Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- README.md +60 -0
- added_tokens.json +24 -0
- all_results.json +9 -0
- checkpoint-22635/added_tokens.json +24 -0
- checkpoint-22635/config.json +29 -0
- checkpoint-22635/generation_config.json +14 -0
- checkpoint-22635/global_step22635/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-22635/global_step22635/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-22635/global_step22635/mp_rank_00_model_states.pt +3 -0
- checkpoint-22635/latest +1 -0
- checkpoint-22635/merges.txt +0 -0
- checkpoint-22635/model-00001-of-00004.safetensors +3 -0
- checkpoint-22635/model-00002-of-00004.safetensors +3 -0
- checkpoint-22635/model-00003-of-00004.safetensors +3 -0
- checkpoint-22635/model-00004-of-00004.safetensors +3 -0
- checkpoint-22635/model.safetensors.index.json +346 -0
- checkpoint-22635/rng_state_0.pth +3 -0
- checkpoint-22635/rng_state_1.pth +3 -0
- checkpoint-22635/scheduler.pt +3 -0
- checkpoint-22635/special_tokens_map.json +31 -0
- checkpoint-22635/tokenizer.json +3 -0
- checkpoint-22635/tokenizer_config.json +209 -0
- checkpoint-22635/trainer_state.json +0 -0
- checkpoint-22635/training_args.bin +3 -0
- checkpoint-22635/vocab.json +0 -0
- checkpoint-22635/zero_to_fp32.py +760 -0
- config.json +29 -0
- eval_2025-02-09-14-03-10/all_results.json +10 -0
- eval_2025-02-09-14-03-10/generated_predictions.jsonl +3 -0
- eval_2025-02-09-14-03-10/llamaboard_config.yaml +19 -0
- eval_2025-02-09-14-03-10/predict_results.json +10 -0
- eval_2025-02-09-14-03-10/running_log.txt +146 -0
- eval_2025-02-09-14-03-10/trainer_log.jsonl +270 -0
- eval_2025-02-09-14-03-10/training_args.yaml +19 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- running_log.txt +969 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- train_results.json +9 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -37,3 +37,6 @@ checkpoint-5000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
37 |
checkpoint-10000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
checkpoint-15000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
checkpoint-20000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
37 |
checkpoint-10000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
checkpoint-15000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
checkpoint-20000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
+
checkpoint-22635/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
eval_2025-02-09-14-03-10/generated_predictions.jsonl filter=lfs diff=lfs merge=lfs -text
|
42 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- full
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: train_2025-02-07-00-42-22_qwen
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# train_2025-02-07-00-42-22_qwen
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the train_hal_detection_1125 dataset.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-06
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 2
|
44 |
+
- total_train_batch_size: 2
|
45 |
+
- total_eval_batch_size: 16
|
46 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_steps: 10
|
49 |
+
- num_epochs: 3.0
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
### Framework versions
|
56 |
+
|
57 |
+
- Transformers 4.48.2
|
58 |
+
- Pytorch 2.3.0a0+ebedce2
|
59 |
+
- Datasets 3.2.0
|
60 |
+
- Tokenizers 0.21.0
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"num_input_tokens_seen": 44325984,
|
4 |
+
"total_flos": 1.8804729049283297e+18,
|
5 |
+
"train_loss": 0.11007208550827785,
|
6 |
+
"train_runtime": 220429.5839,
|
7 |
+
"train_samples_per_second": 0.205,
|
8 |
+
"train_steps_per_second": 0.103
|
9 |
+
}
|
checkpoint-22635/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-22635/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.48.2",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
checkpoint-22635/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.2"
|
14 |
+
}
|
checkpoint-22635/global_step22635/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58fca8b8ab46926e151759ebcb2f68b727696bd69556fe682ebe84864089d8c0
|
3 |
+
size 45693717056
|
checkpoint-22635/global_step22635/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98308d9ae65aaf3b2a047459b5d7bf0c62ea317a7f4f02564c35a7f5739c8471
|
3 |
+
size 45693717120
|
checkpoint-22635/global_step22635/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f72a976a73691f114381411ec5254957ab141a9d449604429e8c1629c5b6a47d
|
3 |
+
size 15231325944
|
checkpoint-22635/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step22635
|
checkpoint-22635/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-22635/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8893ad23f6b4e25d558b7c3652f30827b46c172197c44cf04d009125dded5e
|
3 |
+
size 4877660776
|
checkpoint-22635/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96ab2dfbebcc95f38e511e5b0634de91a2856ee9f480edfcd2f88526397892d3
|
3 |
+
size 4932751008
|
checkpoint-22635/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e115bd279bb036f5fa3173fe465ab1a27f86506e63fc66e735f6b532b1649223
|
3 |
+
size 4330865200
|
checkpoint-22635/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:481a0d59a11f12bacd51df1a156f2f59b5ff564682a2481c428fa925d81f79cc
|
3 |
+
size 1089994880
|
checkpoint-22635/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
checkpoint-22635/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34bcae41c589c7e4cab7b2ef263b878c90c2741404a6af11994dc31537b2319b
|
3 |
+
size 14512
|
checkpoint-22635/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05dc84075e8f7dd1191c36f3be9dda12073208e12f7d2cef433c38d6336774a
|
3 |
+
size 14512
|
checkpoint-22635/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e33bbd4dda7e66662825ace3c1f6e43ac605769744e4e9d2a1226d5ad5f8385
|
3 |
+
size 1064
|
checkpoint-22635/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-22635/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-22635/tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 2048,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "right",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
checkpoint-22635/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-22635/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3469befa03cfdc61d08fe4993d0b0451d621d80513a23011f8b231cbcb3efb30
|
3 |
+
size 7416
|
checkpoint-22635/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-22635/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.48.2",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
eval_2025-02-09-14-03-10/all_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_bleu-4": 78.68414603703702,
|
3 |
+
"predict_model_preparation_time": 0.0084,
|
4 |
+
"predict_rouge-1": 90.219668,
|
5 |
+
"predict_rouge-2": 87.06174974074074,
|
6 |
+
"predict_rouge-l": 89.22581688888889,
|
7 |
+
"predict_runtime": 909.0068,
|
8 |
+
"predict_samples_per_second": 2.97,
|
9 |
+
"predict_steps_per_second": 1.485
|
10 |
+
}
|
eval_2025-02-09-14-03-10/generated_predictions.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92736eac8ae008e3b9357df2e801a2ef0abdbdbcb4a4e797316f3a211b1c3801
|
3 |
+
size 11696749
|
eval_2025-02-09-14-03-10/llamaboard_config.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
eval.batch_size: 1
|
2 |
+
eval.cutoff_len: 2048
|
3 |
+
eval.dataset:
|
4 |
+
- test_hal_detection_1125
|
5 |
+
eval.dataset_dir: data
|
6 |
+
eval.max_new_tokens: 512
|
7 |
+
eval.max_samples: '100000'
|
8 |
+
eval.output_dir: eval_2025-02-09-14-03-10
|
9 |
+
eval.predict: true
|
10 |
+
eval.temperature: 0.95
|
11 |
+
eval.top_p: 0.7
|
12 |
+
top.booster: auto
|
13 |
+
top.checkpoint_path: train_2025-02-07-00-42-22_qwen
|
14 |
+
top.finetuning_type: full
|
15 |
+
top.model_name: Qwen2.5-7B-Instruct
|
16 |
+
top.quantization_bit: none
|
17 |
+
top.quantization_method: bitsandbytes
|
18 |
+
top.rope_scaling: none
|
19 |
+
top.template: qwen
|
eval_2025-02-09-14-03-10/predict_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_bleu-4": 78.68414603703702,
|
3 |
+
"predict_model_preparation_time": 0.0084,
|
4 |
+
"predict_rouge-1": 90.219668,
|
5 |
+
"predict_rouge-2": 87.06174974074074,
|
6 |
+
"predict_rouge-l": 89.22581688888889,
|
7 |
+
"predict_runtime": 909.0068,
|
8 |
+
"predict_samples_per_second": 2.97,
|
9 |
+
"predict_steps_per_second": 1.485
|
10 |
+
}
|
eval_2025-02-09-14-03-10/running_log.txt
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file added_tokens.json
|
2 |
+
|
3 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file special_tokens_map.json
|
4 |
+
|
5 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer_config.json
|
6 |
+
|
7 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file chat_template.jinja
|
8 |
+
|
9 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
10 |
+
|
11 |
+
[INFO|2025-02-09 14:04:47] configuration_utils.py:694 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
|
12 |
+
|
13 |
+
[INFO|2025-02-09 14:04:47] configuration_utils.py:768 >> Model config Qwen2Config {
|
14 |
+
"_name_or_path": "saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen",
|
15 |
+
"architectures": [
|
16 |
+
"Qwen2ForCausalLM"
|
17 |
+
],
|
18 |
+
"attention_dropout": 0.0,
|
19 |
+
"bos_token_id": 151643,
|
20 |
+
"eos_token_id": 151645,
|
21 |
+
"hidden_act": "silu",
|
22 |
+
"hidden_size": 3584,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 18944,
|
25 |
+
"max_position_embeddings": 32768,
|
26 |
+
"max_window_layers": 28,
|
27 |
+
"model_type": "qwen2",
|
28 |
+
"num_attention_heads": 28,
|
29 |
+
"num_hidden_layers": 28,
|
30 |
+
"num_key_value_heads": 4,
|
31 |
+
"rms_norm_eps": 1e-06,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 1000000.0,
|
34 |
+
"sliding_window": null,
|
35 |
+
"tie_word_embeddings": false,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.48.2",
|
38 |
+
"use_cache": false,
|
39 |
+
"use_sliding_window": false,
|
40 |
+
"vocab_size": 152064
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file vocab.json
|
45 |
+
|
46 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file merges.txt
|
47 |
+
|
48 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer.json
|
49 |
+
|
50 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file added_tokens.json
|
51 |
+
|
52 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file special_tokens_map.json
|
53 |
+
|
54 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file tokenizer_config.json
|
55 |
+
|
56 |
+
[INFO|2025-02-09 14:04:47] tokenization_utils_base.py:2032 >> loading file chat_template.jinja
|
57 |
+
|
58 |
+
[INFO|2025-02-09 14:04:48] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
59 |
+
|
60 |
+
[INFO|2025-02-09 14:04:48] logging.py:157 >> Add <|im_end|> to stop words.
|
61 |
+
|
62 |
+
[INFO|2025-02-09 14:04:48] logging.py:157 >> Loading dataset ragtruth_base_data/test_hallucination_detection_1125.json...
|
63 |
+
|
64 |
+
[INFO|2025-02-09 14:04:53] configuration_utils.py:694 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
|
65 |
+
|
66 |
+
[INFO|2025-02-09 14:04:53] configuration_utils.py:768 >> Model config Qwen2Config {
|
67 |
+
"_name_or_path": "saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen",
|
68 |
+
"architectures": [
|
69 |
+
"Qwen2ForCausalLM"
|
70 |
+
],
|
71 |
+
"attention_dropout": 0.0,
|
72 |
+
"bos_token_id": 151643,
|
73 |
+
"eos_token_id": 151645,
|
74 |
+
"hidden_act": "silu",
|
75 |
+
"hidden_size": 3584,
|
76 |
+
"initializer_range": 0.02,
|
77 |
+
"intermediate_size": 18944,
|
78 |
+
"max_position_embeddings": 32768,
|
79 |
+
"max_window_layers": 28,
|
80 |
+
"model_type": "qwen2",
|
81 |
+
"num_attention_heads": 28,
|
82 |
+
"num_hidden_layers": 28,
|
83 |
+
"num_key_value_heads": 4,
|
84 |
+
"rms_norm_eps": 1e-06,
|
85 |
+
"rope_scaling": null,
|
86 |
+
"rope_theta": 1000000.0,
|
87 |
+
"sliding_window": null,
|
88 |
+
"tie_word_embeddings": false,
|
89 |
+
"torch_dtype": "bfloat16",
|
90 |
+
"transformers_version": "4.48.2",
|
91 |
+
"use_cache": false,
|
92 |
+
"use_sliding_window": false,
|
93 |
+
"vocab_size": 152064
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
[INFO|2025-02-09 14:04:53] logging.py:157 >> Using KV cache for faster generation.
|
98 |
+
|
99 |
+
[INFO|2025-02-09 14:04:53] modeling_utils.py:3901 >> loading weights file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/model.safetensors.index.json
|
100 |
+
|
101 |
+
[INFO|2025-02-09 14:04:53] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
|
102 |
+
|
103 |
+
[INFO|2025-02-09 14:04:53] configuration_utils.py:1140 >> Generate config GenerationConfig {
|
104 |
+
"bos_token_id": 151643,
|
105 |
+
"eos_token_id": 151645
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
[INFO|2025-02-09 14:04:56] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
|
110 |
+
|
111 |
+
|
112 |
+
[INFO|2025-02-09 14:04:56] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen.
|
113 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
|
114 |
+
|
115 |
+
[INFO|2025-02-09 14:04:57] configuration_utils.py:1093 >> loading configuration file saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/generation_config.json
|
116 |
+
|
117 |
+
[INFO|2025-02-09 14:04:57] configuration_utils.py:1140 >> Generate config GenerationConfig {
|
118 |
+
"bos_token_id": 151643,
|
119 |
+
"do_sample": true,
|
120 |
+
"eos_token_id": [
|
121 |
+
151645,
|
122 |
+
151643
|
123 |
+
],
|
124 |
+
"pad_token_id": 151643,
|
125 |
+
"repetition_penalty": 1.05,
|
126 |
+
"temperature": 0.7,
|
127 |
+
"top_k": 20,
|
128 |
+
"top_p": 0.8
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
[INFO|2025-02-09 14:04:57] logging.py:157 >> Using torch SDPA for faster training and inference.
|
133 |
+
|
134 |
+
[INFO|2025-02-09 14:04:57] logging.py:157 >> all params: 7,615,616,512
|
135 |
+
|
136 |
+
[WARNING|2025-02-09 14:04:57] logging.py:168 >> Batch generation can be very slow. Consider using `scripts/vllm_infer.py` instead.
