INFO|2025-02-09 13:08:14] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.4368e-09, 'epoch': 2.96, 'throughput': 201.14}
44880
+
44881
+ [INFO|2025-02-09 13:08:23] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.4215e-09, 'epoch': 2.96, 'throughput': 201.14}
44882
+
44883
+ [INFO|2025-02-09 13:08:33] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 2.4062e-09, 'epoch': 2.96, 'throughput': 201.14}
44884
+
44885
+ [INFO|2025-02-09 13:08:42] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.3910e-09, 'epoch': 2.96, 'throughput': 201.14}
44886
+
44887
+ [INFO|2025-02-09 13:08:52] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.3759e-09, 'epoch': 2.96, 'throughput': 201.14}
44888
+
44889
+ [INFO|2025-02-09 13:09:01] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.3608e-09, 'epoch': 2.96, 'throughput': 201.13}
44890
+
44891
+ [INFO|2025-02-09 13:09:11] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 2.3457e-09, 'epoch': 2.96, 'throughput': 201.13}
44892
+
44893
+ [INFO|2025-02-09 13:09:21] logging.py:157 >> {'loss': 0.0026, 'learning_rate': 2.3307e-09, 'epoch': 2.96, 'throughput': 201.13}
44894
+
44895
+ [INFO|2025-02-09 13:09:31] logging.py:157 >> {'loss': 0.0761, 'learning_rate': 2.3157e-09, 'epoch': 2.96, 'throughput': 201.13}
44896
+
44897
+ [INFO|2025-02-09 13:09:41] logging.py:157 >> {'loss': 0.0549, 'learning_rate': 2.3008e-09, 'epoch': 2.96, 'throughput': 201.13}
44898
+
44899
+ [INFO|2025-02-09 13:09:50] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2860e-09, 'epoch': 2.96, 'throughput': 201.13}
44900
+
44901
+ [INFO|2025-02-09 13:09:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.2711e-09, 'epoch': 2.96, 'throughput': 201.13}
44902
+
44903
+ [INFO|2025-02-09 13:10:08] logging.py:157 >> {'loss': 0.0270, 'learning_rate': 2.2564e-09, 'epoch': 2.96, 'throughput': 201.13}
44904
+
44905
+ [INFO|2025-02-09 13:10:17] logging.py:157 >> {'loss': 0.0796, 'learning_rate': 2.2416e-09, 'epoch': 2.96, 'throughput': 201.13}
44906
+
44907
+ [INFO|2025-02-09 13:10:27] logging.py:157 >> {'loss': 0.1543, 'learning_rate': 2.2270e-09, 'epoch': 2.96, 'throughput': 201.13}
44908
+
44909
+ [INFO|2025-02-09 13:10:38] logging.py:157 >> {'loss': 0.0043, 'learning_rate': 2.2123e-09, 'epoch': 2.96, 'throughput': 201.14}
44910
+
44911
+ [INFO|2025-02-09 13:10:46] logging.py:157 >> {'loss': 0.0172, 'learning_rate': 2.1978e-09, 'epoch': 2.96, 'throughput': 201.13}
44912
+
44913
+ [INFO|2025-02-09 13:10:57] logging.py:157 >> {'loss': 0.0066, 'learning_rate': 2.1832e-09, 'epoch': 2.96, 'throughput': 201.14}
44914
+
44915
+ [INFO|2025-02-09 13:11:07] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1688e-09, 'epoch': 2.96, 'throughput': 201.13}
44916
+
44917
+ [INFO|2025-02-09 13:11:16] logging.py:157 >> {'loss': 0.0427, 'learning_rate': 2.1543e-09, 'epoch': 2.96, 'throughput': 201.13}
44918
+
44919
+ [INFO|2025-02-09 13:11:25] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1399e-09, 'epoch': 2.96, 'throughput': 201.13}
44920
+
44921
+ [INFO|2025-02-09 13:11:34] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1256e-09, 'epoch': 2.96, 'throughput': 201.13}
44922
+
44923
+ [INFO|2025-02-09 13:11:45] logging.py:157 >> {'loss': 0.1574, 'learning_rate': 2.1113e-09, 'epoch': 2.96, 'throughput': 201.13}
44924
+
44925
+ [INFO|2025-02-09 13:11:55] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.0971e-09, 'epoch': 2.96, 'throughput': 201.14}
44926
+
44927
+ [INFO|2025-02-09 13:12:05] logging.py:157 >> {'loss': 0.1038, 'learning_rate': 2.0829e-09, 'epoch': 2.96, 'throughput': 201.14}
44928
+
44929
+ [INFO|2025-02-09 13:12:15] logging.py:157 >> {'loss': 0.1581, 'learning_rate': 2.0687e-09, 'epoch': 2.96, 'throughput': 201.14}
44930
+
44931
+ [INFO|2025-02-09 13:12:24] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.0547e-09, 'epoch': 2.96, 'throughput': 201.13}
44932
+
44933
+ [INFO|2025-02-09 13:12:34] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0406e-09, 'epoch': 2.96, 'throughput': 201.13}
44934
+
44935
+ [INFO|2025-02-09 13:12:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.0266e-09, 'epoch': 2.96, 'throughput': 201.13}
44936
+
44937
+ [INFO|2025-02-09 13:12:53] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0127e-09, 'epoch': 2.96, 'throughput': 201.13}
44938
+
44939
+ [INFO|2025-02-09 13:13:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9988e-09, 'epoch': 2.96, 'throughput': 201.13}
44940
+
44941
+ [INFO|2025-02-09 13:13:13] logging.py:157 >> {'loss': 0.0304, 'learning_rate': 1.9849e-09, 'epoch': 2.96, 'throughput': 201.13}
44942
+
44943
+ [INFO|2025-02-09 13:13:22] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9711e-09, 'epoch': 2.96, 'throughput': 201.13}
44944
+
44945
+ [INFO|2025-02-09 13:13:32] logging.py:157 >> {'loss': 0.0195, 'learning_rate': 1.9573e-09, 'epoch': 2.96, 'throughput': 201.13}
44946
+
44947
+ [INFO|2025-02-09 13:13:42] logging.py:157 >> {'loss': 0.0299, 'learning_rate': 1.9436e-09, 'epoch': 2.96, 'throughput': 201.13}
44948
+
44949
+ [INFO|2025-02-09 13:13:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9300e-09, 'epoch': 2.96, 'throughput': 201.13}
44950
+
44951
+ [INFO|2025-02-09 13:14:03] logging.py:157 >> {'loss': 0.0175, 'learning_rate': 1.9164e-09, 'epoch': 2.96, 'throughput': 201.14}
44952
+
44953
+ [INFO|2025-02-09 13:14:13] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9028e-09, 'epoch': 2.96, 'throughput': 201.14}
44954
+
44955
+ [INFO|2025-02-09 13:14:23] logging.py:157 >> {'loss': 0.0983, 'learning_rate': 1.8893e-09, 'epoch': 2.96, 'throughput': 201.14}
44956
+
44957
+ [INFO|2025-02-09 13:14:32] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.8758e-09, 'epoch': 2.96, 'throughput': 201.14}
44958
+
44959
+ [INFO|2025-02-09 13:14:42] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.8624e-09, 'epoch': 2.96, 'throughput': 201.14}
44960
+
44961
+ [INFO|2025-02-09 13:14:52] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.8490e-09, 'epoch': 2.96, 'throughput': 201.14}
44962
+
44963
