Ogamon commited on
Commit
62c989d
1 Parent(s): aa3b29d

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +60 -0
  2. all_results.json +9 -0
  3. checkpoint-190/config.json +29 -0
  4. checkpoint-190/generation_config.json +10 -0
  5. checkpoint-190/global_step190/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-190/global_step190/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-190/global_step190/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-190/global_step190/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-190/global_step190/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-190/global_step190/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-190/global_step190/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-190/global_step190/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-190/global_step190/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-190/latest +1 -0
  15. checkpoint-190/model-00001-of-00003.safetensors +3 -0
  16. checkpoint-190/model-00002-of-00003.safetensors +3 -0
  17. checkpoint-190/model-00003-of-00003.safetensors +3 -0
  18. checkpoint-190/model.safetensors.index.json +298 -0
  19. checkpoint-190/rng_state_0.pth +3 -0
  20. checkpoint-190/rng_state_1.pth +3 -0
  21. checkpoint-190/rng_state_2.pth +3 -0
  22. checkpoint-190/rng_state_3.pth +3 -0
  23. checkpoint-190/rng_state_4.pth +3 -0
  24. checkpoint-190/rng_state_5.pth +3 -0
  25. checkpoint-190/rng_state_6.pth +3 -0
  26. checkpoint-190/rng_state_7.pth +3 -0
  27. checkpoint-190/scheduler.pt +3 -0
  28. checkpoint-190/special_tokens_map.json +24 -0
  29. checkpoint-190/tokenizer.json +0 -0
  30. checkpoint-190/tokenizer.model +3 -0
  31. checkpoint-190/tokenizer_config.json +44 -0
  32. checkpoint-190/trainer_state.json +1553 -0
  33. checkpoint-190/training_args.bin +3 -0
  34. checkpoint-190/zero_to_fp32.py +604 -0
  35. config.json +29 -0
  36. generation_config.json +10 -0
  37. llamaboard_config.yaml +65 -0
  38. model-00001-of-00003.safetensors +3 -0
  39. model-00002-of-00003.safetensors +3 -0
  40. model-00003-of-00003.safetensors +3 -0
  41. model.safetensors.index.json +298 -0
  42. running_log.txt +631 -0
  43. special_tokens_map.json +24 -0
  44. tokenizer.json +0 -0
  45. tokenizer.model +3 -0
  46. tokenizer_config.json +44 -0
  47. train_results.json +9 -0
  48. trainer_log.jsonl +191 -0
  49. trainer_state.json +1563 -0
  50. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: train_2024-07-16-09-05-28_llama2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # train_2024-07-16-09-05-28_llama2
17
+
18
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the truth_train_0716 dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-06
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 8
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 128
45
+ - total_eval_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 5.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.42.3
58
+ - Pytorch 2.3.0a0+ebedce2
59
+ - Datasets 2.20.0
60
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.887459807073955,
3
+ "num_input_tokens_seen": 1299392,
4
+ "total_flos": 5.151317702790349e+16,
5
+ "train_loss": 0.3433768034317166,
6
+ "train_runtime": 2162.0959,
7
+ "train_samples_per_second": 11.489,
8
+ "train_steps_per_second": 0.088
9
+ }
checkpoint-190/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
checkpoint-190/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
checkpoint-190/global_step190/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1e96a89cd156105a6cbcb0cc0958f7970eb3b52a02c3525fd5f206487d962f0
3
+ size 10107631180
checkpoint-190/global_step190/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:584e847239f9463d01f59de838f70c500d6df1e42742105aacc922197ba35ce6
3
+ size 10107631372
checkpoint-190/global_step190/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afce19f072fa6aa461d9893678f22d62847a38c40f6b0762d94540902d5fa9bd