|
137 |
+
|
138 |
+
[INFO|2025-02-09 14:04:57] trainer.py:4226 >>
|
139 |
+
***** Running Prediction *****
|
140 |
+
|
141 |
+
[INFO|2025-02-09 14:04:57] trainer.py:4228 >> Num examples = 2700
|
142 |
+
|
143 |
+
[INFO|2025-02-09 14:04:57] trainer.py:4231 >> Batch size = 1
|
144 |
+
|
145 |
+
[INFO|2025-02-09 14:20:06] logging.py:157 >> Saving prediction results to saves/Qwen2.5-7B-Instruct/full/eval_2025-02-09-14-03-10/generated_predictions.jsonl
|
146 |
+
|
eval_2025-02-09-14-03-10/trainer_log.jsonl
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 5, "total_steps": 1350, "percentage": 0.37, "elapsed_time": "0:00:02", "remaining_time": "0:13:10"}
|
2 |
+
{"current_steps": 10, "total_steps": 1350, "percentage": 0.74, "elapsed_time": "0:00:04", "remaining_time": "0:10:21"}
|
3 |
+
{"current_steps": 15, "total_steps": 1350, "percentage": 1.11, "elapsed_time": "0:00:09", "remaining_time": "0:14:07"}
|
4 |
+
{"current_steps": 20, "total_steps": 1350, "percentage": 1.48, "elapsed_time": "0:00:11", "remaining_time": "0:12:28"}
|
5 |
+
{"current_steps": 25, "total_steps": 1350, "percentage": 1.85, "elapsed_time": "0:00:13", "remaining_time": "0:11:46"}
|
6 |
+
{"current_steps": 30, "total_steps": 1350, "percentage": 2.22, "elapsed_time": "0:00:15", "remaining_time": "0:11:24"}
|
7 |
+
{"current_steps": 35, "total_steps": 1350, "percentage": 2.59, "elapsed_time": "0:00:18", "remaining_time": "0:11:47"}
|
8 |
+
{"current_steps": 40, "total_steps": 1350, "percentage": 2.96, "elapsed_time": "0:00:21", "remaining_time": "0:11:37"}
|
9 |
+
{"current_steps": 45, "total_steps": 1350, "percentage": 3.33, "elapsed_time": "0:00:24", "remaining_time": "0:11:36"}
|
10 |
+
{"current_steps": 50, "total_steps": 1350, "percentage": 3.7, "elapsed_time": "0:00:25", "remaining_time": "0:11:06"}
|
11 |
+
{"current_steps": 55, "total_steps": 1350, "percentage": 4.07, "elapsed_time": "0:00:28", "remaining_time": "0:11:14"}
|
12 |
+
{"current_steps": 60, "total_steps": 1350, "percentage": 4.44, "elapsed_time": "0:00:32", "remaining_time": "0:11:44"}
|
13 |
+
{"current_steps": 65, "total_steps": 1350, "percentage": 4.81, "elapsed_time": "0:00:40", "remaining_time": "0:13:25"}
|
14 |
+
{"current_steps": 70, "total_steps": 1350, "percentage": 5.19, "elapsed_time": "0:00:42", "remaining_time": "0:12:54"}
|
15 |
+
{"current_steps": 75, "total_steps": 1350, "percentage": 5.56, "elapsed_time": "0:00:44", "remaining_time": "0:12:35"}
|
16 |
+
{"current_steps": 80, "total_steps": 1350, "percentage": 5.93, "elapsed_time": "0:00:49", "remaining_time": "0:13:05"}
|
17 |
+
{"current_steps": 85, "total_steps": 1350, "percentage": 6.3, "elapsed_time": "0:00:51", "remaining_time": "0:12:53"}
|
18 |
+
{"current_steps": 90, "total_steps": 1350, "percentage": 6.67, "elapsed_time": "0:00:56", "remaining_time": "0:13:06"}
|
19 |
+
{"current_steps": 95, "total_steps": 1350, "percentage": 7.04, "elapsed_time": "0:00:57", "remaining_time": "0:12:44"}
|
20 |
+
{"current_steps": 100, "total_steps": 1350, "percentage": 7.41, "elapsed_time": "0:01:06", "remaining_time": "0:13:56"}
|
21 |
+
{"current_steps": 105, "total_steps": 1350, "percentage": 7.78, "elapsed_time": "0:01:19", "remaining_time": "0:15:37"}
|
22 |
+
{"current_steps": 110, "total_steps": 1350, "percentage": 8.15, "elapsed_time": "0:01:24", "remaining_time": "0:15:52"}
|
23 |
+
{"current_steps": 115, "total_steps": 1350, "percentage": 8.52, "elapsed_time": "0:01:36", "remaining_time": "0:17:12"}
|
24 |
+
{"current_steps": 120, "total_steps": 1350, "percentage": 8.89, "elapsed_time": "0:01:37", "remaining_time": "0:16:43"}
|
25 |
+
{"current_steps": 125, "total_steps": 1350, "percentage": 9.26, "elapsed_time": "0:01:39", "remaining_time": "0:16:18"}
|
26 |
+
{"current_steps": 130, "total_steps": 1350, "percentage": 9.63, "elapsed_time": "0:01:41", "remaining_time": "0:15:53"}
|
27 |
+
{"current_steps": 135, "total_steps": 1350, "percentage": 10.0, "elapsed_time": "0:01:45", "remaining_time": "0:15:48"}
|
28 |
+
{"current_steps": 140, "total_steps": 1350, "percentage": 10.37, "elapsed_time": "0:01:47", "remaining_time": "0:15:27"}
|
29 |
+
{"current_steps": 145, "total_steps": 1350, "percentage": 10.74, "elapsed_time": "0:01:49", "remaining_time": "0:15:11"}
|
30 |
+
{"current_steps": 150, "total_steps": 1350, "percentage": 11.11, "elapsed_time": "0:01:51", "remaining_time": "0:14:55"}
|
31 |
+
{"current_steps": 155, "total_steps": 1350, "percentage": 11.48, "elapsed_time": "0:01:53", "remaining_time": "0:14:38"}
|
32 |
+
{"current_steps": 160, "total_steps": 1350, "percentage": 11.85, "elapsed_time": "0:01:58", "remaining_time": "0:14:43"}
|
33 |
+
{"current_steps": 165, "total_steps": 1350, "percentage": 12.22, "elapsed_time": "0:02:00", "remaining_time": "0:14:26"}
|
34 |
+
{"current_steps": 170, "total_steps": 1350, "percentage": 12.59, "elapsed_time": "0:02:02", "remaining_time": "0:14:10"}
|
35 |
+
{"current_steps": 175, "total_steps": 1350, "percentage": 12.96, "elapsed_time": "0:02:08", "remaining_time": "0:14:22"}
|
36 |
+
{"current_steps": 180, "total_steps": 1350, "percentage": 13.33, "elapsed_time": "0:02:10", "remaining_time": "0:14:11"}
|
37 |
+
{"current_steps": 185, "total_steps": 1350, "percentage": 13.7, "elapsed_time": "0:02:16", "remaining_time": "0:14:21"}
|
38 |
+
{"current_steps": 190, "total_steps": 1350, "percentage": 14.07, "elapsed_time": "0:02:18", "remaining_time": "0:14:05"}
|
39 |
+
{"current_steps": 195, "total_steps": 1350, "percentage": 14.44, "elapsed_time": "0:02:21", "remaining_time": "0:14:00"}
|
40 |
+
{"current_steps": 200, "total_steps": 1350, "percentage": 14.81, "elapsed_time": "0:02:25", "remaining_time": "0:13:59"}
|
41 |
+
{"current_steps": 205, "total_steps": 1350, "percentage": 15.19, "elapsed_time": "0:02:27", "remaining_time": "0:13:46"}
|
42 |
+
{"current_steps": 210, "total_steps": 1350, "percentage": 15.56, "elapsed_time": "0:02:32", "remaining_time": "0:13:47"}
|
43 |
+
{"current_steps": 215, "total_steps": 1350, "percentage": 15.93, "elapsed_time": "0:02:36", "remaining_time": "0:13:44"}
|
44 |
+
{"current_steps": 220, "total_steps": 1350, "percentage": 16.3, "elapsed_time": "0:02:39", "remaining_time": "0:13:37"}
|
45 |
+
{"current_steps": 225, "total_steps": 1350, "percentage": 16.67, "elapsed_time": "0:02:42", "remaining_time": "0:13:32"}
|
46 |
+
{"current_steps": 230, "total_steps": 1350, "percentage": 17.04, "elapsed_time": "0:02:48", "remaining_time": "0:13:39"}
|
47 |
+
{"current_steps": 235, "total_steps": 1350, "percentage": 17.41, "elapsed_time": "0:02:50", "remaining_time": "0:13:28"}
|
48 |
+
{"current_steps": 240, "total_steps": 1350, "percentage": 17.78, "elapsed_time": "0:02:53", "remaining_time": "0:13:21"}
|
49 |
+
{"current_steps": 245, "total_steps": 1350, "percentage": 18.15, "elapsed_time": "0:02:54", "remaining_time": "0:13:08"}
|
50 |
+
{"current_steps": 250, "total_steps": 1350, "percentage": 18.52, "elapsed_time": "0:02:57", "remaining_time": "0:13:02"}
|
51 |
+
{"current_steps": 255, "total_steps": 1350, "percentage": 18.89, "elapsed_time": "0:03:01", "remaining_time": "0:12:59"}
|
52 |
+
{"current_steps": 260, "total_steps": 1350, "percentage": 19.26, "elapsed_time": "0:03:03", "remaining_time": "0:12:48"}
|
53 |
+
{"current_steps": 265, "total_steps": 1350, "percentage": 19.63, "elapsed_time": "0:03:05", "remaining_time": "0:12:37"}
|
54 |
+
{"current_steps": 270, "total_steps": 1350, "percentage": 20.0, "elapsed_time": "0:03:09", "remaining_time": "0:12:36"}
|
55 |
+
{"current_steps": 275, "total_steps": 1350, "percentage": 20.37, "elapsed_time": "0:03:12", "remaining_time": "0:12:33"}
|
56 |
+
{"current_steps": 280, "total_steps": 1350, "percentage": 20.74, "elapsed_time": "0:03:14", "remaining_time": "0:12:25"}
|
57 |
+
{"current_steps": 285, "total_steps": 1350, "percentage": 21.11, "elapsed_time": "0:03:18", "remaining_time": "0:12:21"}
|
58 |
+
{"current_steps": 290, "total_steps": 1350, "percentage": 21.48, "elapsed_time": "0:03:20", "remaining_time": "0:12:14"}
|
59 |
+
{"current_steps": 295, "total_steps": 1350, "percentage": 21.85, "elapsed_time": "0:03:25", "remaining_time": "0:12:16"}
|
60 |
+
{"current_steps": 300, "total_steps": 1350, "percentage": 22.22, "elapsed_time": "0:03:35", "remaining_time": "0:12:32"}
|
61 |
+
{"current_steps": 305, "total_steps": 1350, "percentage": 22.59, "elapsed_time": "0:03:38", "remaining_time": "0:12:27"}
|
62 |
+
{"current_steps": 310, "total_steps": 1350, "percentage": 22.96, "elapsed_time": "0:03:41", "remaining_time": "0:12:22"}
|
63 |
+
{"current_steps": 315, "total_steps": 1350, "percentage": 23.33, "elapsed_time": "0:03:43", "remaining_time": "0:12:14"}
|
64 |
+
{"current_steps": 320, "total_steps": 1350, "percentage": 23.7, "elapsed_time": "0:03:45", "remaining_time": "0:12:07"}
|
65 |
+
{"current_steps": 325, "total_steps": 1350, "percentage": 24.07, "elapsed_time": "0:03:47", "remaining_time": "0:11:58"}
|
66 |
+
{"current_steps": 330, "total_steps": 1350, "percentage": 24.44, "elapsed_time": "0:03:52", "remaining_time": "0:11:59"}
|
67 |
+
{"current_steps": 335, "total_steps": 1350, "percentage": 24.81, "elapsed_time": "0:03:54", "remaining_time": "0:11:50"}
|
68 |
+
{"current_steps": 340, "total_steps": 1350, "percentage": 25.19, "elapsed_time": "0:03:59", "remaining_time": "0:11:50"}
|
69 |
+
{"current_steps": 345, "total_steps": 1350, "percentage": 25.56, "elapsed_time": "0:04:02", "remaining_time": "0:11:45"}
|
70 |
+
{"current_steps": 350, "total_steps": 1350, "percentage": 25.93, "elapsed_time": "0:04:05", "remaining_time": "0:11:40"}
|
71 |
+
{"current_steps": 355, "total_steps": 1350, "percentage": 26.3, "elapsed_time": "0:04:07", "remaining_time": "0:11:34"}
|
72 |
+
{"current_steps": 360, "total_steps": 1350, "percentage": 26.67, "elapsed_time": "0:04:09", "remaining_time": "0:11:25"}
|
73 |
+
{"current_steps": 365, "total_steps": 1350, "percentage": 27.04, "elapsed_time": "0:04:17", "remaining_time": "0:11:33"}
|
74 |
+
{"current_steps": 370, "total_steps": 1350, "percentage": 27.41, "elapsed_time": "0:04:20", "remaining_time": "0:11:30"}
|
75 |
+
{"current_steps": 375, "total_steps": 1350, "percentage": 27.78, "elapsed_time": "0:04:32", "remaining_time": "0:11:48"}
|
76 |
+
{"current_steps": 380, "total_steps": 1350, "percentage": 28.15, "elapsed_time": "0:04:34", "remaining_time": "0:11:40"}
|
77 |
+
{"current_steps": 385, "total_steps": 1350, "percentage": 28.52, "elapsed_time": "0:04:37", "remaining_time": "0:11:35"}
|
78 |
+
{"current_steps": 390, "total_steps": 1350, "percentage": 28.89, "elapsed_time": "0:04:39", "remaining_time": "0:11:27"}
|
79 |
+
{"current_steps": 395, "total_steps": 1350, "percentage": 29.26, "elapsed_time": "0:04:45", "remaining_time": "0:11:30"}
|
80 |
+
{"current_steps": 400, "total_steps": 1350, "percentage": 29.63, "elapsed_time": "0:04:47", "remaining_time": "0:11:23"}
|
81 |
+
{"current_steps": 405, "total_steps": 1350, "percentage": 30.0, "elapsed_time": "0:04:49", "remaining_time": "0:11:16"}
|
82 |
+
{"current_steps": 410, "total_steps": 1350, "percentage": 30.37, "elapsed_time": "0:04:51", "remaining_time": "0:11:08"}
|
83 |
+
{"current_steps": 415, "total_steps": 1350, "percentage": 30.74, "elapsed_time": "0:04:53", "remaining_time": "0:11:00"}
|
84 |
+
{"current_steps": 420, "total_steps": 1350, "percentage": 31.11, "elapsed_time": "0:05:02", "remaining_time": "0:11:09"}
|
85 |
+
{"current_steps": 425, "total_steps": 1350, "percentage": 31.48, "elapsed_time": "0:05:03", "remaining_time": "0:11:01"}
|
86 |
+
{"current_steps": 430, "total_steps": 1350, "percentage": 31.85, "elapsed_time": "0:05:05", "remaining_time": "0:10:53"}
|
87 |
+
{"current_steps": 435, "total_steps": 1350, "percentage": 32.22, "elapsed_time": "0:05:10", "remaining_time": "0:10:52"}
|
88 |
+
{"current_steps": 440, "total_steps": 1350, "percentage": 32.59, "elapsed_time": "0:05:12", "remaining_time": "0:10:45"}
|
89 |
+
{"current_steps": 445, "total_steps": 1350, "percentage": 32.96, "elapsed_time": "0:05:15", "remaining_time": "0:10:42"}
|
90 |
+
{"current_steps": 450, "total_steps": 1350, "percentage": 33.33, "elapsed_time": "0:05:17", "remaining_time": "0:10:35"}
|
91 |
+
{"current_steps": 455, "total_steps": 1350, "percentage": 33.7, "elapsed_time": "0:05:19", "remaining_time": "0:10:28"}
|
92 |
+
{"current_steps": 460, "total_steps": 1350, "percentage": 34.07, "elapsed_time": "0:05:22", "remaining_time": "0:10:23"}
|
93 |
+
{"current_steps": 465, "total_steps": 1350, "percentage": 34.44, "elapsed_time": "0:05:24", "remaining_time": "0:10:17"}
|
94 |
+
{"current_steps": 470, "total_steps": 1350, "percentage": 34.81, "elapsed_time": "0:05:26", "remaining_time": "0:10:11"}
|
95 |
+
{"current_steps": 475, "total_steps": 1350, "percentage": 35.19, "elapsed_time": "0:05:29", "remaining_time": "0:10:06"}
|
96 |
+
{"current_steps": 480, "total_steps": 1350, "percentage": 35.56, "elapsed_time": "0:05:31", "remaining_time": "0:10:01"}
|
97 |
+
{"current_steps": 485, "total_steps": 1350, "percentage": 35.93, "elapsed_time": "0:05:34", "remaining_time": "0:09:55"}
|
98 |
+
{"current_steps": 490, "total_steps": 1350, "percentage": 36.3, "elapsed_time": "0:05:36", "remaining_time": "0:09:49"}
|
99 |
+
{"current_steps": 495, "total_steps": 1350, "percentage": 36.67, "elapsed_time": "0:05:38", "remaining_time": "0:09:44"}
|
100 |
+
{"current_steps": 500, "total_steps": 1350, "percentage": 37.04, "elapsed_time": "0:05:40", "remaining_time": "0:09:38"}
|
101 |
+
{"current_steps": 505, "total_steps": 1350, "percentage": 37.41, "elapsed_time": "0:05:45", "remaining_time": "0:09:37"}
|
102 |
+
{"current_steps": 510, "total_steps": 1350, "percentage": 37.78, "elapsed_time": "0:05:47", "remaining_time": "0:09:32"}
|
103 |
+
{"current_steps": 515, "total_steps": 1350, "percentage": 38.15, "elapsed_time": "0:05:50", "remaining_time": "0:09:28"}
|
104 |
+
{"current_steps": 520, "total_steps": 1350, "percentage": 38.52, "elapsed_time": "0:05:53", "remaining_time": "0:09:24"}
|
105 |
+
{"current_steps": 525, "total_steps": 1350, "percentage": 38.89, "elapsed_time": "0:05:55", "remaining_time": "0:09:19"}
|
106 |
+
{"current_steps": 530, "total_steps": 1350, "percentage": 39.26, "elapsed_time": "0:05:58", "remaining_time": "0:09:14"}
|
107 |
+
{"current_steps": 535, "total_steps": 1350, "percentage": 39.63, "elapsed_time": "0:06:01", "remaining_time": "0:09:10"}
|
108 |
+
{"current_steps": 540, "total_steps": 1350, "percentage": 40.0, "elapsed_time": "0:06:03", "remaining_time": "0:09:05"}
|
109 |
+
{"current_steps": 545, "total_steps": 1350, "percentage": 40.37, "elapsed_time": "0:06:06", "remaining_time": "0:09:01"}
|
110 |
+
{"current_steps": 550, "total_steps": 1350, "percentage": 40.74, "elapsed_time": "0:06:10", "remaining_time": "0:08:58"}
|
111 |
+
{"current_steps": 555, "total_steps": 1350, "percentage": 41.11, "elapsed_time": "0:06:12", "remaining_time": "0:08:52"}
|
112 |
+
{"current_steps": 560, "total_steps": 1350, "percentage": 41.48, "elapsed_time": "0:06:14", "remaining_time": "0:08:47"}
|
113 |
+
{"current_steps": 565, "total_steps": 1350, "percentage": 41.85, "elapsed_time": "0:06:15", "remaining_time": "0:08:42"}
|
114 |
+
{"current_steps": 570, "total_steps": 1350, "percentage": 42.22, "elapsed_time": "0:06:20", "remaining_time": "0:08:40"}
|
115 |
+
{"current_steps": 575, "total_steps": 1350, "percentage": 42.59, "elapsed_time": "0:06:22", "remaining_time": "0:08:35"}
|
116 |
+
{"current_steps": 580, "total_steps": 1350, "percentage": 42.96, "elapsed_time": "0:06:24", "remaining_time": "0:08:30"}
|
117 |
+
{"current_steps": 585, "total_steps": 1350, "percentage": 43.33, "elapsed_time": "0:06:28", "remaining_time": "0:08:28"}
|
118 |
+
{"current_steps": 590, "total_steps": 1350, "percentage": 43.7, "elapsed_time": "0:06:30", "remaining_time": "0:08:23"}
|
119 |
+
{"current_steps": 595, "total_steps": 1350, "percentage": 44.07, "elapsed_time": "0:06:33", "remaining_time": "0:08:18"}
|
120 |
+
{"current_steps": 600, "total_steps": 1350, "percentage": 44.44, "elapsed_time": "0:06:35", "remaining_time": "0:08:14"}
|
121 |
+
{"current_steps": 605, "total_steps": 1350, "percentage": 44.81, "elapsed_time": "0:06:38", "remaining_time": "0:08:11"}
|
122 |
+
{"current_steps": 610, "total_steps": 1350, "percentage": 45.19, "elapsed_time": "0:06:41", "remaining_time": "0:08:07"}
|
123 |
+