+ [INFO|2025-02-09 13:15:01] logging.py:157 >> {'loss': 0.0043, 'learning_rate': 1.8357e-09, 'epoch': 2.96, 'throughput': 201.14}
44964
+
44965
+ [INFO|2025-02-09 13:15:11] logging.py:157 >> {'loss': 0.1020, 'learning_rate': 1.8224e-09, 'epoch': 2.96, 'throughput': 201.14}
44966
+
44967
+ [INFO|2025-02-09 13:15:20] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 1.8092e-09, 'epoch': 2.96, 'throughput': 201.14}
44968
+
44969
+ [INFO|2025-02-09 13:15:30] logging.py:157 >> {'loss': 0.0112, 'learning_rate': 1.7960e-09, 'epoch': 2.96, 'throughput': 201.14}
44970
+
44971
+ [INFO|2025-02-09 13:15:40] logging.py:157 >> {'loss': 0.0126, 'learning_rate': 1.7829e-09, 'epoch': 2.96, 'throughput': 201.14}
44972
+
44973
+ [INFO|2025-02-09 13:15:49] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.7698e-09, 'epoch': 2.96, 'throughput': 201.14}
44974
+
44975
+ [INFO|2025-02-09 13:15:58] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7567e-09, 'epoch': 2.96, 'throughput': 201.14}
44976
+
44977
+ [INFO|2025-02-09 13:16:07] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 1.7438e-09, 'epoch': 2.96, 'throughput': 201.14}
44978
+
44979
+ [INFO|2025-02-09 13:16:18] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.7308e-09, 'epoch': 2.96, 'throughput': 201.15}
44980
+
44981
+ [INFO|2025-02-09 13:16:27] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7179e-09, 'epoch': 2.96, 'throughput': 201.14}
44982
+
44983
+ [INFO|2025-02-09 13:16:37] logging.py:157 >> {'loss': 0.0619, 'learning_rate': 1.7051e-09, 'epoch': 2.96, 'throughput': 201.14}
44984
+
44985
+ [INFO|2025-02-09 13:16:48] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.6923e-09, 'epoch': 2.96, 'throughput': 201.14}
44986
+
44987
+ [INFO|2025-02-09 13:16:57] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.6795e-09, 'epoch': 2.97, 'throughput': 201.14}
44988
+
44989
+ [INFO|2025-02-09 13:17:06] logging.py:157 >> {'loss': 0.0384, 'learning_rate': 1.6668e-09, 'epoch': 2.97, 'throughput': 201.14}
44990
+
44991
+ [INFO|2025-02-09 13:17:15] logging.py:157 >> {'loss': 0.0337, 'learning_rate': 1.6542e-09, 'epoch': 2.97, 'throughput': 201.14}
44992
+
44993
+ [INFO|2025-02-09 13:17:24] logging.py:157 >> {'loss': 0.0213, 'learning_rate': 1.6416e-09, 'epoch': 2.97, 'throughput': 201.14}
44994
+
44995
+ [INFO|2025-02-09 13:17:34] logging.py:157 >> {'loss': 0.0059, 'learning_rate': 1.6290e-09, 'epoch': 2.97, 'throughput': 201.14}
44996
+
44997
+ [INFO|2025-02-09 13:17:44] logging.py:157 >> {'loss': 0.1520, 'learning_rate': 1.6165e-09, 'epoch': 2.97, 'throughput': 201.14}
44998
+
44999
+ [INFO|2025-02-09 13:17:53] logging.py:157 >> {'loss': 0.0384, 'learning_rate': 1.6041e-09, 'epoch': 2.97, 'throughput': 201.14}
45000
+
45001
+ [INFO|2025-02-09 13:18:04] logging.py:157 >> {'loss': 0.0211, 'learning_rate': 1.5917e-09, 'epoch': 2.97, 'throughput': 201.14}
45002
+
45003
+ [INFO|2025-02-09 13:18:13] logging.py:157 >> {'loss': 0.0941, 'learning_rate': 1.5793e-09, 'epoch': 2.97, 'throughput': 201.14}
45004
+
45005
+ [INFO|2025-02-09 13:18:22] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.5670e-09, 'epoch': 2.97, 'throughput': 201.14}
45006
+
45007
+ [INFO|2025-02-09 13:18:33] logging.py:157 >> {'loss': 0.2061, 'learning_rate': 1.5547e-09, 'epoch': 2.97, 'throughput': 201.15}
45008
+
45009
+ [INFO|2025-02-09 13:18:42] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.5425e-09, 'epoch': 2.97, 'throughput': 201.15}
45010
+
45011
+ [INFO|2025-02-09 13:18:52] logging.py:157 >> {'loss': 0.0031, 'learning_rate': 1.5303e-09, 'epoch': 2.97, 'throughput': 201.15}
45012
+
45013
+ [INFO|2025-02-09 13:19:02] logging.py:157 >> {'loss': 0.0101, 'learning_rate': 1.5182e-09, 'epoch': 2.97, 'throughput': 201.15}
45014
+
45015
+ [INFO|2025-02-09 13:19:11] logging.py:157 >> {'loss': 0.0364, 'learning_rate': 1.5062e-09, 'epoch': 2.97, 'throughput': 201.15}
45016
+
45017
+ [INFO|2025-02-09 13:19:20] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4941e-09, 'epoch': 2.97, 'throughput': 201.15}
45018
+
45019
+ [INFO|2025-02-09 13:19:29] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.4822e-09, 'epoch': 2.97, 'throughput': 201.16}
45020
+
45021
+ [INFO|2025-02-09 13:19:39] logging.py:157 >> {'loss': 0.1423, 'learning_rate': 1.4702e-09, 'epoch': 2.97, 'throughput': 201.16}
45022
+
45023
+ [INFO|2025-02-09 13:19:48] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4583e-09, 'epoch': 2.97, 'throughput': 201.15}
45024
+
45025
+ [INFO|2025-02-09 13:19:57] logging.py:157 >> {'loss': 0.0361, 'learning_rate': 1.4465e-09, 'epoch': 2.97, 'throughput': 201.15}
45026
+
45027
+ [INFO|2025-02-09 13:20:07] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4347e-09, 'epoch': 2.97, 'throughput': 201.15}
45028
+
45029
+ [INFO|2025-02-09 13:20:15] logging.py:157 >> {'loss': 0.0008, 'learning_rate': 1.4230e-09, 'epoch': 2.97, 'throughput': 201.15}
45030
+
45031
+ [INFO|2025-02-09 13:20:26] logging.py:157 >> {'loss': 0.0911, 'learning_rate': 1.4113e-09, 'epoch': 2.97, 'throughput': 201.15}
45032
+
45033
+ [INFO|2025-02-09 13:20:36] logging.py:157 >> {'loss': 0.0997, 'learning_rate': 1.3997e-09, 'epoch': 2.97, 'throughput': 201.16}
45034
+
45035
+ [INFO|2025-02-09 13:20:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 1.3881e-09, 'epoch': 2.97, 'throughput': 201.16}
45036
+
45037
+ [INFO|2025-02-09 13:20:54] logging.py:157 >> {'loss': 0.1293, 'learning_rate': 1.3765e-09, 'epoch': 2.97, 'throughput': 201.16}
45038
+
45039
+ [INFO|2025-02-09 13:21:04] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.3650e-09, 'epoch': 2.97, 'throughput': 201.16}
45040
+
45041
+ [INFO|2025-02-09 13:21:13] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.3536e-09, 'epoch': 2.97, 'throughput': 201.16}
45042
+
45043
+ [INFO|2025-02-09 13:21:23] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 1.3422e-09, 'epoch': 2.97, 'throughput': 201.16}
45044
+
45045
+ [INFO|2025-02-09 13:21:32] logging.py:157 >> {'loss': 0.0022, 'learning_rate': 1.3309e-09, 'epoch': 2.97, 'throughput': 201.16}
45046
+