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa61774cb1ebc3769aa4b8587d988a1b97b0370a5acfb04da33974d7ada710f
3
+ size 10107631372
checkpoint-190/global_step190/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9280c6e4504ce36a553485fca0bc8c4f3882c9e3420b37b3cc5af22ea33e06b
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc7bb260f54a427c5aa166b894a23b4053aeef0b1a9fa03c81bcbbc0e025ae1
3
+ size 10107631500
checkpoint-190/global_step190/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35edca3844aabdf871d78908f25f5efa028288ae8bbdba4aa5379f5263cf2c0c
3
+ size 10107631436
checkpoint-190/global_step190/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3647ef2e82720cf924aff42ec47ce772d6ffc8ebe9b2e400db6e63fce2a68dd2
3
+ size 10107630988
checkpoint-190/global_step190/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bdf19aed6cf7a9bdc707ca65b5d2a0ce2817a5c720593fcf97ea4197475aef5
3
+ size 13476919288
checkpoint-190/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step190
checkpoint-190/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ad2a4f8c844b27f40af4f7ebd576dc04d590cf97967cd141f9ff0e37e9b7f06
3
+ size 4938985352
checkpoint-190/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d6911d18e1230b44c2dcec0b8b93af000e046d3a3672425c51c3905490a01f9
3
+ size 4947390880
checkpoint-190/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38aea6ed7c69811e9b91746ce9ba805addb67a766dad6944d6b53d929f4af38e
3
+ size 3590488816
checkpoint-190/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-190/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0ef6f96a48e59aa52c4b471312c2a62378c19acc7ebbae839612b03a7d775a
3
+ size 15984
checkpoint-190/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab11d533c0fdad46ea8b8e295ba5fdb705e078eeb88cc28f37d82913508766e9
3
+ size 15984
checkpoint-190/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:615c168147e3465ce5bfab6da2ff4afc68566ce00ec0f0c6c9fc988038a58d0a
3
+ size 15984
checkpoint-190/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f71e8f8674ecaef9f8cdcbf7ac457a8b8ff15b12694ba2a2fffcb4b43f0f08
3
+ size 15984
checkpoint-190/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88cf6d674dab5545c300a55135f08ca935730a3d35e2c419fb0b333f19482c19
3
+ size 15984
checkpoint-190/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2754f2cd8824702f027870d93748b3c0491b0ecd30f1e3d8e937116b2be6151f
3
+ size 15984
checkpoint-190/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1385124ac55604598f45ea6e2d141f29456647d3e7c10d12ca64ec93d312be8d
3
+ size 15984
checkpoint-190/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416538efaec7391fa8fe782fb15146b83e5612d9e1961292c34c53e964806873
3
+ size 15984
checkpoint-190/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e610dd5e9f27fcc75487bd147a6e92e36d0c3d068f260ff6e94230dced07d21d
3
+ size 1064
checkpoint-190/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-190/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-190/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-190/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-190/trainer_state.json ADDED
@@ -0,0 +1,1553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.887459807073955,
5
+ "eval_steps": 500,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02572347266881029,
13
+ "grad_norm": 268.0186767578125,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 8.3599,
16
+ "num_input_tokens_seen": 7120,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.05144694533762058,
21
+ "grad_norm": 277.9050598144531,
22
+ "learning_rate": 1.0000000000000002e-06,
23
+ "loss": 8.1891,
24
+ "num_input_tokens_seen": 13888,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.07717041800643087,
29
+ "grad_norm": 277.69873046875,
30
+ "learning_rate": 1.5e-06,
31
+ "loss": 8.0792,
32
+ "num_input_tokens_seen": 20656,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10289389067524116,