{"current_steps": 615, "total_steps": 1350, "percentage": 45.56, "elapsed_time": "0:06:45", "remaining_time": "0:08:04"}
|
124 |
+
{"current_steps": 620, "total_steps": 1350, "percentage": 45.93, "elapsed_time": "0:06:48", "remaining_time": "0:08:01"}
|
125 |
+
{"current_steps": 625, "total_steps": 1350, "percentage": 46.3, "elapsed_time": "0:06:51", "remaining_time": "0:07:56"}
|
126 |
+
{"current_steps": 630, "total_steps": 1350, "percentage": 46.67, "elapsed_time": "0:06:53", "remaining_time": "0:07:52"}
|
127 |
+
{"current_steps": 635, "total_steps": 1350, "percentage": 47.04, "elapsed_time": "0:06:55", "remaining_time": "0:07:48"}
|
128 |
+
{"current_steps": 640, "total_steps": 1350, "percentage": 47.41, "elapsed_time": "0:06:57", "remaining_time": "0:07:43"}
|
129 |
+
{"current_steps": 645, "total_steps": 1350, "percentage": 47.78, "elapsed_time": "0:07:01", "remaining_time": "0:07:40"}
|
130 |
+
{"current_steps": 650, "total_steps": 1350, "percentage": 48.15, "elapsed_time": "0:07:03", "remaining_time": "0:07:35"}
|
131 |
+
{"current_steps": 655, "total_steps": 1350, "percentage": 48.52, "elapsed_time": "0:07:05", "remaining_time": "0:07:31"}
|
132 |
+
{"current_steps": 660, "total_steps": 1350, "percentage": 48.89, "elapsed_time": "0:07:07", "remaining_time": "0:07:27"}
|
133 |
+
{"current_steps": 665, "total_steps": 1350, "percentage": 49.26, "elapsed_time": "0:07:11", "remaining_time": "0:07:24"}
|
134 |
+
{"current_steps": 670, "total_steps": 1350, "percentage": 49.63, "elapsed_time": "0:07:13", "remaining_time": "0:07:19"}
|
135 |
+
{"current_steps": 675, "total_steps": 1350, "percentage": 50.0, "elapsed_time": "0:07:15", "remaining_time": "0:07:15"}
|
136 |
+
{"current_steps": 680, "total_steps": 1350, "percentage": 50.37, "elapsed_time": "0:07:20", "remaining_time": "0:07:13"}
|
137 |
+
{"current_steps": 685, "total_steps": 1350, "percentage": 50.74, "elapsed_time": "0:07:22", "remaining_time": "0:07:09"}
|
138 |
+
{"current_steps": 690, "total_steps": 1350, "percentage": 51.11, "elapsed_time": "0:07:23", "remaining_time": "0:07:04"}
|
139 |
+
{"current_steps": 695, "total_steps": 1350, "percentage": 51.48, "elapsed_time": "0:07:26", "remaining_time": "0:07:00"}
|
140 |
+
{"current_steps": 700, "total_steps": 1350, "percentage": 51.85, "elapsed_time": "0:07:28", "remaining_time": "0:06:56"}
|
141 |
+
{"current_steps": 705, "total_steps": 1350, "percentage": 52.22, "elapsed_time": "0:07:30", "remaining_time": "0:06:52"}
|
142 |
+
{"current_steps": 710, "total_steps": 1350, "percentage": 52.59, "elapsed_time": "0:07:33", "remaining_time": "0:06:48"}
|
143 |
+
{"current_steps": 715, "total_steps": 1350, "percentage": 52.96, "elapsed_time": "0:07:34", "remaining_time": "0:06:43"}
|
144 |
+
{"current_steps": 720, "total_steps": 1350, "percentage": 53.33, "elapsed_time": "0:07:38", "remaining_time": "0:06:41"}
|
145 |
+
{"current_steps": 725, "total_steps": 1350, "percentage": 53.7, "elapsed_time": "0:07:41", "remaining_time": "0:06:38"}
|
146 |
+
{"current_steps": 730, "total_steps": 1350, "percentage": 54.07, "elapsed_time": "0:07:44", "remaining_time": "0:06:34"}
|
147 |
+
{"current_steps": 735, "total_steps": 1350, "percentage": 54.44, "elapsed_time": "0:07:47", "remaining_time": "0:06:30"}
|
148 |
+
{"current_steps": 740, "total_steps": 1350, "percentage": 54.81, "elapsed_time": "0:07:51", "remaining_time": "0:06:28"}
|
149 |
+
{"current_steps": 745, "total_steps": 1350, "percentage": 55.19, "elapsed_time": "0:07:53", "remaining_time": "0:06:24"}
|
150 |
+
{"current_steps": 750, "total_steps": 1350, "percentage": 55.56, "elapsed_time": "0:07:57", "remaining_time": "0:06:21"}
|
151 |
+
{"current_steps": 755, "total_steps": 1350, "percentage": 55.93, "elapsed_time": "0:08:00", "remaining_time": "0:06:18"}
|
152 |
+
{"current_steps": 760, "total_steps": 1350, "percentage": 56.3, "elapsed_time": "0:08:02", "remaining_time": "0:06:14"}
|
153 |
+
{"current_steps": 765, "total_steps": 1350, "percentage": 56.67, "elapsed_time": "0:08:04", "remaining_time": "0:06:10"}
|
154 |
+
{"current_steps": 770, "total_steps": 1350, "percentage": 57.04, "elapsed_time": "0:08:06", "remaining_time": "0:06:06"}
|
155 |
+
{"current_steps": 775, "total_steps": 1350, "percentage": 57.41, "elapsed_time": "0:08:09", "remaining_time": "0:06:03"}
|
156 |
+
{"current_steps": 780, "total_steps": 1350, "percentage": 57.78, "elapsed_time": "0:08:11", "remaining_time": "0:05:58"}
|
157 |
+
{"current_steps": 785, "total_steps": 1350, "percentage": 58.15, "elapsed_time": "0:08:12", "remaining_time": "0:05:54"}
|
158 |
+
{"current_steps": 790, "total_steps": 1350, "percentage": 58.52, "elapsed_time": "0:08:15", "remaining_time": "0:05:51"}
|
159 |
+
{"current_steps": 795, "total_steps": 1350, "percentage": 58.89, "elapsed_time": "0:08:16", "remaining_time": "0:05:46"}
|
160 |
+
{"current_steps": 800, "total_steps": 1350, "percentage": 59.26, "elapsed_time": "0:08:19", "remaining_time": "0:05:43"}
|
161 |
+
{"current_steps": 805, "total_steps": 1350, "percentage": 59.63, "elapsed_time": "0:08:22", "remaining_time": "0:05:40"}
|
162 |
+
{"current_steps": 810, "total_steps": 1350, "percentage": 60.0, "elapsed_time": "0:08:24", "remaining_time": "0:05:36"}
|
163 |
+
{"current_steps": 815, "total_steps": 1350, "percentage": 60.37, "elapsed_time": "0:08:26", "remaining_time": "0:05:32"}
|
164 |
+
{"current_steps": 820, "total_steps": 1350, "percentage": 60.74, "elapsed_time": "0:08:29", "remaining_time": "0:05:29"}
|
165 |
+
{"current_steps": 825, "total_steps": 1350, "percentage": 61.11, "elapsed_time": "0:08:31", "remaining_time": "0:05:25"}
|
166 |
+
{"current_steps": 830, "total_steps": 1350, "percentage": 61.48, "elapsed_time": "0:08:33", "remaining_time": "0:05:21"}
|
167 |
+
{"current_steps": 835, "total_steps": 1350, "percentage": 61.85, "elapsed_time": "0:08:35", "remaining_time": "0:05:17"}
|
168 |
+
{"current_steps": 840, "total_steps": 1350, "percentage": 62.22, "elapsed_time": "0:08:37", "remaining_time": "0:05:14"}
|
169 |
+
{"current_steps": 845, "total_steps": 1350, "percentage": 62.59, "elapsed_time": "0:08:40", "remaining_time": "0:05:10"}
|
170 |
+
{"current_steps": 850, "total_steps": 1350, "percentage": 62.96, "elapsed_time": "0:08:41", "remaining_time": "0:05:06"}
|
171 |
+
{"current_steps": 855, "total_steps": 1350, "percentage": 63.33, "elapsed_time": "0:08:43", "remaining_time": "0:05:03"}
|
172 |
+
{"current_steps": 860, "total_steps": 1350, "percentage": 63.7, "elapsed_time": "0:08:46", "remaining_time": "0:04:59"}
|
173 |
+
{"current_steps": 865, "total_steps": 1350, "percentage": 64.07, "elapsed_time": "0:08:48", "remaining_time": "0:04:56"}
|
174 |
+
{"current_steps": 870, "total_steps": 1350, "percentage": 64.44, "elapsed_time": "0:08:50", "remaining_time": "0:04:52"}
|
175 |
+
{"current_steps": 875, "total_steps": 1350, "percentage": 64.81, "elapsed_time": "0:08:52", "remaining_time": "0:04:48"}
|
176 |
+
{"current_steps": 880, "total_steps": 1350, "percentage": 65.19, "elapsed_time": "0:08:54", "remaining_time": "0:04:45"}
|
177 |
+
{"current_steps": 885, "total_steps": 1350, "percentage": 65.56, "elapsed_time": "0:08:56", "remaining_time": "0:04:41"}
|
178 |
+
{"current_steps": 890, "total_steps": 1350, "percentage": 65.93, "elapsed_time": "0:08:58", "remaining_time": "0:04:38"}
|
179 |
+
{"current_steps": 895, "total_steps": 1350, "percentage": 66.3, "elapsed_time": "0:09:01", "remaining_time": "0:04:35"}
|
180 |
+
{"current_steps": 900, "total_steps": 1350, "percentage": 66.67, "elapsed_time": "0:09:03", "remaining_time": "0:04:31"}
|
181 |
+
{"current_steps": 905, "total_steps": 1350, "percentage": 67.04, "elapsed_time": "0:09:07", "remaining_time": "0:04:29"}
|
182 |
+
{"current_steps": 910, "total_steps": 1350, "percentage": 67.41, "elapsed_time": "0:09:11", "remaining_time": "0:04:26"}
|
183 |
+
{"current_steps": 915, "total_steps": 1350, "percentage": 67.78, "elapsed_time": "0:09:15", "remaining_time": "0:04:24"}
|
184 |
+
{"current_steps": 920, "total_steps": 1350, "percentage": 68.15, "elapsed_time": "0:09:18", "remaining_time": "0:04:21"}
|
185 |
+
{"current_steps": 925, "total_steps": 1350, "percentage": 68.52, "elapsed_time": "0:09:22", "remaining_time": "0:04:18"}
|
186 |
+
{"current_steps": 930, "total_steps": 1350, "percentage": 68.89, "elapsed_time": "0:09:26", "remaining_time": "0:04:15"}
|
187 |
+
{"current_steps": 935, "total_steps": 1350, "percentage": 69.26, "elapsed_time": "0:09:30", "remaining_time": "0:04:13"}
|
188 |
+
{"current_steps": 940, "total_steps": 1350, "percentage": 69.63, "elapsed_time": "0:09:33", "remaining_time": "0:04:10"}
|
189 |
+
{"current_steps": 945, "total_steps": 1350, "percentage": 70.0, "elapsed_time": "0:09:36", "remaining_time": "0:04:07"}
|
190 |
+
{"current_steps": 950, "total_steps": 1350, "percentage": 70.37, "elapsed_time": "0:09:40", "remaining_time": "0:04:04"}
|
191 |
+
{"current_steps": 955, "total_steps": 1350, "percentage": 70.74, "elapsed_time": "0:09:44", "remaining_time": "0:04:01"}
|
192 |
+
{"current_steps": 960, "total_steps": 1350, "percentage": 71.11, "elapsed_time": "0:09:50", "remaining_time": "0:04:00"}
|
193 |
+
{"current_steps": 965, "total_steps": 1350, "percentage": 71.48, "elapsed_time": "0:09:54", "remaining_time": "0:03:57"}
|
194 |
+
{"current_steps": 970, "total_steps": 1350, "percentage": 71.85, "elapsed_time": "0:09:59", "remaining_time": "0:03:54"}
|
195 |
+
{"current_steps": 975, "total_steps": 1350, "percentage": 72.22, "elapsed_time": "0:10:03", "remaining_time": "0:03:52"}
|
196 |
+
{"current_steps": 980, "total_steps": 1350, "percentage": 72.59, "elapsed_time": "0:10:06", "remaining_time": "0:03:49"}
|
197 |
+
{"current_steps": 985, "total_steps": 1350, "percentage": 72.96, "elapsed_time": "0:10:12", "remaining_time": "0:03:47"}
|
198 |
+
{"current_steps": 990, "total_steps": 1350, "percentage": 73.33, "elapsed_time": "0:10:16", "remaining_time": "0:03:44"}
|
199 |
+
{"current_steps": 995, "total_steps": 1350, "percentage": 73.7, "elapsed_time": "0:10:19", "remaining_time": "0:03:40"}
|
200 |
+
{"current_steps": 1000, "total_steps": 1350, "percentage": 74.07, "elapsed_time": "0:10:22", "remaining_time": "0:03:37"}
|
201 |
+
{"current_steps": 1005, "total_steps": 1350, "percentage": 74.44, "elapsed_time": "0:10:26", "remaining_time": "0:03:35"}
|
202 |
+
{"current_steps": 1010, "total_steps": 1350, "percentage": 74.81, "elapsed_time": "0:10:30", "remaining_time": "0:03:32"}
|
203 |
+
{"current_steps": 1015, "total_steps": 1350, "percentage": 75.19, "elapsed_time": "0:10:34", "remaining_time": "0:03:29"}
|
204 |
+
{"current_steps": 1020, "total_steps": 1350, "percentage": 75.56, "elapsed_time": "0:10:40", "remaining_time": "0:03:27"}
|
205 |
+
{"current_steps": 1025, "total_steps": 1350, "percentage": 75.93, "elapsed_time": "0:10:43", "remaining_time": "0:03:24"}
|
206 |
+
{"current_steps": 1030, "total_steps": 1350, "percentage": 76.3, "elapsed_time": "0:10:47", "remaining_time": "0:03:21"}
|
207 |
+
{"current_steps": 1035, "total_steps": 1350, "percentage": 76.67, "elapsed_time": "0:10:53", "remaining_time": "0:03:18"}
|
208 |
+
{"current_steps": 1040, "total_steps": 1350, "percentage": 77.04, "elapsed_time": "0:10:56", "remaining_time": "0:03:15"}
|
209 |
+
{"current_steps": 1045, "total_steps": 1350, "percentage": 77.41, "elapsed_time": "0:11:00", "remaining_time": "0:03:12"}
|
210 |
+
{"current_steps": 1050, "total_steps": 1350, "percentage": 77.78, "elapsed_time": "0:11:05", "remaining_time": "0:03:10"}
|
211 |
+
{"current_steps": 1055, "total_steps": 1350, "percentage": 78.15, "elapsed_time": "0:11:09", "remaining_time": "0:03:07"}
|
212 |
+
{"current_steps": 1060, "total_steps": 1350, "percentage": 78.52, "elapsed_time": "0:11:14", "remaining_time": "0:03:04"}
|
213 |
+
{"current_steps": 1065, "total_steps": 1350, "percentage": 78.89, "elapsed_time": "0:11:18", "remaining_time": "0:03:01"}
|
214 |
+
{"current_steps": 1070, "total_steps": 1350, "percentage": 79.26, "elapsed_time": "0:11:22", "remaining_time": "0:02:58"}
|
215 |
+
{"current_steps": 1075, "total_steps": 1350, "percentage": 79.63, "elapsed_time": "0:11:26", "remaining_time": "0:02:55"}
|
216 |
+
{"current_steps": 1080, "total_steps": 1350, "percentage": 80.0, "elapsed_time": "0:11:32", "remaining_time": "0:02:53"}
|
217 |
+
{"current_steps": 1085, "total_steps": 1350, "percentage": 80.37, "elapsed_time": "0:11:37", "remaining_time": "0:02:50"}
|
218 |
+
{"current_steps": 1090, "total_steps": 1350, "percentage": 80.74, "elapsed_time": "0:11:41", "remaining_time": "0:02:47"}
|
219 |
+
{"current_steps": 1095, "total_steps": 1350, "percentage": 81.11, "elapsed_time": "0:11:45", "remaining_time": "0:02:44"}
|
220 |
+
{"current_steps": 1100, "total_steps": 1350, "percentage": 81.48, "elapsed_time": "0:11:49", "remaining_time": "0:02:41"}
|
221 |
+
{"current_steps": 1105, "total_steps": 1350, "percentage": 81.85, "elapsed_time": "0:11:53", "remaining_time": "0:02:38"}
|
222 |
+
{"current_steps": 1110, "total_steps": 1350, "percentage": 82.22, "elapsed_time": "0:11:56", "remaining_time": "0:02:35"}
|
223 |
+
{"current_steps": 1115, "total_steps": 1350, "percentage": 82.59, "elapsed_time": "0:12:01", "remaining_time": "0:02:31"}
|
224 |
+
{"current_steps": 1120, "total_steps": 1350, "percentage": 82.96, "elapsed_time": "0:12:06", "remaining_time": "0:02:29"}
|
225 |
+
{"current_steps": 1125, "total_steps": 1350, "percentage": 83.33, "elapsed_time": "0:12:11", "remaining_time": "0:02:26"}
|
226 |
+
{"current_steps": 1130, "total_steps": 1350, "percentage": 83.7, "elapsed_time": "0:12:16", "remaining_time": "0:02:23"}
|
227 |
+
{"current_steps": 1135, "total_steps": 1350, "percentage": 84.07, "elapsed_time": "0:12:20", "remaining_time": "0:02:20"}
|
228 |
+
{"current_steps": 1140, "total_steps": 1350, "percentage": 84.44, "elapsed_time": "0:12:23", "remaining_time": "0:02:17"}
|
229 |
+
{"current_steps": 1145, "total_steps": 1350, "percentage": 84.81, "elapsed_time": "0:12:26", "remaining_time": "0:02:13"}
|
230 |
+
{"current_steps": 1150, "total_steps": 1350, "percentage": 85.19, "elapsed_time": "0:12:30", "remaining_time": "0:02:10"}
|
231 |
+
{"current_steps": 1155, "total_steps": 1350, "percentage": 85.56, "elapsed_time": "0:12:35", "remaining_time": "0:02:07"}
|
232 |
+
{"current_steps": 1160, "total_steps": 1350, "percentage": 85.93, "elapsed_time": "0:12:38", "remaining_time": "0:02:04"}
|
233 |
+
{"current_steps": 1165, "total_steps": 1350, "percentage": 86.3, "elapsed_time": "0:12:44", "remaining_time": "0:02:01"}
|
234 |
+
{"current_steps": 1170, "total_steps": 1350, "percentage": 86.67, "elapsed_time": "0:12:48", "remaining_time": "0:01:58"}
|
235 |
+
{"current_steps": 1175, "total_steps": 1350, "percentage": 87.04, "elapsed_time": "0:12:51", "remaining_time": "0:01:54"}
|
236 |
+
{"current_steps": 1180, "total_steps": 1350, "percentage": 87.41, "elapsed_time": "0:12:56", "remaining_time": "0:01:51"}
|
237 |
+
{"current_steps": 1185, "total_steps": 1350, "percentage": 87.78, "elapsed_time": "0:12:59", "remaining_time": "0:01:48"}
|
238 |
+
{"current_steps": 1190, "total_steps": 1350, "percentage": 88.15, "elapsed_time": "0:13:04", "remaining_time": "0:01:45"}
|
239 |
+
{"current_steps": 1195, "total_steps": 1350, "percentage": 88.52, "elapsed_time": "0:13:06", "remaining_time": "0:01:42"}
|
240 |
+
{"current_steps": 1200, "total_steps": 1350, "percentage": 88.89, "elapsed_time": "0:13:10", "remaining_time": "0:01:38"}
|
241 |
+
{"current_steps": 1205, "total_steps": 1350, "percentage": 89.26, "elapsed_time": "0:13:14", "remaining_time": "0:01:35"}
|
242 |
+
{"current_steps": 1210, "total_steps": 1350, "percentage": 89.63, "elapsed_time": "0:13:17", "remaining_time": "0:01:32"}
|
243 |
+
{"current_steps": 1215, "total_steps": 1350, "percentage": 90.0, "elapsed_time": "0:13:22", "remaining_time": "0:01:29"}
|
244 |
+
{"current_steps": 1220, "total_steps": 1350, "percentage": 90.37, "elapsed_time": "0:13:25", "remaining_time": "0:01:25"}
|
245 |
+
{"current_steps": 1225, "total_steps": 1350, "percentage": 90.74, "elapsed_time": "0:13:28", "remaining_time": "0:01:22"}
|
246 |
+
{"current_steps": 1230, "total_steps": 1350, "percentage": 91.11, "elapsed_time": "0:13:32", "remaining_time": "0:01:19"}
|
247 |
+
{"current_steps": 1235, "total_steps": 1350, "percentage": 91.48, "elapsed_time": "0:13:35", "remaining_time": "0:01:15"}