45047
+ [INFO|2025-02-09 13:21:43] logging.py:157 >> {'loss': 0.1092, 'learning_rate': 1.3196e-09, 'epoch': 2.97, 'throughput': 201.16}
45048
+
45049
+ [INFO|2025-02-09 13:21:53] logging.py:157 >> {'loss': 0.0722, 'learning_rate': 1.3083e-09, 'epoch': 2.97, 'throughput': 201.16}
45050
+
45051
+ [INFO|2025-02-09 13:22:02] logging.py:157 >> {'loss': 0.0058, 'learning_rate': 1.2971e-09, 'epoch': 2.97, 'throughput': 201.16}
45052
+
45053
+ [INFO|2025-02-09 13:22:12] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2859e-09, 'epoch': 2.97, 'throughput': 201.16}
45054
+
45055
+ [INFO|2025-02-09 13:22:22] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.2748e-09, 'epoch': 2.97, 'throughput': 201.16}
45056
+
45057
+ [INFO|2025-02-09 13:22:31] logging.py:157 >> {'loss': 0.0159, 'learning_rate': 1.2638e-09, 'epoch': 2.97, 'throughput': 201.16}
45058
+
45059
+ [INFO|2025-02-09 13:22:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.2528e-09, 'epoch': 2.97, 'throughput': 201.16}
45060
+
45061
+ [INFO|2025-02-09 13:22:51] logging.py:157 >> {'loss': 0.0019, 'learning_rate': 1.2418e-09, 'epoch': 2.97, 'throughput': 201.16}
45062
+
45063
+ [INFO|2025-02-09 13:23:01] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2309e-09, 'epoch': 2.97, 'throughput': 201.16}
45064
+
45065
+ [INFO|2025-02-09 13:23:11] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.2200e-09, 'epoch': 2.97, 'throughput': 201.16}
45066
+
45067
+ [INFO|2025-02-09 13:23:20] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2092e-09, 'epoch': 2.97, 'throughput': 201.16}
45068
+
45069
+ [INFO|2025-02-09 13:23:29] logging.py:157 >> {'loss': 0.0892, 'learning_rate': 1.1984e-09, 'epoch': 2.97, 'throughput': 201.16}
45070
+
45071
+ [INFO|2025-02-09 13:23:39] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1877e-09, 'epoch': 2.97, 'throughput': 201.16}
45072
+
45073
+ [INFO|2025-02-09 13:23:49] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 1.1770e-09, 'epoch': 2.97, 'throughput': 201.16}
45074
+
45075
+ [INFO|2025-02-09 13:23:58] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 1.1664e-09, 'epoch': 2.97, 'throughput': 201.16}
45076
+
45077
+ [INFO|2025-02-09 13:24:08] logging.py:157 >> {'loss': 0.0255, 'learning_rate': 1.1558e-09, 'epoch': 2.97, 'throughput': 201.16}
45078
+
45079
+ [INFO|2025-02-09 13:24:18] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1453e-09, 'epoch': 2.97, 'throughput': 201.16}
45080
+
45081
+ [INFO|2025-02-09 13:24:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1348e-09, 'epoch': 2.97, 'throughput': 201.15}
45082
+
45083
+ [INFO|2025-02-09 13:24:38] logging.py:157 >> {'loss': 0.0064, 'learning_rate': 1.1244e-09, 'epoch': 2.97, 'throughput': 201.16}
45084
+
45085
+ [INFO|2025-02-09 13:24:49] logging.py:157 >> {'loss': 0.1398, 'learning_rate': 1.1140e-09, 'epoch': 2.97, 'throughput': 201.16}
45086
+
45087
+ [INFO|2025-02-09 13:24:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1036e-09, 'epoch': 2.97, 'throughput': 201.16}
45088
+
45089
+ [INFO|2025-02-09 13:25:08] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0934e-09, 'epoch': 2.97, 'throughput': 201.16}
45090
+
45091
+ [INFO|2025-02-09 13:25:18] logging.py:157 >> {'loss': 0.0241, 'learning_rate': 1.0831e-09, 'epoch': 2.97, 'throughput': 201.16}
45092
+
45093
+ [INFO|2025-02-09 13:25:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0729e-09, 'epoch': 2.97, 'throughput': 201.16}
45094
+
45095
+ [INFO|2025-02-09 13:25:38] logging.py:157 >> {'loss': 0.1080, 'learning_rate': 1.0628e-09, 'epoch': 2.97, 'throughput': 201.17}
45096
+
45097
+ [INFO|2025-02-09 13:25:49] logging.py:157 >> {'loss': 0.1110, 'learning_rate': 1.0527e-09, 'epoch': 2.97, 'throughput': 201.17}
45098
+
45099
+ [INFO|2025-02-09 13:25:58] logging.py:157 >> {'loss': 0.0991, 'learning_rate': 1.0426e-09, 'epoch': 2.97, 'throughput': 201.17}
45100
+
45101
+ [INFO|2025-02-09 13:26:09] logging.py:157 >> {'loss': 0.0647, 'learning_rate': 1.0326e-09, 'epoch': 2.97, 'throughput': 201.17}
45102
+
45103
+ [INFO|2025-02-09 13:26:19] logging.py:157 >> {'loss': 0.1327, 'learning_rate': 1.0227e-09, 'epoch': 2.97, 'throughput': 201.17}
45104
+
45105
+ [INFO|2025-02-09 13:26:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0128e-09, 'epoch': 2.97, 'throughput': 201.17}
45106
+
45107
+ [INFO|2025-02-09 13:26:39] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 1.0029e-09, 'epoch': 2.97, 'throughput': 201.17}
45108
+
45109
+ [INFO|2025-02-09 13:26:48] logging.py:157 >> {'loss': 0.0431, 'learning_rate': 9.9311e-10, 'epoch': 2.97, 'throughput': 201.17}
45110
+
45111
+ [INFO|2025-02-09 13:26:58] logging.py:157 >> {'loss': 0.2594, 'learning_rate': 9.8335e-10, 'epoch': 2.97, 'throughput': 201.17}
45112
+
45113
+ [INFO|2025-02-09 13:27:07] logging.py:157 >> {'loss': 0.0051, 'learning_rate': 9.7364e-10, 'epoch': 2.97, 'throughput': 201.17}
45114
+
45115
+ [INFO|2025-02-09 13:27:16] logging.py:157 >> {'loss': 0.0515, 'learning_rate': 9.6397e-10, 'epoch': 2.97, 'throughput': 201.17}
45116
+
45117
+ [INFO|2025-02-09 13:27:26] logging.py:157 >> {'loss': 0.1407, 'learning_rate': 9.5436e-10, 'epoch': 2.97, 'throughput': 201.17}
45118
+
45119
+ [INFO|2025-02-09 13:27:36] logging.py:157 >> {'loss': 0.1695, 'learning_rate': 9.4479e-10, 'epoch': 2.97, 'throughput': 201.18}
45120
+
45121
+ [INFO|2025-02-09 13:27:45] logging.py:157 >> {'loss': 0.0046, 'learning_rate': 9.3527e-10, 'epoch': 2.97, 'throughput': 201.18}
45122
+
45123
+ [INFO|2025-02-09 13:27:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.2580e-10, 'epoch': 2.97, 'throughput': 201.18}
45124
+
45125
+ [INFO|2025-02-09 13:28:03] logging.py:157 >> {'loss': 0.0596, 'learning_rate': 9.1638e-10, 'epoch': 2.97, 'throughput': 201.18}
45126
+
45127
+ [INFO|2025-02-09 13:28:13] logging.py:157 >> {'loss': 0.0613, 'learning_rate': 9.0701e-10, 'epoch': 2.97, 'throughput': 201.18}
45128
+
45129
+ [INFO|2025-02-09 13:28:22] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 8.9768e-10, 'epoch': 2.97, 'throughput': 201.17}
45130
+
45131