37
+ "grad_norm": 267.486328125,
38
+ "learning_rate": 2.0000000000000003e-06,
39
+ "loss": 7.9682,
40
+ "num_input_tokens_seen": 27184,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.12861736334405144,
45
+ "grad_norm": 301.225830078125,
46
+ "learning_rate": 2.5e-06,
47
+ "loss": 6.9482,
48
+ "num_input_tokens_seen": 34416,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.15434083601286175,
53
+ "grad_norm": 137.74415588378906,
54
+ "learning_rate": 3e-06,
55
+ "loss": 5.1505,
56
+ "num_input_tokens_seen": 41056,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18006430868167203,
61
+ "grad_norm": 113.7622299194336,
62
+ "learning_rate": 3.5e-06,
63
+ "loss": 4.7491,
64
+ "num_input_tokens_seen": 47536,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.2057877813504823,
69
+ "grad_norm": 109.39883422851562,
70
+ "learning_rate": 4.000000000000001e-06,
71
+ "loss": 3.2164,
72
+ "num_input_tokens_seen": 54464,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.2315112540192926,
77
+ "grad_norm": 119.0561294555664,
78
+ "learning_rate": 4.5e-06,
79
+ "loss": 2.7761,
80
+ "num_input_tokens_seen": 61520,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2572347266881029,
85
+ "grad_norm": 111.31031036376953,
86
+ "learning_rate": 5e-06,
87
+ "loss": 0.6703,
88
+ "num_input_tokens_seen": 68464,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2829581993569132,
93
+ "grad_norm": 39.81684494018555,
94
+ "learning_rate": 4.9996192378909785e-06,
95
+ "loss": 0.3255,
96
+ "num_input_tokens_seen": 75152,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3086816720257235,
101
+ "grad_norm": 41.08443069458008,
102
+ "learning_rate": 4.99847706754774e-06,
103
+ "loss": 0.3301,
104
+ "num_input_tokens_seen": 81888,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.33440514469453375,
109
+ "grad_norm": 17.01146125793457,
110
+ "learning_rate": 4.9965738368864345e-06,
111
+ "loss": 0.2121,
112
+ "num_input_tokens_seen": 88688,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.36012861736334406,
117
+ "grad_norm": 73.99099731445312,
118
+ "learning_rate": 4.993910125649561e-06,
119
+ "loss": 1.1565,
120
+ "num_input_tokens_seen": 95616,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.3858520900321543,
125
+ "grad_norm": 114.83367919921875,
126
+ "learning_rate": 4.990486745229364e-06,
127
+ "loss": 0.8054,
128
+ "num_input_tokens_seen": 102144,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.4115755627009646,
133
+ "grad_norm": 18.247591018676758,
134
+ "learning_rate": 4.986304738420684e-06,
135
+ "loss": 0.2386,
136
+ "num_input_tokens_seen": 109120,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.43729903536977494,
141
+ "grad_norm": 27.782032012939453,
142
+ "learning_rate": 4.981365379103306e-06,
143
+ "loss": 0.3161,
144
+ "num_input_tokens_seen": 115744,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.4630225080385852,
149
+ "grad_norm": 21.16512107849121,
150
+ "learning_rate": 4.975670171853926e-06,
151
+ "loss": 0.2773,
152
+ "num_input_tokens_seen": 122704,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.4887459807073955,
157
+ "grad_norm": 6.738564491271973,
158
+ "learning_rate": 4.9692208514878445e-06,
159
+ "loss": 0.2062,
160
+ "num_input_tokens_seen": 129552,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5144694533762058,
165
+ "grad_norm": 3.6603872776031494,
166
+ "learning_rate": 4.962019382530521e-06,
167
+ "loss": 0.1837,
168
+ "num_input_tokens_seen": 136544,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5401929260450161,
173
+ "grad_norm": 10.339789390563965,
174
+ "learning_rate": 4.9540679586191605e-06,
175
+ "loss": 0.1735,
176
+ "num_input_tokens_seen": 143488,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5659163987138264,
181
+ "grad_norm": 4.833702087402344,
182
+ "learning_rate": 4.9453690018345144e-06,
183
+ "loss": 0.1588,
184