|
248 |
+
{"current_steps": 1240, "total_steps": 1350, "percentage": 91.85, "elapsed_time": "0:13:37", "remaining_time": "0:01:12"}
|
249 |
+
{"current_steps": 1245, "total_steps": 1350, "percentage": 92.22, "elapsed_time": "0:13:44", "remaining_time": "0:01:09"}
|
250 |
+
{"current_steps": 1250, "total_steps": 1350, "percentage": 92.59, "elapsed_time": "0:13:48", "remaining_time": "0:01:06"}
|
251 |
+
{"current_steps": 1255, "total_steps": 1350, "percentage": 92.96, "elapsed_time": "0:13:52", "remaining_time": "0:01:03"}
|
252 |
+
{"current_steps": 1260, "total_steps": 1350, "percentage": 93.33, "elapsed_time": "0:13:55", "remaining_time": "0:00:59"}
|
253 |
+
{"current_steps": 1265, "total_steps": 1350, "percentage": 93.7, "elapsed_time": "0:13:59", "remaining_time": "0:00:56"}
|
254 |
+
{"current_steps": 1270, "total_steps": 1350, "percentage": 94.07, "elapsed_time": "0:14:03", "remaining_time": "0:00:53"}
|
255 |
+
{"current_steps": 1275, "total_steps": 1350, "percentage": 94.44, "elapsed_time": "0:14:08", "remaining_time": "0:00:49"}
|
256 |
+
{"current_steps": 1280, "total_steps": 1350, "percentage": 94.81, "elapsed_time": "0:14:10", "remaining_time": "0:00:46"}
|
257 |
+
{"current_steps": 1285, "total_steps": 1350, "percentage": 95.19, "elapsed_time": "0:14:14", "remaining_time": "0:00:43"}
|
258 |
+
{"current_steps": 1290, "total_steps": 1350, "percentage": 95.56, "elapsed_time": "0:14:17", "remaining_time": "0:00:39"}
|
259 |
+
{"current_steps": 1295, "total_steps": 1350, "percentage": 95.93, "elapsed_time": "0:14:20", "remaining_time": "0:00:36"}
|
260 |
+
{"current_steps": 1300, "total_steps": 1350, "percentage": 96.3, "elapsed_time": "0:14:25", "remaining_time": "0:00:33"}
|
261 |
+
{"current_steps": 1305, "total_steps": 1350, "percentage": 96.67, "elapsed_time": "0:14:29", "remaining_time": "0:00:29"}
|
262 |
+
{"current_steps": 1310, "total_steps": 1350, "percentage": 97.04, "elapsed_time": "0:14:32", "remaining_time": "0:00:26"}
|
263 |
+
{"current_steps": 1315, "total_steps": 1350, "percentage": 97.41, "elapsed_time": "0:14:36", "remaining_time": "0:00:23"}
|
264 |
+
{"current_steps": 1320, "total_steps": 1350, "percentage": 97.78, "elapsed_time": "0:14:40", "remaining_time": "0:00:20"}
|
265 |
+
{"current_steps": 1325, "total_steps": 1350, "percentage": 98.15, "elapsed_time": "0:14:43", "remaining_time": "0:00:16"}
|
266 |
+
{"current_steps": 1330, "total_steps": 1350, "percentage": 98.52, "elapsed_time": "0:14:47", "remaining_time": "0:00:13"}
|
267 |
+
{"current_steps": 1335, "total_steps": 1350, "percentage": 98.89, "elapsed_time": "0:14:50", "remaining_time": "0:00:10"}
|
268 |
+
{"current_steps": 1340, "total_steps": 1350, "percentage": 99.26, "elapsed_time": "0:14:55", "remaining_time": "0:00:06"}
|
269 |
+
{"current_steps": 1345, "total_steps": 1350, "percentage": 99.63, "elapsed_time": "0:14:59", "remaining_time": "0:00:03"}
|
270 |
+
{"current_steps": 1350, "total_steps": 1350, "percentage": 100.0, "elapsed_time": "0:15:03", "remaining_time": "0:00:00"}
|
eval_2025-02-09-14-03-10/training_args.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cutoff_len: 2048
|
2 |
+
dataset_dir: data
|
3 |
+
do_predict: true
|
4 |
+
eval_dataset: test_hal_detection_1125
|
5 |
+
finetuning_type: full
|
6 |
+
flash_attn: auto
|
7 |
+
max_new_tokens: 512
|
8 |
+
max_samples: 100000
|
9 |
+
model_name_or_path: saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen
|
10 |
+
output_dir: saves/Qwen2.5-7B-Instruct/full/eval_2025-02-09-14-03-10
|
11 |
+
per_device_eval_batch_size: 1
|
12 |
+
predict_with_generate: true
|
13 |
+
preprocessing_num_workers: 16
|
14 |
+
quantization_method: bitsandbytes
|
15 |
+
stage: sft
|
16 |
+
temperature: 0.95
|
17 |
+
template: qwen
|
18 |
+
top_p: 0.7
|
19 |
+
trust_remote_code: true
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.2"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8893ad23f6b4e25d558b7c3652f30827b46c172197c44cf04d009125dded5e
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96ab2dfbebcc95f38e511e5b0634de91a2856ee9f480edfcd2f88526397892d3
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e115bd279bb036f5fa3173fe465ab1a27f86506e63fc66e735f6b532b1649223
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:481a0d59a11f12bacd51df1a156f2f59b5ff564682a2481c428fa925d81f79cc
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
running_log.txt
CHANGED
@@ -44582,3 +44582,972 @@ If your task is similar to the task the model of the checkpoint was trained on,
|
|
44582 |
|
44583 |
[INFO|2025-02-09 12:44:33] logging.py:157 >> {'loss': 0.0269, 'learning_rate': 5.2318e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44584 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44582 |
|
44583 |
[INFO|2025-02-09 12:44:33] logging.py:157 >> {'loss': 0.0269, 'learning_rate': 5.2318e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44584 |
|
44585 |
+
[INFO|2025-02-09 12:44:43] logging.py:157 >> {'loss': 0.2277, 'learning_rate': 5.2094e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44586 |
+
|
44587 |
+
[INFO|2025-02-09 12:44:52] logging.py:157 >> {'loss': 0.0273, 'learning_rate': 5.1870e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44588 |
+
|
44589 |
+
[INFO|2025-02-09 12:45:02] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 5.1647e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44590 |
+
|
44591 |
+
[INFO|2025-02-09 12:45:11] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.1424e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44592 |
+
|
44593 |
+
[INFO|2025-02-09 12:45:21] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.1202e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44594 |
+
|
44595 |
+
[INFO|2025-02-09 12:45:31] logging.py:157 >> {'loss': 0.2074, 'learning_rate': 5.0980e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44596 |
+
|
44597 |
+
[INFO|2025-02-09 12:45:40] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.0759e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44598 |
+
|
44599 |
+
[INFO|2025-02-09 12:45:49] logging.py:157 >> {'loss': 0.0410, 'learning_rate': 5.0538e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44600 |
+
|
44601 |
+
[INFO|2025-02-09 12:45:58] logging.py:157 >> {'loss': 0.0204, 'learning_rate': 5.0318e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44602 |
+
|
44603 |
+
[INFO|2025-02-09 12:46:07] logging.py:157 >> {'loss': 0.0695, 'learning_rate': 5.0098e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44604 |
+
|
44605 |
+
[INFO|2025-02-09 12:46:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.9878e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44606 |
+
|
44607 |
+
[INFO|2025-02-09 12:46:25] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 4.9659e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44608 |
+
|
44609 |
+
[INFO|2025-02-09 12:46:35] logging.py:157 >> {'loss': 0.3224, 'learning_rate': 4.9441e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44610 |
+
|
44611 |
+
[INFO|2025-02-09 12:46:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.9223e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44612 |
+
|
44613 |
+
[INFO|2025-02-09 12:46:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.9005e-09, 'epoch': 2.94, 'throughput': 201.06}
|
44614 |
+
|
44615 |
+
[INFO|2025-02-09 12:47:03] logging.py:157 >> {'loss': 0.0433, 'learning_rate': 4.8788e-09, 'epoch': 2.94, 'throughput': 201.07}
|
44616 |
+
|
44617 |
+
[INFO|2025-02-09 12:47:13] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.8572e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44618 |
+
|
44619 |
+
[INFO|2025-02-09 12:47:23] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 4.8356e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44620 |
+
|
44621 |
+
[INFO|2025-02-09 12:47:32] logging.py:157 >> {'loss': 0.3077, 'learning_rate': 4.8140e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44622 |
+
|
44623 |
+
[INFO|2025-02-09 12:47:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.7925e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44624 |
+
|
44625 |
+
[INFO|2025-02-09 12:47:52] logging.py:157 >> {'loss': 0.0165, 'learning_rate': 4.7711e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44626 |
+
|
44627 |
+
[INFO|2025-02-09 12:48:01] logging.py:157 >> {'loss': 0.0132, 'learning_rate': 4.7496e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44628 |
+
|
44629 |
+
[INFO|2025-02-09 12:48:10] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.7283e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44630 |
+
|
44631 |
+
[INFO|2025-02-09 12:48:19] logging.py:157 >> {'loss': 0.0192, 'learning_rate': 4.7070e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44632 |
+
|
44633 |
+
[INFO|2025-02-09 12:48:29] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 4.6857e-09, 'epoch': 2.94, 'throughput': 201.08}
|
44634 |
+
|
44635 |
+
[INFO|2025-02-09 12:48:39] logging.py:157 >> {'loss': 0.2126, 'learning_rate': 4.6645e-09, 'epoch': 2.94, 'throughput': 201.09}
|
44636 |
+
|
44637 |
+
[INFO|2025-02-09 12:48:49] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.6433e-09, 'epoch': 2.94, 'throughput': 201.09}
|
44638 |
+
|
44639 |
+
[INFO|2025-02-09 12:48:58] logging.py:157 >> {'loss': 0.0016, 'learning_rate': 4.6222e-09, 'epoch': 2.94, 'throughput': 201.09}
|
44640 |
+
|
44641 |
+
[INFO|2025-02-09 12:49:08] logging.py:157 >> {'loss': 0.0036, 'learning_rate': 4.6011e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44642 |
+
|
44643 |
+
[INFO|2025-02-09 12:49:19] logging.py:157 >> {'loss': 0.1609, 'learning_rate': 4.5801e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44644 |
+
|
44645 |
+
[INFO|2025-02-09 12:49:27] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.5591e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44646 |
+
|
44647 |
+
[INFO|2025-02-09 12:49:37] logging.py:157 >> {'loss': 0.0485, 'learning_rate': 4.5382e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44648 |
+
|
44649 |
+
[INFO|2025-02-09 12:49:46] logging.py:157 >> {'loss': 0.0075, 'learning_rate': 4.5173e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44650 |
+
|
44651 |
+
[INFO|2025-02-09 12:49:56] logging.py:157 >> {'loss': 0.1725, 'learning_rate': 4.4965e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44652 |
+
|
44653 |
+
[INFO|2025-02-09 12:50:06] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.4757e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44654 |
+
|
44655 |
+
[INFO|2025-02-09 12:50:14] logging.py:157 >> {'loss': 0.1437, 'learning_rate': 4.4549e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44656 |
+
|
44657 |
+
[INFO|2025-02-09 12:50:24] logging.py:157 >> {'loss': 0.0232, 'learning_rate': 4.4342e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44658 |
+
|
44659 |
+
[INFO|2025-02-09 12:50:33] logging.py:157 >> {'loss': 0.2381, 'learning_rate': 4.4136e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44660 |
+
|
44661 |
+
[INFO|2025-02-09 12:50:42] logging.py:157 >> {'loss': 0.0521, 'learning_rate': 4.3930e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44662 |
+
|
44663 |
+
[INFO|2025-02-09 12:50:51] logging.py:157 >> {'loss': 0.0143, 'learning_rate': 4.3725e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44664 |
+
|
44665 |
+
[INFO|2025-02-09 12:51:01] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.3520e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44666 |
+
|
44667 |
+
[INFO|2025-02-09 12:51:11] logging.py:157 >> {'loss': 0.0056, 'learning_rate': 4.3315e-09, 'epoch': 2.94, 'throughput': 201.10}
|
44668 |
+
|
44669 |
+
[INFO|2025-02-09 12:51:20] logging.py:157 >> {'loss': 0.2447, 'learning_rate': 4.3111e-09, 'epoch': 2.94, 'throughput': 201.11}
|
44670 |
+
|
44671 |
+
[INFO|2025-02-09 12:51:31] logging.py:157 >> {'loss': 0.0752, 'learning_rate': 4.2908e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44672 |
+
|
44673 |
+
[INFO|2025-02-09 12:51:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.2704e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44674 |
+
|
44675 |
+
[INFO|2025-02-09 12:51:49] logging.py:157 >> {'loss': 0.0647, 'learning_rate': 4.2502e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44676 |
+
|
44677 |
+
[INFO|2025-02-09 12:52:00] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 4.2300e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44678 |
+
|
44679 |
+
[INFO|2025-02-09 12:52:09] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.2098e-09, 'epoch': 2.94, 'throughput': 201.11}
|
44680 |
+
|
44681 |
+
[INFO|2025-02-09 12:52:19] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.1897e-09, 'epoch': 2.94, 'throughput': 201.11}
|
44682 |
+
|
44683 |
+
[INFO|2025-02-09 12:52:29] logging.py:157 >> {'loss': 0.0024, 'learning_rate': 4.1696e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44684 |
+
|
44685 |
+
[INFO|2025-02-09 12:52:38] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.1496e-09, 'epoch': 2.94, 'throughput': 201.12}
|
44686 |
+
|
44687 |
+
[INFO|2025-02-09 12:52:49] logging.py:157 >> {'loss': 0.0597, 'learning_rate': 4.1297e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44688 |
+
|
44689 |
+
[INFO|2025-02-09 12:52:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.1097e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44690 |
+
|
44691 |
+
[INFO|2025-02-09 12:53:09] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0899e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44692 |
+
|
44693 |
+
[INFO|2025-02-09 12:53:19] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.0700e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44694 |
+
|
44695 |
+
[INFO|2025-02-09 12:53:29] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0503e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44696 |
+
|
44697 |
+
[INFO|2025-02-09 12:53:38] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 4.0305e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44698 |
+
|
44699 |
+
[INFO|2025-02-09 12:53:48] logging.py:157 >> {'loss': 0.0426, 'learning_rate': 4.0109e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44700 |
+
|
44701 |
+
[INFO|2025-02-09 12:53:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.9912e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44702 |
+
|
44703 |
+
[INFO|2025-02-09 12:54:08] logging.py:157 >> {'loss': 0.0149, 'learning_rate': 3.9716e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44704 |
+
|
44705 |
+
[INFO|2025-02-09 12:54:18] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.9521e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44706 |
+
|
44707 |
+
[INFO|2025-02-09 12:54:27] logging.py:157 >> {'loss': 0.0262, 'learning_rate': 3.9326e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44708 |
+
|
44709 |
+
[INFO|2025-02-09 12:54:37] logging.py:157 >> {'loss': 0.0317, 'learning_rate': 3.9132e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44710 |
+
|
44711 |
+
[INFO|2025-02-09 12:54:46] logging.py:157 >> {'loss': 0.0392, 'learning_rate': 3.8938e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44712 |
+
|
44713 |
+
[INFO|2025-02-09 12:54:56] logging.py:157 >> {'loss': 0.0008, 'learning_rate': 3.8744e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44714 |
+
|
44715 |
+
[INFO|2025-02-09 12:55:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8551e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44716 |
+
|
44717 |
+
[INFO|2025-02-09 12:55:14] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.8359e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44718 |
+
|
44719 |
+
[INFO|2025-02-09 12:55:24] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8167e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44720 |
+
|
44721 |
+
[INFO|2025-02-09 12:55:33] logging.py:157 >> {'loss': 0.0733, 'learning_rate': 3.7976e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44722 |
+
|
44723 |
+
[INFO|2025-02-09 12:55:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.7784e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44724 |
+
|
44725 |
+
[INFO|2025-02-09 12:55:52] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.7594e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44726 |
+
|
44727 |
+
[INFO|2025-02-09 12:56:02] logging.py:157 >> {'loss': 0.0075, 'learning_rate': 3.7404e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44728 |
+
|
44729 |
+