+ [INFO|2025-02-09 13:28:32] logging.py:157 >> {'loss': 0.1559, 'learning_rate': 8.8840e-10, 'epoch': 2.97, 'throughput': 201.18}
45132
+
45133
+ [INFO|2025-02-09 13:28:42] logging.py:157 >> {'loss': 0.0074, 'learning_rate': 8.7917e-10, 'epoch': 2.97, 'throughput': 201.17}
45134
+
45135
+ [INFO|2025-02-09 13:28:51] logging.py:157 >> {'loss': 0.0635, 'learning_rate': 8.6999e-10, 'epoch': 2.97, 'throughput': 201.17}
45136
+
45137
+ [INFO|2025-02-09 13:29:01] logging.py:157 >> {'loss': 0.0020, 'learning_rate': 8.6086e-10, 'epoch': 2.97, 'throughput': 201.18}
45138
+
45139
+ [INFO|2025-02-09 13:29:10] logging.py:157 >> {'loss': 0.2347, 'learning_rate': 8.5177e-10, 'epoch': 2.98, 'throughput': 201.18}
45140
+
45141
+ [INFO|2025-02-09 13:29:19] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.4274e-10, 'epoch': 2.98, 'throughput': 201.17}
45142
+
45143
+ [INFO|2025-02-09 13:29:29] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 8.3375e-10, 'epoch': 2.98, 'throughput': 201.17}
45144
+
45145
+ [INFO|2025-02-09 13:29:37] logging.py:157 >> {'loss': 0.2888, 'learning_rate': 8.2481e-10, 'epoch': 2.98, 'throughput': 201.17}
45146
+
45147
+ [INFO|2025-02-09 13:29:48] logging.py:157 >> {'loss': 0.0190, 'learning_rate': 8.1591e-10, 'epoch': 2.98, 'throughput': 201.17}
45148
+
45149
+ [INFO|2025-02-09 13:29:57] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 8.0707e-10, 'epoch': 2.98, 'throughput': 201.17}
45150
+
45151
+ [INFO|2025-02-09 13:30:06] logging.py:157 >> {'loss': 0.0436, 'learning_rate': 7.9827e-10, 'epoch': 2.98, 'throughput': 201.17}
45152
+
45153
+ [INFO|2025-02-09 13:30:17] logging.py:157 >> {'loss': 0.0334, 'learning_rate': 7.8953e-10, 'epoch': 2.98, 'throughput': 201.17}
45154
+
45155
+ [INFO|2025-02-09 13:30:26] logging.py:157 >> {'loss': 0.0158, 'learning_rate': 7.8083e-10, 'epoch': 2.98, 'throughput': 201.17}
45156
+
45157
+ [INFO|2025-02-09 13:30:36] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 7.7218e-10, 'epoch': 2.98, 'throughput': 201.18}
45158
+
45159
+ [INFO|2025-02-09 13:30:45] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 7.6357e-10, 'epoch': 2.98, 'throughput': 201.17}
45160
+
45161
+ [INFO|2025-02-09 13:30:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 7.5502e-10, 'epoch': 2.98, 'throughput': 201.17}
45162
+
45163
+ [INFO|2025-02-09 13:31:04] logging.py:157 >> {'loss': 0.0429, 'learning_rate': 7.4651e-10, 'epoch': 2.98, 'throughput': 201.18}
45164
+
45165
+ [INFO|2025-02-09 13:31:13] logging.py:157 >> {'loss': 0.0062, 'learning_rate': 7.3805e-10, 'epoch': 2.98, 'throughput': 201.18}
45166
+
45167
+ [INFO|2025-02-09 13:31:22] logging.py:157 >> {'loss': 0.1086, 'learning_rate': 7.2964e-10, 'epoch': 2.98, 'throughput': 201.18}
45168
+
45169
+ [INFO|2025-02-09 13:31:32] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 7.2128e-10, 'epoch': 2.98, 'throughput': 201.18}
45170
+
45171
+ [INFO|2025-02-09 13:31:41] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 7.1297e-10, 'epoch': 2.98, 'throughput': 201.18}
45172
+
45173
+ [INFO|2025-02-09 13:31:52] logging.py:157 >> {'loss': 0.0773, 'learning_rate': 7.0470e-10, 'epoch': 2.98, 'throughput': 201.19}
45174
+
45175
+ [INFO|2025-02-09 13:32:02] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 6.9648e-10, 'epoch': 2.98, 'throughput': 201.19}
45176
+
45177
+ [INFO|2025-02-09 13:32:10] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 6.8831e-10, 'epoch': 2.98, 'throughput': 201.19}
45178
+
45179
+ [INFO|2025-02-09 13:32:21] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.8019e-10, 'epoch': 2.98, 'throughput': 201.19}
45180
+
45181
+ [INFO|2025-02-09 13:32:30] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.7212e-10, 'epoch': 2.98, 'throughput': 201.19}
45182
+
45183
+ [INFO|2025-02-09 13:32:39] logging.py:157 >> {'loss': 0.2480, 'learning_rate': 6.6409e-10, 'epoch': 2.98, 'throughput': 201.19}
45184
+
45185
+ [INFO|2025-02-09 13:32:49] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.5612e-10, 'epoch': 2.98, 'throughput': 201.18}
45186
+
45187
+ [INFO|2025-02-09 13:32:58] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 6.4819e-10, 'epoch': 2.98, 'throughput': 201.19}
45188
+
45189
+ [INFO|2025-02-09 13:33:08] logging.py:157 >> {'loss': 0.0262, 'learning_rate': 6.4031e-10, 'epoch': 2.98, 'throughput': 201.18}
45190
+
45191
+ [INFO|2025-02-09 13:33:18] logging.py:157 >> {'loss': 0.0834, 'learning_rate': 6.3248e-10, 'epoch': 2.98, 'throughput': 201.18}
45192
+
45193
+ [INFO|2025-02-09 13:33:27] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.2469e-10, 'epoch': 2.98, 'throughput': 201.18}
45194
+
45195
+ [INFO|2025-02-09 13:33:37] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 6.1696e-10, 'epoch': 2.98, 'throughput': 201.18}
45196
+
45197
+ [INFO|2025-02-09 13:33:47] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 6.0927e-10, 'epoch': 2.98, 'throughput': 201.18}
45198
+
45199
+ [INFO|2025-02-09 13:33:57] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 6.0163e-10, 'epoch': 2.98, 'throughput': 201.18}
45200
+
45201
+ [INFO|2025-02-09 13:34:07] logging.py:157 >> {'loss': 0.0040, 'learning_rate': 5.9404e-10, 'epoch': 2.98, 'throughput': 201.18}
45202
+
45203
+ [INFO|2025-02-09 13:34:16] logging.py:157 >> {'loss': 0.0158, 'learning_rate': 5.8650e-10, 'epoch': 2.98, 'throughput': 201.18}
45204
+
45205
+ [INFO|2025-02-09 13:34:27] logging.py:157 >> {'loss': 0.0358, 'learning_rate': 5.7900e-10, 'epoch': 2.98, 'throughput': 201.18}
45206
+
45207
+ [INFO|2025-02-09 13:34:37] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 5.7155e-10, 'epoch': 2.98, 'throughput': 201.18}
45208
+
45209
+ [INFO|2025-02-09 13:34:46] logging.py:157 >> {'loss': 0.0778, 'learning_rate': 5.6416e-10, 'epoch': 2.98, 'throughput': 201.18}
45210
+
45211
+ [INFO|2025-02-09 13:34:55] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.5681e-10, 'epoch': 2.98, 'throughput': 201.18}
45212
+
45213
+ [INFO|2025-02-09 13:35:05] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 5.4950e-10, 'epoch': 2.98, 'throughput': 201.18}