+ "num_input_tokens_seen": 150224,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.5916398713826366,
189
+ "grad_norm": 4.9161152839660645,
190
+ "learning_rate": 4.935925161963089e-06,
191
+ "loss": 0.1443,
192
+ "num_input_tokens_seen": 157232,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.617363344051447,
197
+ "grad_norm": 9.033807754516602,
198
+ "learning_rate": 4.925739315689991e-06,
199
+ "loss": 0.157,
200
+ "num_input_tokens_seen": 163776,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6430868167202572,
205
+ "grad_norm": 4.518654823303223,
206
+ "learning_rate": 4.914814565722671e-06,
207
+ "loss": 0.1199,
208
+ "num_input_tokens_seen": 170352,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.6688102893890675,
213
+ "grad_norm": 10.43909740447998,
214
+ "learning_rate": 4.903154239845798e-06,
215
+ "loss": 0.1539,
216
+ "num_input_tokens_seen": 177120,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.6945337620578779,
221
+ "grad_norm": 9.000858306884766,
222
+ "learning_rate": 4.890761889907589e-06,
223
+ "loss": 0.1208,
224
+ "num_input_tokens_seen": 184096,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7202572347266881,
229
+ "grad_norm": 3.3685858249664307,
230
+ "learning_rate": 4.8776412907378845e-06,
231
+ "loss": 0.0954,
232
+ "num_input_tokens_seen": 191040,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7459807073954984,
237
+ "grad_norm": 6.876232147216797,
238
+ "learning_rate": 4.863796438998293e-06,
239
+ "loss": 0.1387,
240
+ "num_input_tokens_seen": 198064,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.7717041800643086,
245
+ "grad_norm": 11.019433975219727,
246
+ "learning_rate": 4.849231551964771e-06,
247
+ "loss": 0.1484,
248
+ "num_input_tokens_seen": 205136,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.797427652733119,
253
+ "grad_norm": 4.780524730682373,
254
+ "learning_rate": 4.833951066243004e-06,
255
+ "loss": 0.0998,
256
+ "num_input_tokens_seen": 212000,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8231511254019293,
261
+ "grad_norm": 3.613060235977173,
262
+ "learning_rate": 4.817959636416969e-06,
263
+ "loss": 0.1068,
264
+ "num_input_tokens_seen": 218720,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8488745980707395,
269
+ "grad_norm": 5.576949596405029,
270
+ "learning_rate": 4.801262133631101e-06,
271
+ "loss": 0.0801,
272
+ "num_input_tokens_seen": 225856,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.8745980707395499,
277
+ "grad_norm": 3.3204915523529053,
278
+ "learning_rate": 4.783863644106502e-06,
279
+ "loss": 0.1066,
280
+ "num_input_tokens_seen": 232640,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9003215434083601,
285
+ "grad_norm": 3.090853452682495,
286
+ "learning_rate": 4.765769467591626e-06,
287
+ "loss": 0.1038,
288
+ "num_input_tokens_seen": 239504,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9260450160771704,
293
+ "grad_norm": 6.979610443115234,
294
+ "learning_rate": 4.746985115747918e-06,
295
+ "loss": 0.106,
296
+ "num_input_tokens_seen": 246288,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9517684887459807,
301
+ "grad_norm": 3.491868495941162,
302
+ "learning_rate": 4.72751631047092e-06,
303
+ "loss": 0.1107,
304
+ "num_input_tokens_seen": 253136,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.977491961414791,
309
+ "grad_norm": 6.108020782470703,
310
+ "learning_rate": 4.707368982147318e-06,
311
+ "loss": 0.1372,
312
+ "num_input_tokens_seen": 260160,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0032154340836013,
317
+ "grad_norm": 1.9764081239700317,
318
+ "learning_rate": 4.68654926784849e-06,
319
+ "loss": 0.0816,
320
+ "num_input_tokens_seen": 267120,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0289389067524115,
325
+ "grad_norm": 2.5603554248809814,
326
+ "learning_rate": 4.665063509461098e-06,
327
+ "loss": 0.0743,
328
+ "num_input_tokens_seen": 274112,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0546623794212218,