[INFO|2025-02-09 12:56:12] logging.py:157 >> {'loss': 0.0856, 'learning_rate': 3.7214e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44730 |
+
|
44731 |
+
[INFO|2025-02-09 12:56:20] logging.py:157 >> {'loss': 0.0888, 'learning_rate': 3.7025e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44732 |
+
|
44733 |
+
[INFO|2025-02-09 12:56:31] logging.py:157 >> {'loss': 0.0841, 'learning_rate': 3.6837e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44734 |
+
|
44735 |
+
[INFO|2025-02-09 12:56:40] logging.py:157 >> {'loss': 0.0604, 'learning_rate': 3.6648e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44736 |
+
|
44737 |
+
[INFO|2025-02-09 12:56:50] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 3.6461e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44738 |
+
|
44739 |
+
[INFO|2025-02-09 12:57:00] logging.py:157 >> {'loss': 0.0554, 'learning_rate': 3.6274e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44740 |
+
|
44741 |
+
[INFO|2025-02-09 12:57:09] logging.py:157 >> {'loss': 0.0753, 'learning_rate': 3.6087e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44742 |
+
|
44743 |
+
[INFO|2025-02-09 12:57:19] logging.py:157 >> {'loss': 0.1406, 'learning_rate': 3.5901e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44744 |
+
|
44745 |
+
[INFO|2025-02-09 12:57:28] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.5715e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44746 |
+
|
44747 |
+
[INFO|2025-02-09 12:57:38] logging.py:157 >> {'loss': 0.0037, 'learning_rate': 3.5530e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44748 |
+
|
44749 |
+
[INFO|2025-02-09 12:57:47] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.5345e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44750 |
+
|
44751 |
+
[INFO|2025-02-09 12:57:56] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.5161e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44752 |
+
|
44753 |
+
[INFO|2025-02-09 12:58:06] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.4977e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44754 |
+
|
44755 |
+
[INFO|2025-02-09 12:58:16] logging.py:157 >> {'loss': 0.1349, 'learning_rate': 3.4794e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44756 |
+
|
44757 |
+
[INFO|2025-02-09 12:58:25] logging.py:157 >> {'loss': 0.0048, 'learning_rate': 3.4611e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44758 |
+
|
44759 |
+
[INFO|2025-02-09 12:58:35] logging.py:157 >> {'loss': 0.0103, 'learning_rate': 3.4428e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44760 |
+
|
44761 |
+
[INFO|2025-02-09 12:58:45] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.4246e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44762 |
+
|
44763 |
+
[INFO|2025-02-09 12:58:56] logging.py:157 >> {'loss': 0.0027, 'learning_rate': 3.4065e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44764 |
+
|
44765 |
+
[INFO|2025-02-09 12:59:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.3884e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44766 |
+
|
44767 |
+
[INFO|2025-02-09 12:59:15] logging.py:157 >> {'loss': 0.0267, 'learning_rate': 3.3704e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44768 |
+
|
44769 |
+
[INFO|2025-02-09 12:59:26] logging.py:157 >> {'loss': 0.0568, 'learning_rate': 3.3524e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44770 |
+
|
44771 |
+
[INFO|2025-02-09 12:59:35] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.3344e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44772 |
+
|
44773 |
+
[INFO|2025-02-09 12:59:44] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 3.3165e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44774 |
+
|
44775 |
+
[INFO|2025-02-09 12:59:55] logging.py:157 >> {'loss': 0.0030, 'learning_rate': 3.2987e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44776 |
+
|
44777 |
+
[INFO|2025-02-09 13:00:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.2809e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44778 |
+
|
44779 |
+
[INFO|2025-02-09 13:00:15] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.2631e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44780 |
+
|
44781 |
+
[INFO|2025-02-09 13:00:24] logging.py:157 >> {'loss': 0.1412, 'learning_rate': 3.2454e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44782 |
+
|
44783 |
+
[INFO|2025-02-09 13:00:33] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.2278e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44784 |
+
|
44785 |
+
[INFO|2025-02-09 13:00:44] logging.py:157 >> {'loss': 0.1279, 'learning_rate': 3.2102e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44786 |
+
|
44787 |
+
[INFO|2025-02-09 13:00:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.1926e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44788 |
+
|
44789 |
+
[INFO|2025-02-09 13:01:02] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.1751e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44790 |
+
|
44791 |
+
[INFO|2025-02-09 13:01:12] logging.py:157 >> {'loss': 0.0123, 'learning_rate': 3.1576e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44792 |
+
|
44793 |
+
[INFO|2025-02-09 13:01:21] logging.py:157 >> {'loss': 0.0935, 'learning_rate': 3.1402e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44794 |
+
|
44795 |
+
[INFO|2025-02-09 13:01:31] logging.py:157 >> {'loss': 0.0270, 'learning_rate': 3.1228e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44796 |
+
|
44797 |
+
[INFO|2025-02-09 13:01:40] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.1055e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44798 |
+
|
44799 |
+
[INFO|2025-02-09 13:01:49] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 3.0882e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44800 |
+
|
44801 |
+
[INFO|2025-02-09 13:01:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.0710e-09, 'epoch': 2.95, 'throughput': 201.11}
|
44802 |
+
|
44803 |
+
[INFO|2025-02-09 13:02:08] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.0538e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44804 |
+
|
44805 |
+
[INFO|2025-02-09 13:02:18] logging.py:157 >> {'loss': 0.0218, 'learning_rate': 3.0367e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44806 |
+
|
44807 |
+
[INFO|2025-02-09 13:02:26] logging.py:157 >> {'loss': 0.0393, 'learning_rate': 3.0196e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44808 |
+
|
44809 |
+
[INFO|2025-02-09 13:02:36] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 3.0026e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44810 |
+
|
44811 |
+
[INFO|2025-02-09 13:02:46] logging.py:157 >> {'loss': 0.0291, 'learning_rate': 2.9856e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44812 |
+
|
44813 |
+
[INFO|2025-02-09 13:02:55] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.9687e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44814 |
+
|
44815 |
+
[INFO|2025-02-09 13:03:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.9518e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44816 |
+
|
44817 |
+
[INFO|2025-02-09 13:03:13] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.9349e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44818 |
+
|
44819 |
+
[INFO|2025-02-09 13:03:23] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.9181e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44820 |
+
|
44821 |
+
[INFO|2025-02-09 13:03:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.9014e-09, 'epoch': 2.95, 'throughput': 201.13}
|
44822 |
+
|
44823 |
+
[INFO|2025-02-09 13:03:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8847e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44824 |
+
|
44825 |
+
[INFO|2025-02-09 13:03:52] logging.py:157 >> {'loss': 0.0238, 'learning_rate': 2.8681e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44826 |
+
|
44827 |
+
[INFO|2025-02-09 13:04:00] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.8515e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44828 |
+
|
44829 |
+
[INFO|2025-02-09 13:04:10] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8349e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44830 |
+
|
44831 |
+
[INFO|2025-02-09 13:04:19] logging.py:157 >> {'loss': 0.0048, 'learning_rate': 2.8184e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44832 |
+
|
44833 |
+
[INFO|2025-02-09 13:04:28] logging.py:157 >> {'loss': 0.0437, 'learning_rate': 2.8019e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44834 |
+
|
44835 |
+
[INFO|2025-02-09 13:04:38] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.7855e-09, 'epoch': 2.95, 'throughput': 201.12}
|
44836 |
+
|
44837 |
+
[INFO|2025-02-09 13:04:47] logging.py:157 >> {'loss': 0.0716, 'learning_rate': 2.7692e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44838 |
+
|
44839 |
+
[INFO|2025-02-09 13:04:57] logging.py:157 >> {'loss': 0.0523, 'learning_rate': 2.7529e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44840 |
+
|
44841 |
+
[INFO|2025-02-09 13:05:06] logging.py:157 >> {'loss': 0.2490, 'learning_rate': 2.7366e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44842 |
+
|
44843 |
+
[INFO|2025-02-09 13:05:15] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.7204e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44844 |
+
|
44845 |
+
[INFO|2025-02-09 13:05:26] logging.py:157 >> {'loss': 0.0184, 'learning_rate': 2.7042e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44846 |
+
|
44847 |
+
[INFO|2025-02-09 13:05:35] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.6881e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44848 |
+
|
44849 |
+
[INFO|2025-02-09 13:05:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.6720e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44850 |
+
|
44851 |
+
[INFO|2025-02-09 13:05:55] logging.py:157 >> {'loss': 0.0389, 'learning_rate': 2.6560e-09, 'epoch': 2.96, 'throughput': 201.12}
|
44852 |
+
|
44853 |
+
[INFO|2025-02-09 13:06:04] logging.py:157 >> {'loss': 0.0542, 'learning_rate': 2.6400e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44854 |
+
|
44855 |
+
[INFO|2025-02-09 13:06:15] logging.py:157 >> {'loss': 0.0775, 'learning_rate': 2.6241e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44856 |
+
|
44857 |
+
[INFO|2025-02-09 13:06:25] logging.py:157 >> {'loss': 0.2101, 'learning_rate': 2.6082e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44858 |
+
|
44859 |
+
[INFO|2025-02-09 13:06:34] logging.py:157 >> {'loss': 0.0641, 'learning_rate': 2.5924e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44860 |
+
|
44861 |
+
[INFO|2025-02-09 13:06:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.5766e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44862 |
+
|
44863 |
+
[INFO|2025-02-09 13:06:54] logging.py:157 >> {'loss': 0.0166, 'learning_rate': 2.5609e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44864 |
+
|
44865 |
+
[INFO|2025-02-09 13:07:04] logging.py:157 >> {'loss': 0.0239, 'learning_rate': 2.5452e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44866 |
+
|
44867 |
+
[INFO|2025-02-09 13:07:14] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 2.5296e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44868 |
+
|
44869 |
+
[INFO|2025-02-09 13:07:23] logging.py:157 >> {'loss': 0.0411, 'learning_rate': 2.5140e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44870 |
+
|
44871 |
+
[INFO|2025-02-09 13:07:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4985e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44872 |
+
|
44873 |
+
[INFO|2025-02-09 13:07:43] logging.py:157 >> {'loss': 0.0281, 'learning_rate': 2.4830e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44874 |
+
|
44875 |
+
[INFO|2025-02-09 13:07:54] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 2.4675e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44876 |
+
|
44877 |
+
[INFO|2025-02-09 13:08:04] logging.py:157 >> {'loss': 0.0235, 'learning_rate': 2.4521e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44878 |
+
|
44879 |
+
[INFO|2025-02-09 13:08:14] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.4368e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44880 |
+
|
44881 |
+
[INFO|2025-02-09 13:08:23] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.4215e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44882 |
+
|
44883 |
+
[INFO|2025-02-09 13:08:33] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 2.4062e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44884 |
+
|
44885 |
+
[INFO|2025-02-09 13:08:42] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.3910e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44886 |
+
|
44887 |
+
[INFO|2025-02-09 13:08:52] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.3759e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44888 |
+
|
44889 |
+
[INFO|2025-02-09 13:09:01] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.3608e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44890 |
+
|
44891 |
+
[INFO|2025-02-09 13:09:11] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 2.3457e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44892 |
+
|
44893 |
+
[INFO|2025-02-09 13:09:21] logging.py:157 >> {'loss': 0.0026, 'learning_rate': 2.3307e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44894 |
+
|
44895 |
+
[INFO|2025-02-09 13:09:31] logging.py:157 >> {'loss': 0.0761, 'learning_rate': 2.3157e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44896 |
+
|
44897 |
+
[INFO|2025-02-09 13:09:41] logging.py:157 >> {'loss': 0.0549, 'learning_rate': 2.3008e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44898 |
+
|
44899 |
+
[INFO|2025-02-09 13:09:50] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2860e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44900 |
+
|
44901 |
+
[INFO|2025-02-09 13:09:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.2711e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44902 |
+
|
44903 |
+
[INFO|2025-02-09 13:10:08] logging.py:157 >> {'loss': 0.0270, 'learning_rate': 2.2564e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44904 |
+
|
44905 |
+
[INFO|2025-02-09 13:10:17] logging.py:157 >> {'loss': 0.0796, 'learning_rate': 2.2416e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44906 |
+
|
44907 |
+
[INFO|2025-02-09 13:10:27] logging.py:157 >> {'loss': 0.1543, 'learning_rate': 2.2270e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44908 |
+
|
44909 |
+
[INFO|2025-02-09 13:10:38] logging.py:157 >> {'loss': 0.0043, 'learning_rate': 2.2123e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44910 |
+
|
44911 |
+
[INFO|2025-02-09 13:10:46] logging.py:157 >> {'loss': 0.0172, 'learning_rate': 2.1978e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44912 |
+
|
44913 |
+
[INFO|2025-02-09 13:10:57] logging.py:157 >> {'loss': 0.0066, 'learning_rate': 2.1832e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44914 |
+
|
44915 |
+
[INFO|2025-02-09 13:11:07] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1688e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44916 |
+
|
44917 |
+
[INFO|2025-02-09 13:11:16] logging.py:157 >> {'loss': 0.0427, 'learning_rate': 2.1543e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44918 |
+
|
44919 |
+
[INFO|2025-02-09 13:11:25] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1399e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44920 |
+
|
44921 |
+
[INFO|2025-02-09 13:11:34] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1256e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44922 |
+
|
44923 |
+
[INFO|2025-02-09 13:11:45] logging.py:157 >> {'loss': 0.1574, 'learning_rate': 2.1113e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44924 |
+
|
44925 |
+
[INFO|2025-02-09 13:11:55] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 2.0971e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44926 |
+
|
44927 |
+
[INFO|2025-02-09 13:12:05] logging.py:157 >> {'loss': 0.1038, 'learning_rate': 2.0829e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44928 |
+
|
44929 |
+
[INFO|2025-02-09 13:12:15] logging.py:157 >> {'loss': 0.1581, 'learning_rate': 2.0687e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44930 |
+
|
44931 |
+
[INFO|2025-02-09 13:12:24] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.0547e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44932 |
+
|
44933 |
+
[INFO|2025-02-09 13:12:34] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0406e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44934 |