45214
+
45215
+ [INFO|2025-02-09 13:35:15] logging.py:157 >> {'loss': 0.0062, 'learning_rate': 5.4225e-10, 'epoch': 2.98, 'throughput': 201.18}
45216
+
45217
+ [INFO|2025-02-09 13:35:24] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 5.3504e-10, 'epoch': 2.98, 'throughput': 201.18}
45218
+
45219
+ [INFO|2025-02-09 13:35:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.2789e-10, 'epoch': 2.98, 'throughput': 201.18}
45220
+
45221
+ [INFO|2025-02-09 13:35:44] logging.py:157 >> {'loss': 0.0019, 'learning_rate': 5.2078e-10, 'epoch': 2.98, 'throughput': 201.18}
45222
+
45223
+ [INFO|2025-02-09 13:35:54] logging.py:157 >> {'loss': 0.3176, 'learning_rate': 5.1372e-10, 'epoch': 2.98, 'throughput': 201.18}
45224
+
45225
+ [INFO|2025-02-09 13:36:04] logging.py:157 >> {'loss': 0.0064, 'learning_rate': 5.0670e-10, 'epoch': 2.98, 'throughput': 201.18}
45226
+
45227
+ [INFO|2025-02-09 13:36:14] logging.py:157 >> {'loss': 0.0015, 'learning_rate': 4.9974e-10, 'epoch': 2.98, 'throughput': 201.18}
45228
+
45229
+ [INFO|2025-02-09 13:36:24] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.9282e-10, 'epoch': 2.98, 'throughput': 201.17}
45230
+
45231
+ [INFO|2025-02-09 13:36:34] logging.py:157 >> {'loss': 0.0228, 'learning_rate': 4.8595e-10, 'epoch': 2.98, 'throughput': 201.18}
45232
+
45233
+ [INFO|2025-02-09 13:36:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.7913e-10, 'epoch': 2.98, 'throughput': 201.18}
45234
+
45235
+ [INFO|2025-02-09 13:36:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.7236e-10, 'epoch': 2.98, 'throughput': 201.18}
45236
+
45237
+ [INFO|2025-02-09 13:37:05] logging.py:157 >> {'loss': 0.1020, 'learning_rate': 4.6564e-10, 'epoch': 2.98, 'throughput': 201.18}
45238
+
45239
+ [INFO|2025-02-09 13:37:14] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.5896e-10, 'epoch': 2.98, 'throughput': 201.17}
45240
+
45241
+ [INFO|2025-02-09 13:37:24] logging.py:157 >> {'loss': 0.0207, 'learning_rate': 4.5234e-10, 'epoch': 2.98, 'throughput': 201.17}
45242
+
45243
+ [INFO|2025-02-09 13:37:35] logging.py:157 >> {'loss': 0.0189, 'learning_rate': 4.4576e-10, 'epoch': 2.98, 'throughput': 201.17}
45244
+
45245
+ [INFO|2025-02-09 13:37:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.3923e-10, 'epoch': 2.98, 'throughput': 201.17}
45246
+
45247
+ [INFO|2025-02-09 13:37:54] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.3274e-10, 'epoch': 2.98, 'throughput': 201.17}
45248
+
45249
+ [INFO|2025-02-09 13:38:04] logging.py:157 >> {'loss': 0.0209, 'learning_rate': 4.2631e-10, 'epoch': 2.98, 'throughput': 201.17}
45250
+
45251
+ [INFO|2025-02-09 13:38:13] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.1992e-10, 'epoch': 2.98, 'throughput': 201.17}
45252
+
45253
+ [INFO|2025-02-09 13:38:23] logging.py:157 >> {'loss': 0.0084, 'learning_rate': 4.1358e-10, 'epoch': 2.98, 'throughput': 201.17}
45254
+
45255
+ [INFO|2025-02-09 13:38:32] logging.py:157 >> {'loss': 0.0361, 'learning_rate': 4.0729e-10, 'epoch': 2.98, 'throughput': 201.17}
45256
+
45257
+ [INFO|2025-02-09 13:38:42] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.0105e-10, 'epoch': 2.98, 'throughput': 201.16}
45258
+
45259
+ [INFO|2025-02-09 13:38:52] logging.py:157 >> {'loss': 0.0600, 'learning_rate': 3.9486e-10, 'epoch': 2.98, 'throughput': 201.16}
45260
+
45261
+ [INFO|2025-02-09 13:39:01] logging.py:157 >> {'loss': 0.0085, 'learning_rate': 3.8871e-10, 'epoch': 2.98, 'throughput': 201.16}
45262
+
45263
+ [INFO|2025-02-09 13:39:10] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.8262e-10, 'epoch': 2.98, 'throughput': 201.16}
45264
+
45265
+ [INFO|2025-02-09 13:39:20] logging.py:157 >> {'loss': 0.0249, 'learning_rate': 3.7657e-10, 'epoch': 2.98, 'throughput': 201.16}
45266
+
45267
+ [INFO|2025-02-09 13:39:29] logging.py:157 >> {'loss': 0.0412, 'learning_rate': 3.7057e-10, 'epoch': 2.98, 'throughput': 201.17}
45268
+
45269
+ [INFO|2025-02-09 13:39:40] logging.py:157 >> {'loss': 0.0919, 'learning_rate': 3.6461e-10, 'epoch': 2.98, 'throughput': 201.17}
45270
+
45271
+ [INFO|2025-02-09 13:39:50] logging.py:157 >> {'loss': 0.1375, 'learning_rate': 3.5871e-10, 'epoch': 2.98, 'throughput': 201.17}
45272
+
45273
+ [INFO|2025-02-09 13:39:59] logging.py:157 >> {'loss': 0.2204, 'learning_rate': 3.5285e-10, 'epoch': 2.98, 'throughput': 201.17}
45274
+
45275
+ [INFO|2025-02-09 13:40:09] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.4704e-10, 'epoch': 2.98, 'throughput': 201.17}
45276
+
45277
+ [INFO|2025-02-09 13:40:19] logging.py:157 >> {'loss': 0.0713, 'learning_rate': 3.4128e-10, 'epoch': 2.98, 'throughput': 201.17}
45278
+
45279
+ [INFO|2025-02-09 13:40:28] logging.py:157 >> {'loss': 0.0082, 'learning_rate': 3.3557e-10, 'epoch': 2.98, 'throughput': 201.17}
45280
+
45281
+ [INFO|2025-02-09 13:40:38] logging.py:157 >> {'loss': 0.0015, 'learning_rate': 3.2991e-10, 'epoch': 2.98, 'throughput': 201.17}
45282
+
45283
+ [INFO|2025-02-09 13:40:47] logging.py:157 >> {'loss': 0.0451, 'learning_rate': 3.2429e-10, 'epoch': 2.98, 'throughput': 201.17}
45284
+
45285
+ [INFO|2025-02-09 13:40:57] logging.py:157 >> {'loss': 0.2993, 'learning_rate': 3.1873e-10, 'epoch': 2.98, 'throughput': 201.17}
45286
+
45287
+ [INFO|2025-02-09 13:41:07] logging.py:157 >> {'loss': 0.0263, 'learning_rate': 3.1321e-10, 'epoch': 2.98, 'throughput': 201.17}
45288
+
45289
+ [INFO|2025-02-09 13:41:16] logging.py:157 >> {'loss': 0.0732, 'learning_rate': 3.0774e-10, 'epoch': 2.99, 'throughput': 201.17}
45290
+
45291
+ [INFO|2025-02-09 13:41:27] logging.py:157 >> {'loss': 0.0123, 'learning_rate': 3.0232e-10, 'epoch': 2.99, 'throughput': 201.17}
45292
+
45293
+ [INFO|2025-02-09 13:41:35] logging.py:157 >> {'loss': 0.0527, 'learning_rate': 2.9694e-10, 'epoch': 2.99, 'throughput': 201.17}
45294
+
45295
+ [INFO|2025-02-09 13:41:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.9161e-10, 'epoch': 2.99, 'throughput': 201.17}
45296
+
45297
+ [INFO|2025-02-09 13:41:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8634e-10, 'epoch': 2.99, 'throughput': 201.17}