333
+ "grad_norm": 5.457398414611816,
334
+ "learning_rate": 4.642918251755281e-06,
335
+ "loss": 0.072,
336
+ "num_input_tokens_seen": 281136,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.0803858520900322,
341
+ "grad_norm": 4.488720417022705,
342
+ "learning_rate": 4.620120240391065e-06,
343
+ "loss": 0.0596,
344
+ "num_input_tokens_seen": 288048,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1061093247588425,
349
+ "grad_norm": 2.8057987689971924,
350
+ "learning_rate": 4.596676419863561e-06,
351
+ "loss": 0.0544,
352
+ "num_input_tokens_seen": 295120,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1318327974276527,
357
+ "grad_norm": 2.921278476715088,
358
+ "learning_rate": 4.572593931387604e-06,
359
+ "loss": 0.0342,
360
+ "num_input_tokens_seen": 302000,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.157556270096463,
365
+ "grad_norm": 2.9281697273254395,
366
+ "learning_rate": 4.54788011072248e-06,
367
+ "loss": 0.0394,
368
+ "num_input_tokens_seen": 308672,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.1832797427652733,
373
+ "grad_norm": 4.087917327880859,
374
+ "learning_rate": 4.522542485937369e-06,
375
+ "loss": 0.0196,
376
+ "num_input_tokens_seen": 315600,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2090032154340835,
381
+ "grad_norm": 3.390829086303711,
382
+ "learning_rate": 4.496588775118232e-06,
383
+ "loss": 0.0411,
384
+ "num_input_tokens_seen": 322464,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.234726688102894,
389
+ "grad_norm": 4.550433158874512,
390
+ "learning_rate": 4.470026884016805e-06,
391
+ "loss": 0.0257,
392
+ "num_input_tokens_seen": 329024,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2604501607717042,
397
+ "grad_norm": 6.6677446365356445,
398
+ "learning_rate": 4.442864903642428e-06,
399
+ "loss": 0.0289,
400
+ "num_input_tokens_seen": 336032,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.2861736334405145,
405
+ "grad_norm": 7.874734878540039,
406
+ "learning_rate": 4.415111107797445e-06,
407
+ "loss": 0.1193,
408
+ "num_input_tokens_seen": 342704,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.3118971061093248,
413
+ "grad_norm": 5.971132278442383,
414
+ "learning_rate": 4.386773950556931e-06,
415
+ "loss": 0.0883,
416
+ "num_input_tokens_seen": 349472,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.337620578778135,
421
+ "grad_norm": 4.0566725730896,
422
+ "learning_rate": 4.357862063693486e-06,
423
+ "loss": 0.0377,
424
+ "num_input_tokens_seen": 356272,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.3633440514469453,
429
+ "grad_norm": 5.443573474884033,
430
+ "learning_rate": 4.328384254047927e-06,
431
+ "loss": 0.0602,
432
+ "num_input_tokens_seen": 363040,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.3890675241157555,
437
+ "grad_norm": 6.038252353668213,
438
+ "learning_rate": 4.2983495008466285e-06,
439
+ "loss": 0.083,
440
+ "num_input_tokens_seen": 369664,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.414790996784566,
445
+ "grad_norm": 2.8046696186065674,
446
+ "learning_rate": 4.267766952966369e-06,
447
+ "loss": 0.0358,
448
+ "num_input_tokens_seen": 376704,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.4405144694533762,
453
+ "grad_norm": 2.451719284057617,
454
+ "learning_rate": 4.236645926147493e-06,
455
+ "loss": 0.0321,
456
+ "num_input_tokens_seen": 383600,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.4662379421221865,
461
+ "grad_norm": 3.4111475944519043,
462
+ "learning_rate": 4.204995900156247e-06,
463
+ "loss": 0.0452,
464
+ "num_input_tokens_seen": 390592,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.4919614147909968,
469
+ "grad_norm": 3.065139055252075,
470
+ "learning_rate": 4.172826515897146e-06,
471
+ "loss": 0.0915,
472
+ "num_input_tokens_seen": 397360,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.517684887459807,
477