+
|
44935 |
+
[INFO|2025-02-09 13:12:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.0266e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44936 |
+
|
44937 |
+
[INFO|2025-02-09 13:12:53] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0127e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44938 |
+
|
44939 |
+
[INFO|2025-02-09 13:13:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9988e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44940 |
+
|
44941 |
+
[INFO|2025-02-09 13:13:13] logging.py:157 >> {'loss': 0.0304, 'learning_rate': 1.9849e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44942 |
+
|
44943 |
+
[INFO|2025-02-09 13:13:22] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9711e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44944 |
+
|
44945 |
+
[INFO|2025-02-09 13:13:32] logging.py:157 >> {'loss': 0.0195, 'learning_rate': 1.9573e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44946 |
+
|
44947 |
+
[INFO|2025-02-09 13:13:42] logging.py:157 >> {'loss': 0.0299, 'learning_rate': 1.9436e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44948 |
+
|
44949 |
+
[INFO|2025-02-09 13:13:53] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9300e-09, 'epoch': 2.96, 'throughput': 201.13}
|
44950 |
+
|
44951 |
+
[INFO|2025-02-09 13:14:03] logging.py:157 >> {'loss': 0.0175, 'learning_rate': 1.9164e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44952 |
+
|
44953 |
+
[INFO|2025-02-09 13:14:13] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.9028e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44954 |
+
|
44955 |
+
[INFO|2025-02-09 13:14:23] logging.py:157 >> {'loss': 0.0983, 'learning_rate': 1.8893e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44956 |
+
|
44957 |
+
[INFO|2025-02-09 13:14:32] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.8758e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44958 |
+
|
44959 |
+
[INFO|2025-02-09 13:14:42] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.8624e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44960 |
+
|
44961 |
+
[INFO|2025-02-09 13:14:52] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.8490e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44962 |
+
|
44963 |
+
[INFO|2025-02-09 13:15:01] logging.py:157 >> {'loss': 0.0043, 'learning_rate': 1.8357e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44964 |
+
|
44965 |
+
[INFO|2025-02-09 13:15:11] logging.py:157 >> {'loss': 0.1020, 'learning_rate': 1.8224e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44966 |
+
|
44967 |
+
[INFO|2025-02-09 13:15:20] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 1.8092e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44968 |
+
|
44969 |
+
[INFO|2025-02-09 13:15:30] logging.py:157 >> {'loss': 0.0112, 'learning_rate': 1.7960e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44970 |
+
|
44971 |
+
[INFO|2025-02-09 13:15:40] logging.py:157 >> {'loss': 0.0126, 'learning_rate': 1.7829e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44972 |
+
|
44973 |
+
[INFO|2025-02-09 13:15:49] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.7698e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44974 |
+
|
44975 |
+
[INFO|2025-02-09 13:15:58] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7567e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44976 |
+
|
44977 |
+
[INFO|2025-02-09 13:16:07] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 1.7438e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44978 |
+
|
44979 |
+
[INFO|2025-02-09 13:16:18] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.7308e-09, 'epoch': 2.96, 'throughput': 201.15}
|
44980 |
+
|
44981 |
+
[INFO|2025-02-09 13:16:27] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7179e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44982 |
+
|
44983 |
+
[INFO|2025-02-09 13:16:37] logging.py:157 >> {'loss': 0.0619, 'learning_rate': 1.7051e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44984 |
+
|
44985 |
+
[INFO|2025-02-09 13:16:48] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.6923e-09, 'epoch': 2.96, 'throughput': 201.14}
|
44986 |
+
|
44987 |
+
[INFO|2025-02-09 13:16:57] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.6795e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44988 |
+
|
44989 |
+
[INFO|2025-02-09 13:17:06] logging.py:157 >> {'loss': 0.0384, 'learning_rate': 1.6668e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44990 |
+
|
44991 |
+
[INFO|2025-02-09 13:17:15] logging.py:157 >> {'loss': 0.0337, 'learning_rate': 1.6542e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44992 |
+
|
44993 |
+
[INFO|2025-02-09 13:17:24] logging.py:157 >> {'loss': 0.0213, 'learning_rate': 1.6416e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44994 |
+
|
44995 |
+
[INFO|2025-02-09 13:17:34] logging.py:157 >> {'loss': 0.0059, 'learning_rate': 1.6290e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44996 |
+
|
44997 |
+
[INFO|2025-02-09 13:17:44] logging.py:157 >> {'loss': 0.1520, 'learning_rate': 1.6165e-09, 'epoch': 2.97, 'throughput': 201.14}
|
44998 |
+
|
44999 |
+
[INFO|2025-02-09 13:17:53] logging.py:157 >> {'loss': 0.0384, 'learning_rate': 1.6041e-09, 'epoch': 2.97, 'throughput': 201.14}
|
45000 |
+
|
45001 |
+
[INFO|2025-02-09 13:18:04] logging.py:157 >> {'loss': 0.0211, 'learning_rate': 1.5917e-09, 'epoch': 2.97, 'throughput': 201.14}
|
45002 |
+
|
45003 |
+
[INFO|2025-02-09 13:18:13] logging.py:157 >> {'loss': 0.0941, 'learning_rate': 1.5793e-09, 'epoch': 2.97, 'throughput': 201.14}
|
45004 |
+
|
45005 |
+
[INFO|2025-02-09 13:18:22] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.5670e-09, 'epoch': 2.97, 'throughput': 201.14}
|
45006 |
+
|
45007 |
+
[INFO|2025-02-09 13:18:33] logging.py:157 >> {'loss': 0.2061, 'learning_rate': 1.5547e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45008 |
+
|
45009 |
+
[INFO|2025-02-09 13:18:42] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.5425e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45010 |
+
|
45011 |
+
[INFO|2025-02-09 13:18:52] logging.py:157 >> {'loss': 0.0031, 'learning_rate': 1.5303e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45012 |
+
|
45013 |
+
[INFO|2025-02-09 13:19:02] logging.py:157 >> {'loss': 0.0101, 'learning_rate': 1.5182e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45014 |
+
|
45015 |
+
[INFO|2025-02-09 13:19:11] logging.py:157 >> {'loss': 0.0364, 'learning_rate': 1.5062e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45016 |
+
|
45017 |
+
[INFO|2025-02-09 13:19:20] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4941e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45018 |
+
|
45019 |
+
[INFO|2025-02-09 13:19:29] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.4822e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45020 |
+
|
45021 |
+
[INFO|2025-02-09 13:19:39] logging.py:157 >> {'loss': 0.1423, 'learning_rate': 1.4702e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45022 |
+
|
45023 |
+
[INFO|2025-02-09 13:19:48] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4583e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45024 |
+
|
45025 |
+
[INFO|2025-02-09 13:19:57] logging.py:157 >> {'loss': 0.0361, 'learning_rate': 1.4465e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45026 |
+
|
45027 |
+
[INFO|2025-02-09 13:20:07] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.4347e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45028 |
+
|
45029 |
+
[INFO|2025-02-09 13:20:15] logging.py:157 >> {'loss': 0.0008, 'learning_rate': 1.4230e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45030 |
+
|
45031 |
+
[INFO|2025-02-09 13:20:26] logging.py:157 >> {'loss': 0.0911, 'learning_rate': 1.4113e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45032 |
+
|
45033 |
+
[INFO|2025-02-09 13:20:36] logging.py:157 >> {'loss': 0.0997, 'learning_rate': 1.3997e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45034 |
+
|
45035 |
+
[INFO|2025-02-09 13:20:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 1.3881e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45036 |
+
|
45037 |
+
[INFO|2025-02-09 13:20:54] logging.py:157 >> {'loss': 0.1293, 'learning_rate': 1.3765e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45038 |
+
|
45039 |
+
[INFO|2025-02-09 13:21:04] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.3650e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45040 |
+
|
45041 |
+
[INFO|2025-02-09 13:21:13] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.3536e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45042 |
+
|
45043 |
+
[INFO|2025-02-09 13:21:23] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 1.3422e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45044 |
+
|
45045 |
+
[INFO|2025-02-09 13:21:32] logging.py:157 >> {'loss': 0.0022, 'learning_rate': 1.3309e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45046 |
+
|
45047 |
+
[INFO|2025-02-09 13:21:43] logging.py:157 >> {'loss': 0.1092, 'learning_rate': 1.3196e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45048 |
+
|
45049 |
+
[INFO|2025-02-09 13:21:53] logging.py:157 >> {'loss': 0.0722, 'learning_rate': 1.3083e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45050 |
+
|
45051 |
+
[INFO|2025-02-09 13:22:02] logging.py:157 >> {'loss': 0.0058, 'learning_rate': 1.2971e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45052 |
+
|
45053 |
+
[INFO|2025-02-09 13:22:12] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2859e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45054 |
+
|
45055 |
+
[INFO|2025-02-09 13:22:22] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.2748e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45056 |
+
|
45057 |
+
[INFO|2025-02-09 13:22:31] logging.py:157 >> {'loss': 0.0159, 'learning_rate': 1.2638e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45058 |
+
|
45059 |
+
[INFO|2025-02-09 13:22:41] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.2528e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45060 |
+
|
45061 |
+
[INFO|2025-02-09 13:22:51] logging.py:157 >> {'loss': 0.0019, 'learning_rate': 1.2418e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45062 |
+
|
45063 |
+
[INFO|2025-02-09 13:23:01] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2309e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45064 |
+
|
45065 |
+
[INFO|2025-02-09 13:23:11] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.2200e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45066 |
+
|
45067 |
+
[INFO|2025-02-09 13:23:20] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2092e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45068 |
+
|
45069 |
+
[INFO|2025-02-09 13:23:29] logging.py:157 >> {'loss': 0.0892, 'learning_rate': 1.1984e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45070 |
+
|
45071 |
+
[INFO|2025-02-09 13:23:39] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1877e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45072 |
+
|
45073 |
+
[INFO|2025-02-09 13:23:49] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 1.1770e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45074 |
+
|
45075 |
+
[INFO|2025-02-09 13:23:58] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 1.1664e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45076 |
+
|
45077 |
+
[INFO|2025-02-09 13:24:08] logging.py:157 >> {'loss': 0.0255, 'learning_rate': 1.1558e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45078 |
+
|
45079 |
+
[INFO|2025-02-09 13:24:18] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1453e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45080 |
+
|
45081 |
+
[INFO|2025-02-09 13:24:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1348e-09, 'epoch': 2.97, 'throughput': 201.15}
|
45082 |
+
|
45083 |
+
[INFO|2025-02-09 13:24:38] logging.py:157 >> {'loss': 0.0064, 'learning_rate': 1.1244e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45084 |
+
|
45085 |
+
[INFO|2025-02-09 13:24:49] logging.py:157 >> {'loss': 0.1398, 'learning_rate': 1.1140e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45086 |
+
|
45087 |
+
[INFO|2025-02-09 13:24:58] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1036e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45088 |
+
|
45089 |
+
[INFO|2025-02-09 13:25:08] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0934e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45090 |
+
|
45091 |
+
[INFO|2025-02-09 13:25:18] logging.py:157 >> {'loss': 0.0241, 'learning_rate': 1.0831e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45092 |
+
|
45093 |
+
[INFO|2025-02-09 13:25:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0729e-09, 'epoch': 2.97, 'throughput': 201.16}
|
45094 |
+
|
45095 |
+
[INFO|2025-02-09 13:25:38] logging.py:157 >> {'loss': 0.1080, 'learning_rate': 1.0628e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45096 |
+
|
45097 |
+
[INFO|2025-02-09 13:25:49] logging.py:157 >> {'loss': 0.1110, 'learning_rate': 1.0527e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45098 |
+
|
45099 |
+
[INFO|2025-02-09 13:25:58] logging.py:157 >> {'loss': 0.0991, 'learning_rate': 1.0426e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45100 |
+
|
45101 |
+
[INFO|2025-02-09 13:26:09] logging.py:157 >> {'loss': 0.0647, 'learning_rate': 1.0326e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45102 |
+
|
45103 |
+
[INFO|2025-02-09 13:26:19] logging.py:157 >> {'loss': 0.1327, 'learning_rate': 1.0227e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45104 |
+
|
45105 |
+
[INFO|2025-02-09 13:26:28] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0128e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45106 |
+
|
45107 |
+
[INFO|2025-02-09 13:26:39] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 1.0029e-09, 'epoch': 2.97, 'throughput': 201.17}
|
45108 |
+
|
45109 |
+
[INFO|2025-02-09 13:26:48] logging.py:157 >> {'loss': 0.0431, 'learning_rate': 9.9311e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45110 |
+
|
45111 |
+
[INFO|2025-02-09 13:26:58] logging.py:157 >> {'loss': 0.2594, 'learning_rate': 9.8335e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45112 |
+
|
45113 |
+
[INFO|2025-02-09 13:27:07] logging.py:157 >> {'loss': 0.0051, 'learning_rate': 9.7364e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45114 |
+
|
45115 |
+
[INFO|2025-02-09 13:27:16] logging.py:157 >> {'loss': 0.0515, 'learning_rate': 9.6397e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45116 |
+
|
45117 |
+
[INFO|2025-02-09 13:27:26] logging.py:157 >> {'loss': 0.1407, 'learning_rate': 9.5436e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45118 |
+
|
45119 |
+
[INFO|2025-02-09 13:27:36] logging.py:157 >> {'loss': 0.1695, 'learning_rate': 9.4479e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45120 |
+
|
45121 |
+
[INFO|2025-02-09 13:27:45] logging.py:157 >> {'loss': 0.0046, 'learning_rate': 9.3527e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45122 |
+
|
45123 |
+
[INFO|2025-02-09 13:27:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.2580e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45124 |
+
|
45125 |
+
[INFO|2025-02-09 13:28:03] logging.py:157 >> {'loss': 0.0596, 'learning_rate': 9.1638e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45126 |
+
|
45127 |
+
[INFO|2025-02-09 13:28:13] logging.py:157 >> {'loss': 0.0613, 'learning_rate': 9.0701e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45128 |
+
|
45129 |
+
[INFO|2025-02-09 13:28:22] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 8.9768e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45130 |
+
|
45131 |
+
[INFO|2025-02-09 13:28:32] logging.py:157 >> {'loss': 0.1559, 'learning_rate': 8.8840e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45132 |
+
|
45133 |
+
[INFO|2025-02-09 13:28:42] logging.py:157 >> {'loss': 0.0074, 'learning_rate': 8.7917e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45134 |
+
|
45135 |
+
[INFO|2025-02-09 13:28:51] logging.py:157 >> {'loss': 0.0635, 'learning_rate': 8.6999e-10, 'epoch': 2.97, 'throughput': 201.17}
|
45136 |
+
|
45137 |
+
[INFO|2025-02-09 13:29:01] logging.py:157 >> {'loss': 0.0020, 'learning_rate': 8.6086e-10, 'epoch': 2.97, 'throughput': 201.18}
|
45138 |
+
|
45139 |
+
[INFO|2025-02-09 13:29:10] logging.py:157 >> {'loss': 0.2347, 'learning_rate': 8.5177e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45140 |