45298
+
45299
+ [INFO|2025-02-09 13:42:02] logging.py:157 >> {'loss': 0.0321, 'learning_rate': 2.8111e-10, 'epoch': 2.99, 'throughput': 201.17}
45300
+
45301
+ [INFO|2025-02-09 13:42:11] logging.py:157 >> {'loss': 0.1726, 'learning_rate': 2.7593e-10, 'epoch': 2.99, 'throughput': 201.17}
45302
+
45303
+ [INFO|2025-02-09 13:42:21] logging.py:157 >> {'loss': 0.0026, 'learning_rate': 2.7079e-10, 'epoch': 2.99, 'throughput': 201.17}
45304
+
45305
+ [INFO|2025-02-09 13:42:31] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 2.6571e-10, 'epoch': 2.99, 'throughput': 201.17}
45306
+
45307
+ [INFO|2025-02-09 13:42:39] logging.py:157 >> {'loss': 0.1835, 'learning_rate': 2.6067e-10, 'epoch': 2.99, 'throughput': 201.17}
45308
+
45309
+ [INFO|2025-02-09 13:42:49] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.5568e-10, 'epoch': 2.99, 'throughput': 201.17}
45310
+
45311
+ [INFO|2025-02-09 13:42:59] logging.py:157 >> {'loss': 0.2299, 'learning_rate': 2.5074e-10, 'epoch': 2.99, 'throughput': 201.17}
45312
+
45313
+ [INFO|2025-02-09 13:43:07] logging.py:157 >> {'loss': 0.0087, 'learning_rate': 2.4585e-10, 'epoch': 2.99, 'throughput': 201.17}
45314
+
45315
+ [INFO|2025-02-09 13:43:17] logging.py:157 >> {'loss': 0.0028, 'learning_rate': 2.4100e-10, 'epoch': 2.99, 'throughput': 201.17}
45316
+
45317
+ [INFO|2025-02-09 13:43:26] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.3621e-10, 'epoch': 2.99, 'throughput': 201.17}
45318
+
45319
+ [INFO|2025-02-09 13:43:36] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 2.3146e-10, 'epoch': 2.99, 'throughput': 201.17}
45320
+
45321
+ [INFO|2025-02-09 13:43:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2676e-10, 'epoch': 2.99, 'throughput': 201.17}
45322
+
45323
+ [INFO|2025-02-09 13:43:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2211e-10, 'epoch': 2.99, 'throughput': 201.17}
45324
+
45325
+ [INFO|2025-02-09 13:44:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1751e-10, 'epoch': 2.99, 'throughput': 201.17}
45326
+
45327
+ [INFO|2025-02-09 13:44:13] logging.py:157 >> {'loss': 0.0159, 'learning_rate': 2.1295e-10, 'epoch': 2.99, 'throughput': 201.17}
45328
+
45329
+ [INFO|2025-02-09 13:44:23] logging.py:157 >> {'loss': 0.0038, 'learning_rate': 2.0845e-10, 'epoch': 2.99, 'throughput': 201.17}
45330
+
45331
+ [INFO|2025-02-09 13:44:33] logging.py:157 >> {'loss': 0.0016, 'learning_rate': 2.0399e-10, 'epoch': 2.99, 'throughput': 201.17}
45332
+
45333
+ [INFO|2025-02-09 13:44:42] logging.py:157 >> {'loss': 0.0290, 'learning_rate': 1.9958e-10, 'epoch': 2.99, 'throughput': 201.18}
45334
+
45335
+ [INFO|2025-02-09 13:44:53] logging.py:157 >> {'loss': 0.1973, 'learning_rate': 1.9521e-10, 'epoch': 2.99, 'throughput': 201.18}
45336
+
45337
+ [INFO|2025-02-09 13:45:02] logging.py:157 >> {'loss': 0.0165, 'learning_rate': 1.9090e-10, 'epoch': 2.99, 'throughput': 201.18}
45338
+
45339
+ [INFO|2025-02-09 13:45:12] logging.py:157 >> {'loss': 0.0885, 'learning_rate': 1.8663e-10, 'epoch': 2.99, 'throughput': 201.18}
45340
+
45341
+ [INFO|2025-02-09 13:45:21] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 1.8242e-10, 'epoch': 2.99, 'throughput': 201.18}
45342
+
45343
+ [INFO|2025-02-09 13:45:31] logging.py:157 >> {'loss': 0.1119, 'learning_rate': 1.7825e-10, 'epoch': 2.99, 'throughput': 201.18}
45344
+
45345
+ [INFO|2025-02-09 13:45:41] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7413e-10, 'epoch': 2.99, 'throughput': 201.18}
45346
+
45347
+ [INFO|2025-02-09 13:45:51] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.7005e-10, 'epoch': 2.99, 'throughput': 201.18}
45348
+
45349
+ [INFO|2025-02-09 13:46:00] logging.py:157 >> {'loss': 0.0027, 'learning_rate': 1.6603e-10, 'epoch': 2.99, 'throughput': 201.18}
45350
+
45351
+ [INFO|2025-02-09 13:46:11] logging.py:157 >> {'loss': 0.0138, 'learning_rate': 1.6205e-10, 'epoch': 2.99, 'throughput': 201.18}
45352
+
45353
+ [INFO|2025-02-09 13:46:20] logging.py:157 >> {'loss': 0.1212, 'learning_rate': 1.5812e-10, 'epoch': 2.99, 'throughput': 201.17}
45354
+
45355
+ [INFO|2025-02-09 13:46:30] logging.py:157 >> {'loss': 0.0301, 'learning_rate': 1.5424e-10, 'epoch': 2.99, 'throughput': 201.17}
45356
+
45357
+ [INFO|2025-02-09 13:46:40] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 1.5041e-10, 'epoch': 2.99, 'throughput': 201.17}
45358
+
45359
+ [INFO|2025-02-09 13:46:49] logging.py:157 >> {'loss': 0.0217, 'learning_rate': 1.4663e-10, 'epoch': 2.99, 'throughput': 201.17}
45360
+
45361
+ [INFO|2025-02-09 13:46:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.4289e-10, 'epoch': 2.99, 'throughput': 201.17}
45362
+
45363
+ [INFO|2025-02-09 13:47:09] logging.py:157 >> {'loss': 0.0118, 'learning_rate': 1.3921e-10, 'epoch': 2.99, 'throughput': 201.17}
45364
+
45365
+ [INFO|2025-02-09 13:47:18] logging.py:157 >> {'loss': 0.0456, 'learning_rate': 1.3557e-10, 'epoch': 2.99, 'throughput': 201.17}
45366
+
45367
+ [INFO|2025-02-09 13:47:28] logging.py:157 >> {'loss': 0.0196, 'learning_rate': 1.3198e-10, 'epoch': 2.99, 'throughput': 201.17}
45368
+
45369
+ [INFO|2025-02-09 13:47:38] logging.py:157 >> {'loss': 0.2508, 'learning_rate': 1.2843e-10, 'epoch': 2.99, 'throughput': 201.17}
45370
+
45371
+ [INFO|2025-02-09 13:47:48] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 1.2494e-10, 'epoch': 2.99, 'throughput': 201.17}
45372
+
45373
+ [INFO|2025-02-09 13:47:58] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2149e-10, 'epoch': 2.99, 'throughput': 201.17}
45374
+
45375
+ [INFO|2025-02-09 13:48:08] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1809e-10, 'epoch': 2.99, 'throughput': 201.17}
45376
+
45377
+ [INFO|2025-02-09 13:48:18] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1474e-10, 'epoch': 2.99, 'throughput': 201.17}
45378
+
45379
+ [INFO|2025-02-09 13:48:28] logging.py:157 >> {'loss': 0.0052, 'learning_rate': 1.1144e-10, 'epoch': 2.99, 'throughput': 201.17}
45380
+
45381
+ [INFO|2025-02-09 13:48:37] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.0819e-10, 'epoch': 2.99, 'throughput': 201.17}