+ "grad_norm": 3.0692198276519775,
478
+ "learning_rate": 4.140147572476269e-06,
479
+ "loss": 0.0651,
480
+ "num_input_tokens_seen": 404048,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5434083601286175,
485
+ "grad_norm": 3.6201350688934326,
486
+ "learning_rate": 4.106969024216348e-06,
487
+ "loss": 0.0868,
488
+ "num_input_tokens_seen": 410960,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.5691318327974275,
493
+ "grad_norm": 2.289900779724121,
494
+ "learning_rate": 4.073300977624594e-06,
495
+ "loss": 0.0554,
496
+ "num_input_tokens_seen": 417888,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.594855305466238,
501
+ "grad_norm": 1.4743808507919312,
502
+ "learning_rate": 4.039153688314146e-06,
503
+ "loss": 0.0336,
504
+ "num_input_tokens_seen": 424880,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6205787781350482,
509
+ "grad_norm": 2.1891098022460938,
510
+ "learning_rate": 4.0045375578801216e-06,
511
+ "loss": 0.0455,
512
+ "num_input_tokens_seen": 432000,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.6463022508038585,
517
+ "grad_norm": 1.8203191757202148,
518
+ "learning_rate": 3.969463130731183e-06,
519
+ "loss": 0.0406,
520
+ "num_input_tokens_seen": 438672,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.6720257234726688,
525
+ "grad_norm": 2.453317165374756,
526
+ "learning_rate": 3.933941090877615e-06,
527
+ "loss": 0.0461,
528
+ "num_input_tokens_seen": 445440,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.697749196141479,
533
+ "grad_norm": 2.035806894302368,
534
+ "learning_rate": 3.897982258676867e-06,
535
+ "loss": 0.0466,
536
+ "num_input_tokens_seen": 452064,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.7234726688102895,
541
+ "grad_norm": 3.169175386428833,
542
+ "learning_rate": 3.861597587537568e-06,
543
+ "loss": 0.0382,
544
+ "num_input_tokens_seen": 458992,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.7491961414790995,
549
+ "grad_norm": 2.0320234298706055,
550
+ "learning_rate": 3.824798160583012e-06,
551
+ "loss": 0.0426,
552
+ "num_input_tokens_seen": 465568,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.77491961414791,
557
+ "grad_norm": 4.094840049743652,
558
+ "learning_rate": 3.787595187275136e-06,
559
+ "loss": 0.0264,
560
+ "num_input_tokens_seen": 472496,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8006430868167203,
565
+ "grad_norm": 4.245150089263916,
566
+ "learning_rate": 3.7500000000000005e-06,
567
+ "loss": 0.0567,
568
+ "num_input_tokens_seen": 479392,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8263665594855305,
573
+ "grad_norm": 3.226271152496338,
574
+ "learning_rate": 3.7120240506158433e-06,
575
+ "loss": 0.0688,
576
+ "num_input_tokens_seen": 486416,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.852090032154341,
581
+ "grad_norm": 2.070322275161743,
582
+ "learning_rate": 3.6736789069647273e-06,
583
+ "loss": 0.0351,
584
+ "num_input_tokens_seen": 492896,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.877813504823151,
589
+ "grad_norm": 2.4622035026550293,
590
+ "learning_rate": 3.634976249348867e-06,
591
+ "loss": 0.0246,
592
+ "num_input_tokens_seen": 499760,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9035369774919615,
597
+ "grad_norm": 3.902181625366211,
598
+ "learning_rate": 3.595927866972694e-06,
599
+ "loss": 0.0364,
600
+ "num_input_tokens_seen": 506816,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9292604501607717,
605
+ "grad_norm": 4.0147480964660645,
606
+ "learning_rate": 3.556545654351749e-06,
607
+ "loss": 0.0352,
608
+ "num_input_tokens_seen": 513648,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.954983922829582,
613
+ "grad_norm": 3.6791763305664062,
614
+ "learning_rate": 3.516841607689501e-06,
615
+ "loss": 0.0915,
616
+ "num_input_tokens_seen": 520480,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.9807073954983923,
621
+ "grad_norm": 1.641350269317627,
622