+
|
45141 |
+
[INFO|2025-02-09 13:29:19] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.4274e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45142 |
+
|
45143 |
+
[INFO|2025-02-09 13:29:29] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 8.3375e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45144 |
+
|
45145 |
+
[INFO|2025-02-09 13:29:37] logging.py:157 >> {'loss': 0.2888, 'learning_rate': 8.2481e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45146 |
+
|
45147 |
+
[INFO|2025-02-09 13:29:48] logging.py:157 >> {'loss': 0.0190, 'learning_rate': 8.1591e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45148 |
+
|
45149 |
+
[INFO|2025-02-09 13:29:57] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 8.0707e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45150 |
+
|
45151 |
+
[INFO|2025-02-09 13:30:06] logging.py:157 >> {'loss': 0.0436, 'learning_rate': 7.9827e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45152 |
+
|
45153 |
+
[INFO|2025-02-09 13:30:17] logging.py:157 >> {'loss': 0.0334, 'learning_rate': 7.8953e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45154 |
+
|
45155 |
+
[INFO|2025-02-09 13:30:26] logging.py:157 >> {'loss': 0.0158, 'learning_rate': 7.8083e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45156 |
+
|
45157 |
+
[INFO|2025-02-09 13:30:36] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 7.7218e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45158 |
+
|
45159 |
+
[INFO|2025-02-09 13:30:45] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 7.6357e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45160 |
+
|
45161 |
+
[INFO|2025-02-09 13:30:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 7.5502e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45162 |
+
|
45163 |
+
[INFO|2025-02-09 13:31:04] logging.py:157 >> {'loss': 0.0429, 'learning_rate': 7.4651e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45164 |
+
|
45165 |
+
[INFO|2025-02-09 13:31:13] logging.py:157 >> {'loss': 0.0062, 'learning_rate': 7.3805e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45166 |
+
|
45167 |
+
[INFO|2025-02-09 13:31:22] logging.py:157 >> {'loss': 0.1086, 'learning_rate': 7.2964e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45168 |
+
|
45169 |
+
[INFO|2025-02-09 13:31:32] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 7.2128e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45170 |
+
|
45171 |
+
[INFO|2025-02-09 13:31:41] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 7.1297e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45172 |
+
|
45173 |
+
[INFO|2025-02-09 13:31:52] logging.py:157 >> {'loss': 0.0773, 'learning_rate': 7.0470e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45174 |
+
|
45175 |
+
[INFO|2025-02-09 13:32:02] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 6.9648e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45176 |
+
|
45177 |
+
[INFO|2025-02-09 13:32:10] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 6.8831e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45178 |
+
|
45179 |
+
[INFO|2025-02-09 13:32:21] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.8019e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45180 |
+
|
45181 |
+
[INFO|2025-02-09 13:32:30] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.7212e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45182 |
+
|
45183 |
+
[INFO|2025-02-09 13:32:39] logging.py:157 >> {'loss': 0.2480, 'learning_rate': 6.6409e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45184 |
+
|
45185 |
+
[INFO|2025-02-09 13:32:49] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.5612e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45186 |
+
|
45187 |
+
[INFO|2025-02-09 13:32:58] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 6.4819e-10, 'epoch': 2.98, 'throughput': 201.19}
|
45188 |
+
|
45189 |
+
[INFO|2025-02-09 13:33:08] logging.py:157 >> {'loss': 0.0262, 'learning_rate': 6.4031e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45190 |
+
|
45191 |
+
[INFO|2025-02-09 13:33:18] logging.py:157 >> {'loss': 0.0834, 'learning_rate': 6.3248e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45192 |
+
|
45193 |
+
[INFO|2025-02-09 13:33:27] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 6.2469e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45194 |
+
|
45195 |
+
[INFO|2025-02-09 13:33:37] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 6.1696e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45196 |
+
|
45197 |
+
[INFO|2025-02-09 13:33:47] logging.py:157 >> {'loss': 0.0006, 'learning_rate': 6.0927e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45198 |
+
|
45199 |
+
[INFO|2025-02-09 13:33:57] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 6.0163e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45200 |
+
|
45201 |
+
[INFO|2025-02-09 13:34:07] logging.py:157 >> {'loss': 0.0040, 'learning_rate': 5.9404e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45202 |
+
|
45203 |
+
[INFO|2025-02-09 13:34:16] logging.py:157 >> {'loss': 0.0158, 'learning_rate': 5.8650e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45204 |
+
|
45205 |
+
[INFO|2025-02-09 13:34:27] logging.py:157 >> {'loss': 0.0358, 'learning_rate': 5.7900e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45206 |
+
|
45207 |
+
[INFO|2025-02-09 13:34:37] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 5.7155e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45208 |
+
|
45209 |
+
[INFO|2025-02-09 13:34:46] logging.py:157 >> {'loss': 0.0778, 'learning_rate': 5.6416e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45210 |
+
|
45211 |
+
[INFO|2025-02-09 13:34:55] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.5681e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45212 |
+
|
45213 |
+
[INFO|2025-02-09 13:35:05] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 5.4950e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45214 |
+
|
45215 |
+
[INFO|2025-02-09 13:35:15] logging.py:157 >> {'loss': 0.0062, 'learning_rate': 5.4225e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45216 |
+
|
45217 |
+
[INFO|2025-02-09 13:35:24] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 5.3504e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45218 |
+
|
45219 |
+
[INFO|2025-02-09 13:35:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.2789e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45220 |
+
|
45221 |
+
[INFO|2025-02-09 13:35:44] logging.py:157 >> {'loss': 0.0019, 'learning_rate': 5.2078e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45222 |
+
|
45223 |
+
[INFO|2025-02-09 13:35:54] logging.py:157 >> {'loss': 0.3176, 'learning_rate': 5.1372e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45224 |
+
|
45225 |
+
[INFO|2025-02-09 13:36:04] logging.py:157 >> {'loss': 0.0064, 'learning_rate': 5.0670e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45226 |
+
|
45227 |
+
[INFO|2025-02-09 13:36:14] logging.py:157 >> {'loss': 0.0015, 'learning_rate': 4.9974e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45228 |
+
|
45229 |
+
[INFO|2025-02-09 13:36:24] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.9282e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45230 |
+
|
45231 |
+
[INFO|2025-02-09 13:36:34] logging.py:157 >> {'loss': 0.0228, 'learning_rate': 4.8595e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45232 |
+
|
45233 |
+
[INFO|2025-02-09 13:36:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.7913e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45234 |
+
|
45235 |
+
[INFO|2025-02-09 13:36:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.7236e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45236 |
+
|
45237 |
+
[INFO|2025-02-09 13:37:05] logging.py:157 >> {'loss': 0.1020, 'learning_rate': 4.6564e-10, 'epoch': 2.98, 'throughput': 201.18}
|
45238 |
+
|
45239 |
+
[INFO|2025-02-09 13:37:14] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.5896e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45240 |
+
|
45241 |
+
[INFO|2025-02-09 13:37:24] logging.py:157 >> {'loss': 0.0207, 'learning_rate': 4.5234e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45242 |
+
|
45243 |
+
[INFO|2025-02-09 13:37:35] logging.py:157 >> {'loss': 0.0189, 'learning_rate': 4.4576e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45244 |
+
|
45245 |
+
[INFO|2025-02-09 13:37:44] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.3923e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45246 |
+
|
45247 |
+
[INFO|2025-02-09 13:37:54] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 4.3274e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45248 |
+
|
45249 |
+
[INFO|2025-02-09 13:38:04] logging.py:157 >> {'loss': 0.0209, 'learning_rate': 4.2631e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45250 |
+
|
45251 |
+
[INFO|2025-02-09 13:38:13] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 4.1992e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45252 |
+
|
45253 |
+
[INFO|2025-02-09 13:38:23] logging.py:157 >> {'loss': 0.0084, 'learning_rate': 4.1358e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45254 |
+
|
45255 |
+
[INFO|2025-02-09 13:38:32] logging.py:157 >> {'loss': 0.0361, 'learning_rate': 4.0729e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45256 |
+
|
45257 |
+
[INFO|2025-02-09 13:38:42] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 4.0105e-10, 'epoch': 2.98, 'throughput': 201.16}
|
45258 |
+
|
45259 |
+
[INFO|2025-02-09 13:38:52] logging.py:157 >> {'loss': 0.0600, 'learning_rate': 3.9486e-10, 'epoch': 2.98, 'throughput': 201.16}
|
45260 |
+
|
45261 |
+
[INFO|2025-02-09 13:39:01] logging.py:157 >> {'loss': 0.0085, 'learning_rate': 3.8871e-10, 'epoch': 2.98, 'throughput': 201.16}
|
45262 |
+
|
45263 |
+
[INFO|2025-02-09 13:39:10] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.8262e-10, 'epoch': 2.98, 'throughput': 201.16}
|
45264 |
+
|
45265 |
+
[INFO|2025-02-09 13:39:20] logging.py:157 >> {'loss': 0.0249, 'learning_rate': 3.7657e-10, 'epoch': 2.98, 'throughput': 201.16}
|
45266 |
+
|
45267 |
+
[INFO|2025-02-09 13:39:29] logging.py:157 >> {'loss': 0.0412, 'learning_rate': 3.7057e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45268 |
+
|
45269 |
+
[INFO|2025-02-09 13:39:40] logging.py:157 >> {'loss': 0.0919, 'learning_rate': 3.6461e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45270 |
+
|
45271 |
+
[INFO|2025-02-09 13:39:50] logging.py:157 >> {'loss': 0.1375, 'learning_rate': 3.5871e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45272 |
+
|
45273 |
+
[INFO|2025-02-09 13:39:59] logging.py:157 >> {'loss': 0.2204, 'learning_rate': 3.5285e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45274 |
+
|
45275 |
+
[INFO|2025-02-09 13:40:09] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 3.4704e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45276 |
+
|
45277 |
+
[INFO|2025-02-09 13:40:19] logging.py:157 >> {'loss': 0.0713, 'learning_rate': 3.4128e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45278 |
+
|
45279 |
+
[INFO|2025-02-09 13:40:28] logging.py:157 >> {'loss': 0.0082, 'learning_rate': 3.3557e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45280 |
+
|
45281 |
+
[INFO|2025-02-09 13:40:38] logging.py:157 >> {'loss': 0.0015, 'learning_rate': 3.2991e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45282 |
+
|
45283 |
+
[INFO|2025-02-09 13:40:47] logging.py:157 >> {'loss': 0.0451, 'learning_rate': 3.2429e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45284 |
+
|
45285 |
+
[INFO|2025-02-09 13:40:57] logging.py:157 >> {'loss': 0.2993, 'learning_rate': 3.1873e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45286 |
+
|
45287 |
+
[INFO|2025-02-09 13:41:07] logging.py:157 >> {'loss': 0.0263, 'learning_rate': 3.1321e-10, 'epoch': 2.98, 'throughput': 201.17}
|
45288 |
+
|
45289 |
+
[INFO|2025-02-09 13:41:16] logging.py:157 >> {'loss': 0.0732, 'learning_rate': 3.0774e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45290 |
+
|
45291 |
+
[INFO|2025-02-09 13:41:27] logging.py:157 >> {'loss': 0.0123, 'learning_rate': 3.0232e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45292 |
+
|
45293 |
+
[INFO|2025-02-09 13:41:35] logging.py:157 >> {'loss': 0.0527, 'learning_rate': 2.9694e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45294 |
+
|
45295 |
+
[INFO|2025-02-09 13:41:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.9161e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45296 |
+
|
45297 |
+
[INFO|2025-02-09 13:41:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.8634e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45298 |
+
|
45299 |
+
[INFO|2025-02-09 13:42:02] logging.py:157 >> {'loss': 0.0321, 'learning_rate': 2.8111e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45300 |
+
|
45301 |
+
[INFO|2025-02-09 13:42:11] logging.py:157 >> {'loss': 0.1726, 'learning_rate': 2.7593e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45302 |
+
|
45303 |
+
[INFO|2025-02-09 13:42:21] logging.py:157 >> {'loss': 0.0026, 'learning_rate': 2.7079e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45304 |
+
|
45305 |
+
[INFO|2025-02-09 13:42:31] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 2.6571e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45306 |
+
|
45307 |
+
[INFO|2025-02-09 13:42:39] logging.py:157 >> {'loss': 0.1835, 'learning_rate': 2.6067e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45308 |
+
|
45309 |
+
[INFO|2025-02-09 13:42:49] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.5568e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45310 |
+
|
45311 |
+
[INFO|2025-02-09 13:42:59] logging.py:157 >> {'loss': 0.2299, 'learning_rate': 2.5074e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45312 |
+
|
45313 |
+
[INFO|2025-02-09 13:43:07] logging.py:157 >> {'loss': 0.0087, 'learning_rate': 2.4585e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45314 |
+
|
45315 |
+
[INFO|2025-02-09 13:43:17] logging.py:157 >> {'loss': 0.0028, 'learning_rate': 2.4100e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45316 |
+
|
45317 |
+
[INFO|2025-02-09 13:43:26] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.3621e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45318 |
+
|
45319 |
+
[INFO|2025-02-09 13:43:36] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 2.3146e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45320 |
+
|
45321 |
+
[INFO|2025-02-09 13:43:45] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2676e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45322 |
+
|
45323 |
+
[INFO|2025-02-09 13:43:54] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.2211e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45324 |
+
|
45325 |
+
[INFO|2025-02-09 13:44:04] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.1751e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45326 |
+
|
45327 |
+
[INFO|2025-02-09 13:44:13] logging.py:157 >> {'loss': 0.0159, 'learning_rate': 2.1295e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45328 |
+
|
45329 |
+
[INFO|2025-02-09 13:44:23] logging.py:157 >> {'loss': 0.0038, 'learning_rate': 2.0845e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45330 |
+
|
45331 |
+
[INFO|2025-02-09 13:44:33] logging.py:157 >> {'loss': 0.0016, 'learning_rate': 2.0399e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45332 |
+
|
45333 |
+
[INFO|2025-02-09 13:44:42] logging.py:157 >> {'loss': 0.0290, 'learning_rate': 1.9958e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45334 |
+
|
45335 |
+
[INFO|2025-02-09 13:44:53] logging.py:157 >> {'loss': 0.1973, 'learning_rate': 1.9521e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45336 |
+
|
45337 |
+
[INFO|2025-02-09 13:45:02] logging.py:157 >> {'loss': 0.0165, 'learning_rate': 1.9090e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45338 |
+
|
45339 |
+
[INFO|2025-02-09 13:45:12] logging.py:157 >> {'loss': 0.0885, 'learning_rate': 1.8663e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45340 |
+
|
45341 |
+
[INFO|2025-02-09 13:45:21] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 1.8242e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45342 |
+
|
45343 |
+
[INFO|2025-02-09 13:45:31] logging.py:157 >> {'loss': 0.1119, 'learning_rate': 1.7825e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45344 |