45382
+
45383
+ [INFO|2025-02-09 13:48:48] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0498e-10, 'epoch': 2.99, 'throughput': 201.17}
45384
+
45385
+ [INFO|2025-02-09 13:48:57] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.0183e-10, 'epoch': 2.99, 'throughput': 201.17}
45386
+
45387
+ [INFO|2025-02-09 13:49:07] logging.py:157 >> {'loss': 0.0086, 'learning_rate': 9.8716e-11, 'epoch': 2.99, 'throughput': 201.17}
45388
+
45389
+ [INFO|2025-02-09 13:49:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.5656e-11, 'epoch': 2.99, 'throughput': 201.17}
45390
+
45391
+ [INFO|2025-02-09 13:49:26] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 9.2643e-11, 'epoch': 2.99, 'throughput': 201.17}
45392
+
45393
+ [INFO|2025-02-09 13:49:37] logging.py:157 >> {'loss': 0.0492, 'learning_rate': 8.9679e-11, 'epoch': 2.99, 'throughput': 201.17}
45394
+
45395
+ [INFO|2025-02-09 13:49:46] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 8.6763e-11, 'epoch': 2.99, 'throughput': 201.18}
45396
+
45397
+ [INFO|2025-02-09 13:49:56] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.3895e-11, 'epoch': 2.99, 'throughput': 201.17}
45398
+
45399
+ [INFO|2025-02-09 13:50:06] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 8.1075e-11, 'epoch': 2.99, 'throughput': 201.17}
45400
+
45401
+ [INFO|2025-02-09 13:50:15] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 7.8303e-11, 'epoch': 2.99, 'throughput': 201.17}
45402
+
45403
+ [INFO|2025-02-09 13:50:24] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 7.5580e-11, 'epoch': 2.99, 'throughput': 201.17}
45404
+
45405
+ [INFO|2025-02-09 13:50:33] logging.py:157 >> {'loss': 0.0376, 'learning_rate': 7.2905e-11, 'epoch': 2.99, 'throughput': 201.17}
45406
+
45407
+ [INFO|2025-02-09 13:50:42] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 7.0278e-11, 'epoch': 2.99, 'throughput': 201.17}
45408
+
45409
+ [INFO|2025-02-09 13:50:52] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 6.7699e-11, 'epoch': 2.99, 'throughput': 201.17}
45410
+
45411
+ [INFO|2025-02-09 13:51:01] logging.py:157 >> {'loss': 0.0337, 'learning_rate': 6.5168e-11, 'epoch': 2.99, 'throughput': 201.17}
45412
+
45413
+ [INFO|2025-02-09 13:51:11] logging.py:157 >> {'loss': 0.0174, 'learning_rate': 6.2686e-11, 'epoch': 2.99, 'throughput': 201.16}
45414
+
45415
+ [INFO|2025-02-09 13:51:21] logging.py:157 >> {'loss': 0.0402, 'learning_rate': 6.0252e-11, 'epoch': 2.99, 'throughput': 201.17}
45416
+
45417
+ [INFO|2025-02-09 13:51:30] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.7866e-11, 'epoch': 2.99, 'throughput': 201.17}
45418
+
45419
+ [INFO|2025-02-09 13:51:39] logging.py:157 >> {'loss': 0.0903, 'learning_rate': 5.5528e-11, 'epoch': 2.99, 'throughput': 201.16}
45420
+
45421
+ [INFO|2025-02-09 13:51:48] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 5.3239e-11, 'epoch': 2.99, 'throughput': 201.16}
45422
+
45423
+ [INFO|2025-02-09 13:51:59] logging.py:157 >> {'loss': 0.0902, 'learning_rate': 5.0997e-11, 'epoch': 2.99, 'throughput': 201.16}
45424
+
45425
+ [INFO|2025-02-09 13:52:07] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.8804e-11, 'epoch': 2.99, 'throughput': 201.16}
45426
+
45427
+ [INFO|2025-02-09 13:52:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.6659e-11, 'epoch': 2.99, 'throughput': 201.16}
45428
+
45429
+ [INFO|2025-02-09 13:52:27] logging.py:157 >> {'loss': 0.1789, 'learning_rate': 4.4562e-11, 'epoch': 2.99, 'throughput': 201.16}
45430
+
45431
+ [INFO|2025-02-09 13:52:35] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 4.2514e-11, 'epoch': 2.99, 'throughput': 201.16}
45432
+
45433
+ [INFO|2025-02-09 13:52:45] logging.py:157 >> {'loss': 0.0887, 'learning_rate': 4.0513e-11, 'epoch': 2.99, 'throughput': 201.16}
45434
+
45435
+ [INFO|2025-02-09 13:52:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8561e-11, 'epoch': 2.99, 'throughput': 201.16}
45436
+
45437
+ [INFO|2025-02-09 13:53:04] logging.py:157 >> {'loss': 0.0030, 'learning_rate': 3.6657e-11, 'epoch': 2.99, 'throughput': 201.16}
45438
+
45439
+ [INFO|2025-02-09 13:53:14] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.4802e-11, 'epoch': 2.99, 'throughput': 201.15}
45440
+
45441
+ [INFO|2025-02-09 13:53:23] logging.py:157 >> {'loss': 0.0901, 'learning_rate': 3.2994e-11, 'epoch': 3.00, 'throughput': 201.16}
45442
+
45443
+ [INFO|2025-02-09 13:53:34] logging.py:157 >> {'loss': 0.0525, 'learning_rate': 3.1235e-11, 'epoch': 3.00, 'throughput': 201.16}
45444
+
45445
+ [INFO|2025-02-09 13:53:44] logging.py:157 >> {'loss': 0.0296, 'learning_rate': 2.9523e-11, 'epoch': 3.00, 'throughput': 201.16}
45446
+
45447
+ [INFO|2025-02-09 13:53:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.7861e-11, 'epoch': 3.00, 'throughput': 201.16}
45448
+
45449
+ [INFO|2025-02-09 13:54:04] logging.py:157 >> {'loss': 0.1933, 'learning_rate': 2.6246e-11, 'epoch': 3.00, 'throughput': 201.16}
45450
+
45451
+ [INFO|2025-02-09 13:54:14] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4679e-11, 'epoch': 3.00, 'throughput': 201.16}
45452
+
45453
+ [INFO|2025-02-09 13:54:24] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 2.3161e-11, 'epoch': 3.00, 'throughput': 201.16}
45454
+
45455
+ [INFO|2025-02-09 13:54:34] logging.py:157 >> {'loss': 0.0103, 'learning_rate': 2.1691e-11, 'epoch': 3.00, 'throughput': 201.15}
45456
+
45457
+ [INFO|2025-02-09 13:54:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0269e-11, 'epoch': 3.00, 'throughput': 201.15}
45458
+
45459
+ [INFO|2025-02-09 13:54:54] logging.py:157 >> {'loss': 0.2132, 'learning_rate': 1.8895e-11, 'epoch': 3.00, 'throughput': 201.15}
45460
+
45461
+ [INFO|2025-02-09 13:55:04] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 1.7570e-11, 'epoch': 3.00, 'throughput': 201.16}
45462
+
45463
+ [INFO|2025-02-09 13:55:15] logging.py:157 >> {'loss': 0.0885, 'learning_rate': 1.6292e-11, 'epoch': 3.00, 'throughput': 201.16}
45464
+
45465
+ [INFO|2025-02-09 13:55:25] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.5063e-11, 'epoch': 3.00, 'throughput': 201.16}
45466
+
45467
+ [INFO|2025-02-09 13:55:35] logging.py:157 >> {'loss': 0.0449, 'learning_rate': 1.3882e-11, 'epoch': 3.00, 'throughput': 201.16}
45468
+
45469
+ [INFO|2025-02-09 13:55:45] logging.py:157 >> {'loss': 0.0851, 'learning_rate': 1.2749e-11, 'epoch': 3.00, 'throughput': 201.16}
45470
+
45471
+ [INFO|2025-02-09 13:55:55] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1665e-11, 'epoch': 3.00, 'throughput': 201.16}
45472
+
45473
+ [INFO|2025-02-09 13:56:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0628e-11, 'epoch': 3.00, 'throughput': 201.16}
45474
+
45475
+ [INFO|2025-02-09 13:56:15] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.6403e-12, 'epoch': 3.00, 'throughput': 201.15}
45476
+
45477
+ [INFO|2025-02-09 13:56:25] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 8.7004e-12, 'epoch': 3.00, 'throughput': 201.15}
45478
+
45479
+ [INFO|2025-02-09 13:56:35] logging.py:157 >> {'loss': 0.0045, 'learning_rate': 7.8087e-12, 'epoch': 3.00, 'throughput': 201.15}
45480
+
45481
+ [INFO|2025-02-09 13:56:45] logging.py:157 >> {'loss': 0.0670, 'learning_rate': 6.9651e-12, 'epoch': 3.00, 'throughput': 201.16}
45482
+
45483
+ [INFO|2025-02-09 13:56:56] logging.py:157 >> {'loss': 0.2274, 'learning_rate': 6.1698e-12, 'epoch': 3.00, 'throughput': 201.16}
45484
+
45485
+ [INFO|2025-02-09 13:57:05] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.4227e-12, 'epoch': 3.00, 'throughput': 201.16}
45486
+
45487
+ [INFO|2025-02-09 13:57:15] logging.py:157 >> {'loss': 0.2020, 'learning_rate': 4.7238e-12, 'epoch': 3.00, 'throughput': 201.16}
45488
+
45489
+ [INFO|2025-02-09 13:57:24] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.0730e-12, 'epoch': 3.00, 'throughput': 201.15}
45490
+
45491
+ [INFO|2025-02-09 13:57:34] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.4705e-12, 'epoch': 3.00, 'throughput': 201.15}
45492
+
45493
+ [INFO|2025-02-09 13:57:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.9162e-12, 'epoch': 3.00, 'throughput': 201.15}
45494
+
45495
+ [INFO|2025-02-09 13:57:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4101e-12, 'epoch': 3.00, 'throughput': 201.15}
45496
+
45497
+ [INFO|2025-02-09 13:58:03] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.9522e-12, 'epoch': 3.00, 'throughput': 201.15}
45498
+
45499
+ [INFO|2025-02-09 13:58:14] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 1.5425e-12, 'epoch': 3.00, 'throughput': 201.16}
45500
+
45501
+ [INFO|2025-02-09 13:58:23] logging.py:157 >> {'loss': 0.0105, 'learning_rate': 1.1809e-12, 'epoch': 3.00, 'throughput': 201.16}
45502
+
45503
+ [INFO|2025-02-09 13:58:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.6763e-13, 'epoch': 3.00, 'throughput': 201.16}
45504
+
45505
+ [INFO|2025-02-09 13:58:43] logging.py:157 >> {'loss': 0.1049, 'learning_rate': 6.0252e-13, 'epoch': 3.00, 'throughput': 201.15}
45506
+
45507
+ [INFO|2025-02-09 13:58:52] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 3.8561e-13, 'epoch': 3.00, 'throughput': 201.16}
45508
+
45509
+ [INFO|2025-02-09 13:59:01] logging.py:157 >> {'loss': 0.0622, 'learning_rate': 2.1691e-13, 'epoch': 3.00, 'throughput': 201.16}
45510
+
45511
+ [INFO|2025-02-09 13:59:11] logging.py:157 >> {'loss': 0.0457, 'learning_rate': 9.6403e-14, 'epoch': 3.00, 'throughput': 201.15}
45512
+
45513
+ [INFO|2025-02-09 13:59:19] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.4101e-14, 'epoch': 3.00, 'throughput': 201.16}
45514
+
45515
+ [INFO|2025-02-09 13:59:30] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 0.0000e+00, 'epoch': 3.00, 'throughput': 201.15}
45516
+
45517
+ [INFO|2025-02-09 13:59:35] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635
45518
+
45519
+ [INFO|2025-02-09 13:59:35] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/config.json
45520
+
45521
+ [INFO|2025-02-09 13:59:35] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/generation_config.json
45522
+
45523
+ [INFO|2025-02-09 13:59:46] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/model.safetensors.index.json.
45524
+
45525
+ [INFO|2025-02-09 13:59:46] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/tokenizer_config.json
45526
+
45527
+ [INFO|2025-02-09 13:59:46] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/special_tokens_map.json
45528
+
45529
+ [INFO|2025-02-09 14:00:41] trainer.py:2643 >>
45530
+
45531
+ Training completed. Do not forget to share your model on huggingface.co/models =)
45532
+
45533
+
45534
+
45535
+ [INFO|2025-02-09 14:00:46] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen
45536
+
45537
+ [INFO|2025-02-09 14:00:46] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
45538
+
45539
+ [INFO|2025-02-09 14:00:46] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/generation_config.json
45540
+
45541
+ [INFO|2025-02-09 14:01:01] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/model.safetensors.index.json.
45542
+
45543
+ [INFO|2025-02-09 14:01:01] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/tokenizer_config.json
45544
+
45545
+ [INFO|2025-02-09 14:01:01] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/special_tokens_map.json
45546
+
45547
+ [WARNING|2025-02-09 14:01:03] logging.py:162 >> No metric eval_loss to plot.
45548
+
45549
+ [WARNING|2025-02-09 14:01:03] logging.py:162 >> No metric eval_accuracy to plot.
45550
+
45551
+ [INFO|2025-02-09 14:01:03] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
45552
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
45553
+
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 2048,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "num_input_tokens_seen": 44325984,
4
+ "total_flos": 1.8804729049283297e+18,
5
+ "train_loss": 0.11007208550827785,
6
+ "train_runtime": 220429.5839,
7
+ "train_samples_per_second": 0.205,
8
+ "train_steps_per_second": 0.103
9
+ }
trainer_log.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3469befa03cfdc61d08fe4993d0b0451d621d80513a23011f8b231cbcb3efb30
3
+ size 7416