+
|
45345 |
+
[INFO|2025-02-09 13:45:41] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.7413e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45346 |
+
|
45347 |
+
[INFO|2025-02-09 13:45:51] logging.py:157 >> {'loss': 0.0004, 'learning_rate': 1.7005e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45348 |
+
|
45349 |
+
[INFO|2025-02-09 13:46:00] logging.py:157 >> {'loss': 0.0027, 'learning_rate': 1.6603e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45350 |
+
|
45351 |
+
[INFO|2025-02-09 13:46:11] logging.py:157 >> {'loss': 0.0138, 'learning_rate': 1.6205e-10, 'epoch': 2.99, 'throughput': 201.18}
|
45352 |
+
|
45353 |
+
[INFO|2025-02-09 13:46:20] logging.py:157 >> {'loss': 0.1212, 'learning_rate': 1.5812e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45354 |
+
|
45355 |
+
[INFO|2025-02-09 13:46:30] logging.py:157 >> {'loss': 0.0301, 'learning_rate': 1.5424e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45356 |
+
|
45357 |
+
[INFO|2025-02-09 13:46:40] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 1.5041e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45358 |
+
|
45359 |
+
[INFO|2025-02-09 13:46:49] logging.py:157 >> {'loss': 0.0217, 'learning_rate': 1.4663e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45360 |
+
|
45361 |
+
[INFO|2025-02-09 13:46:59] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.4289e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45362 |
+
|
45363 |
+
[INFO|2025-02-09 13:47:09] logging.py:157 >> {'loss': 0.0118, 'learning_rate': 1.3921e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45364 |
+
|
45365 |
+
[INFO|2025-02-09 13:47:18] logging.py:157 >> {'loss': 0.0456, 'learning_rate': 1.3557e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45366 |
+
|
45367 |
+
[INFO|2025-02-09 13:47:28] logging.py:157 >> {'loss': 0.0196, 'learning_rate': 1.3198e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45368 |
+
|
45369 |
+
[INFO|2025-02-09 13:47:38] logging.py:157 >> {'loss': 0.2508, 'learning_rate': 1.2843e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45370 |
+
|
45371 |
+
[INFO|2025-02-09 13:47:48] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 1.2494e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45372 |
+
|
45373 |
+
[INFO|2025-02-09 13:47:58] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.2149e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45374 |
+
|
45375 |
+
[INFO|2025-02-09 13:48:08] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.1809e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45376 |
+
|
45377 |
+
[INFO|2025-02-09 13:48:18] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1474e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45378 |
+
|
45379 |
+
[INFO|2025-02-09 13:48:28] logging.py:157 >> {'loss': 0.0052, 'learning_rate': 1.1144e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45380 |
+
|
45381 |
+
[INFO|2025-02-09 13:48:37] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.0819e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45382 |
+
|
45383 |
+
[INFO|2025-02-09 13:48:48] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0498e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45384 |
+
|
45385 |
+
[INFO|2025-02-09 13:48:57] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.0183e-10, 'epoch': 2.99, 'throughput': 201.17}
|
45386 |
+
|
45387 |
+
[INFO|2025-02-09 13:49:07] logging.py:157 >> {'loss': 0.0086, 'learning_rate': 9.8716e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45388 |
+
|
45389 |
+
[INFO|2025-02-09 13:49:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.5656e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45390 |
+
|
45391 |
+
[INFO|2025-02-09 13:49:26] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 9.2643e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45392 |
+
|
45393 |
+
[INFO|2025-02-09 13:49:37] logging.py:157 >> {'loss': 0.0492, 'learning_rate': 8.9679e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45394 |
+
|
45395 |
+
[INFO|2025-02-09 13:49:46] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 8.6763e-11, 'epoch': 2.99, 'throughput': 201.18}
|
45396 |
+
|
45397 |
+
[INFO|2025-02-09 13:49:56] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.3895e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45398 |
+
|
45399 |
+
[INFO|2025-02-09 13:50:06] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 8.1075e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45400 |
+
|
45401 |
+
[INFO|2025-02-09 13:50:15] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 7.8303e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45402 |
+
|
45403 |
+
[INFO|2025-02-09 13:50:24] logging.py:157 >> {'loss': 0.0005, 'learning_rate': 7.5580e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45404 |
+
|
45405 |
+
[INFO|2025-02-09 13:50:33] logging.py:157 >> {'loss': 0.0376, 'learning_rate': 7.2905e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45406 |
+
|
45407 |
+
[INFO|2025-02-09 13:50:42] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 7.0278e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45408 |
+
|
45409 |
+
[INFO|2025-02-09 13:50:52] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 6.7699e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45410 |
+
|
45411 |
+
[INFO|2025-02-09 13:51:01] logging.py:157 >> {'loss': 0.0337, 'learning_rate': 6.5168e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45412 |
+
|
45413 |
+
[INFO|2025-02-09 13:51:11] logging.py:157 >> {'loss': 0.0174, 'learning_rate': 6.2686e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45414 |
+
|
45415 |
+
[INFO|2025-02-09 13:51:21] logging.py:157 >> {'loss': 0.0402, 'learning_rate': 6.0252e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45416 |
+
|
45417 |
+
[INFO|2025-02-09 13:51:30] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.7866e-11, 'epoch': 2.99, 'throughput': 201.17}
|
45418 |
+
|
45419 |
+
[INFO|2025-02-09 13:51:39] logging.py:157 >> {'loss': 0.0903, 'learning_rate': 5.5528e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45420 |
+
|
45421 |
+
[INFO|2025-02-09 13:51:48] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 5.3239e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45422 |
+
|
45423 |
+
[INFO|2025-02-09 13:51:59] logging.py:157 >> {'loss': 0.0902, 'learning_rate': 5.0997e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45424 |
+
|
45425 |
+
[INFO|2025-02-09 13:52:07] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.8804e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45426 |
+
|
45427 |
+
[INFO|2025-02-09 13:52:17] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.6659e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45428 |
+
|
45429 |
+
[INFO|2025-02-09 13:52:27] logging.py:157 >> {'loss': 0.1789, 'learning_rate': 4.4562e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45430 |
+
|
45431 |
+
[INFO|2025-02-09 13:52:35] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 4.2514e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45432 |
+
|
45433 |
+
[INFO|2025-02-09 13:52:45] logging.py:157 >> {'loss': 0.0887, 'learning_rate': 4.0513e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45434 |
+
|
45435 |
+
[INFO|2025-02-09 13:52:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 3.8561e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45436 |
+
|
45437 |
+
[INFO|2025-02-09 13:53:04] logging.py:157 >> {'loss': 0.0030, 'learning_rate': 3.6657e-11, 'epoch': 2.99, 'throughput': 201.16}
|
45438 |
+
|
45439 |
+
[INFO|2025-02-09 13:53:14] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.4802e-11, 'epoch': 2.99, 'throughput': 201.15}
|
45440 |
+
|
45441 |
+
[INFO|2025-02-09 13:53:23] logging.py:157 >> {'loss': 0.0901, 'learning_rate': 3.2994e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45442 |
+
|
45443 |
+
[INFO|2025-02-09 13:53:34] logging.py:157 >> {'loss': 0.0525, 'learning_rate': 3.1235e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45444 |
+
|
45445 |
+
[INFO|2025-02-09 13:53:44] logging.py:157 >> {'loss': 0.0296, 'learning_rate': 2.9523e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45446 |
+
|
45447 |
+
[INFO|2025-02-09 13:53:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.7861e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45448 |
+
|
45449 |
+
[INFO|2025-02-09 13:54:04] logging.py:157 >> {'loss': 0.1933, 'learning_rate': 2.6246e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45450 |
+
|
45451 |
+
[INFO|2025-02-09 13:54:14] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4679e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45452 |
+
|
45453 |
+
[INFO|2025-02-09 13:54:24] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 2.3161e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45454 |
+
|
45455 |
+
[INFO|2025-02-09 13:54:34] logging.py:157 >> {'loss': 0.0103, 'learning_rate': 2.1691e-11, 'epoch': 3.00, 'throughput': 201.15}
|
45456 |
+
|
45457 |
+
[INFO|2025-02-09 13:54:43] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.0269e-11, 'epoch': 3.00, 'throughput': 201.15}
|
45458 |
+
|
45459 |
+
[INFO|2025-02-09 13:54:54] logging.py:157 >> {'loss': 0.2132, 'learning_rate': 1.8895e-11, 'epoch': 3.00, 'throughput': 201.15}
|
45460 |
+
|
45461 |
+
[INFO|2025-02-09 13:55:04] logging.py:157 >> {'loss': 0.0072, 'learning_rate': 1.7570e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45462 |
+
|
45463 |
+
[INFO|2025-02-09 13:55:15] logging.py:157 >> {'loss': 0.0885, 'learning_rate': 1.6292e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45464 |
+
|
45465 |
+
[INFO|2025-02-09 13:55:25] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 1.5063e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45466 |
+
|
45467 |
+
[INFO|2025-02-09 13:55:35] logging.py:157 >> {'loss': 0.0449, 'learning_rate': 1.3882e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45468 |
+
|
45469 |
+
[INFO|2025-02-09 13:55:45] logging.py:157 >> {'loss': 0.0851, 'learning_rate': 1.2749e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45470 |
+
|
45471 |
+
[INFO|2025-02-09 13:55:55] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.1665e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45472 |
+
|
45473 |
+
[INFO|2025-02-09 13:56:05] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 1.0628e-11, 'epoch': 3.00, 'throughput': 201.16}
|
45474 |
+
|
45475 |
+
[INFO|2025-02-09 13:56:15] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 9.6403e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45476 |
+
|
45477 |
+
[INFO|2025-02-09 13:56:25] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 8.7004e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45478 |
+
|
45479 |
+
[INFO|2025-02-09 13:56:35] logging.py:157 >> {'loss': 0.0045, 'learning_rate': 7.8087e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45480 |
+
|
45481 |
+
[INFO|2025-02-09 13:56:45] logging.py:157 >> {'loss': 0.0670, 'learning_rate': 6.9651e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45482 |
+
|
45483 |
+
[INFO|2025-02-09 13:56:56] logging.py:157 >> {'loss': 0.2274, 'learning_rate': 6.1698e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45484 |
+
|
45485 |
+
[INFO|2025-02-09 13:57:05] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 5.4227e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45486 |
+
|
45487 |
+
[INFO|2025-02-09 13:57:15] logging.py:157 >> {'loss': 0.2020, 'learning_rate': 4.7238e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45488 |
+
|
45489 |
+
[INFO|2025-02-09 13:57:24] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.0730e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45490 |
+
|
45491 |
+
[INFO|2025-02-09 13:57:34] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 3.4705e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45492 |
+
|
45493 |
+
[INFO|2025-02-09 13:57:44] logging.py:157 >> {'loss': 0.0003, 'learning_rate': 2.9162e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45494 |
+
|
45495 |
+
[INFO|2025-02-09 13:57:54] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 2.4101e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45496 |
+
|
45497 |
+
[INFO|2025-02-09 13:58:03] logging.py:157 >> {'loss': 0.0002, 'learning_rate': 1.9522e-12, 'epoch': 3.00, 'throughput': 201.15}
|
45498 |
+
|
45499 |
+
[INFO|2025-02-09 13:58:14] logging.py:157 >> {'loss': 0.0007, 'learning_rate': 1.5425e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45500 |
+
|
45501 |
+
[INFO|2025-02-09 13:58:23] logging.py:157 >> {'loss': 0.0105, 'learning_rate': 1.1809e-12, 'epoch': 3.00, 'throughput': 201.16}
|
45502 |
+
|
45503 |
+
[INFO|2025-02-09 13:58:33] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 8.6763e-13, 'epoch': 3.00, 'throughput': 201.16}
|
45504 |
+
|
45505 |
+
[INFO|2025-02-09 13:58:43] logging.py:157 >> {'loss': 0.1049, 'learning_rate': 6.0252e-13, 'epoch': 3.00, 'throughput': 201.15}
|
45506 |
+
|
45507 |
+
[INFO|2025-02-09 13:58:52] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 3.8561e-13, 'epoch': 3.00, 'throughput': 201.16}
|
45508 |
+
|
45509 |
+
[INFO|2025-02-09 13:59:01] logging.py:157 >> {'loss': 0.0622, 'learning_rate': 2.1691e-13, 'epoch': 3.00, 'throughput': 201.16}
|
45510 |
+
|
45511 |
+
[INFO|2025-02-09 13:59:11] logging.py:157 >> {'loss': 0.0457, 'learning_rate': 9.6403e-14, 'epoch': 3.00, 'throughput': 201.15}
|
45512 |
+
|
45513 |
+
[INFO|2025-02-09 13:59:19] logging.py:157 >> {'loss': 0.0001, 'learning_rate': 2.4101e-14, 'epoch': 3.00, 'throughput': 201.16}
|
45514 |
+
|
45515 |
+
[INFO|2025-02-09 13:59:30] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 0.0000e+00, 'epoch': 3.00, 'throughput': 201.15}
|
45516 |
+
|
45517 |
+
[INFO|2025-02-09 13:59:35] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635
|
45518 |
+
|
45519 |
+
[INFO|2025-02-09 13:59:35] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/config.json
|
45520 |
+
|
45521 |
+
[INFO|2025-02-09 13:59:35] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/generation_config.json
|
45522 |
+
|
45523 |
+
[INFO|2025-02-09 13:59:46] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/model.safetensors.index.json.
|
45524 |
+
|
45525 |
+
[INFO|2025-02-09 13:59:46] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/tokenizer_config.json
|
45526 |
+
|
45527 |
+
[INFO|2025-02-09 13:59:46] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/checkpoint-22635/special_tokens_map.json
|
45528 |
+
|
45529 |
+
[INFO|2025-02-09 14:00:41] trainer.py:2643 >>
|
45530 |
+
|
45531 |
+
Training completed. Do not forget to share your model on huggingface.co/models =)
|
45532 |
+
|
45533 |
+
|
45534 |
+
|
45535 |
+
[INFO|2025-02-09 14:00:46] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen
|
45536 |
+
|
45537 |
+
[INFO|2025-02-09 14:00:46] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/config.json
|
45538 |
+
|
45539 |
+
[INFO|2025-02-09 14:00:46] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/generation_config.json
|
45540 |
+
|
45541 |
+
[INFO|2025-02-09 14:01:01] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/model.safetensors.index.json.
|
45542 |
+
|
45543 |
+
[INFO|2025-02-09 14:01:01] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/tokenizer_config.json
|
45544 |
+
|
45545 |
+
[INFO|2025-02-09 14:01:01] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-7B-Instruct/full/train_2025-02-07-00-42-22_qwen/special_tokens_map.json
|
45546 |
+
|
45547 |
+
[WARNING|2025-02-09 14:01:03] logging.py:162 >> No metric eval_loss to plot.
|
45548 |
+
|
45549 |
+
[WARNING|2025-02-09 14:01:03] logging.py:162 >> No metric eval_accuracy to plot.
|
45550 |
+
|
45551 |
+
[INFO|2025-02-09 14:01:03] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
|
45552 |
+
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
|
45553 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 2048,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "right",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"num_input_tokens_seen": 44325984,
|
4 |
+
"total_flos": 1.8804729049283297e+18,
|
5 |
+
"train_loss": 0.11007208550827785,
|
6 |
+
"train_runtime": 220429.5839,
|
7 |
+
"train_samples_per_second": 0.205,
|
8 |
+
"train_steps_per_second": 0.103
|
9 |
+
}
|
trainer_log.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3469befa03cfdc61d08fe4993d0b0451d621d80513a23011f8b231cbcb3efb30
|
3 |
+
size 7416
|