+ "learning_rate": 3.476827821223184e-06,
623
+ "loss": 0.0327,
624
+ "num_input_tokens_seen": 527056,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.0064308681672025,
629
+ "grad_norm": 3.6227402687072754,
630
+ "learning_rate": 3.436516483539781e-06,
631
+ "loss": 0.0448,
632
+ "num_input_tokens_seen": 534112,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.032154340836013,
637
+ "grad_norm": 1.654789924621582,
638
+ "learning_rate": 3.39591987386325e-06,
639
+ "loss": 0.0186,
640
+ "num_input_tokens_seen": 541024,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.057877813504823,
645
+ "grad_norm": 2.0418519973754883,
646
+ "learning_rate": 3.3550503583141726e-06,
647
+ "loss": 0.0342,
648
+ "num_input_tokens_seen": 547888,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.0836012861736335,
653
+ "grad_norm": 1.0242717266082764,
654
+ "learning_rate": 3.313920386142892e-06,
655
+ "loss": 0.0079,
656
+ "num_input_tokens_seen": 554592,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1093247588424435,
661
+ "grad_norm": 1.59933602809906,
662
+ "learning_rate": 3.272542485937369e-06,
663
+ "loss": 0.0177,
664
+ "num_input_tokens_seen": 561296,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.135048231511254,
669
+ "grad_norm": 1.83909273147583,
670
+ "learning_rate": 3.230929261806842e-06,
671
+ "loss": 0.0139,
672
+ "num_input_tokens_seen": 567872,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.1607717041800645,
677
+ "grad_norm": 1.933048963546753,
678
+ "learning_rate": 3.189093389542498e-06,
679
+ "loss": 0.0103,
680
+ "num_input_tokens_seen": 575072,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.1864951768488745,
685
+ "grad_norm": 2.1397433280944824,
686
+ "learning_rate": 3.147047612756302e-06,
687
+ "loss": 0.0221,
688
+ "num_input_tokens_seen": 582080,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.212218649517685,
693
+ "grad_norm": 0.7958673238754272,
694
+ "learning_rate": 3.1048047389991693e-06,
695
+ "loss": 0.0021,
696
+ "num_input_tokens_seen": 588816,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.237942122186495,
701
+ "grad_norm": 1.8060617446899414,
702
+ "learning_rate": 3.062377635859663e-06,
703
+ "loss": 0.011,
704
+ "num_input_tokens_seen": 596032,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.2636655948553055,
709
+ "grad_norm": 1.7997971773147583,
710
+ "learning_rate": 3.019779227044398e-06,
711
+ "loss": 0.0081,
712
+ "num_input_tokens_seen": 602672,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.289389067524116,
717
+ "grad_norm": 2.0229434967041016,
718
+ "learning_rate": 2.9770224884413625e-06,
719
+ "loss": 0.0149,
720
+ "num_input_tokens_seen": 609424,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.315112540192926,
725
+ "grad_norm": 0.5248342156410217,
726
+ "learning_rate": 2.9341204441673267e-06,
727
+ "loss": 0.001,
728
+ "num_input_tokens_seen": 616448,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.3408360128617365,
733
+ "grad_norm": 1.1899443864822388,
734
+ "learning_rate": 2.8910861626005774e-06,
735
+ "loss": 0.007,
736
+ "num_input_tokens_seen": 623296,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.3665594855305465,
741
+ "grad_norm": 3.1920082569122314,
742
+ "learning_rate": 2.847932752400164e-06,
743
+ "loss": 0.0089,
744
+ "num_input_tokens_seen": 630064,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.392282958199357,
749
+ "grad_norm": 0.37337368726730347,
750
+ "learning_rate": 2.804673358512869e-06,
751
+ "loss": 0.0013,
752
+ "num_input_tokens_seen": 637088,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.418006430868167,
757
+ "grad_norm": 4.124266147613525,
758
+ "learning_rate": 2.761321158169134e-06,
759
+ "loss": 0.0267,
760
+ "num_input_tokens_seen": 644080,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.4437299035369775,
765
+ "grad_norm": 1.9108864068984985,
766
+ "learning_rate": 2.717889356869146e-06,
767
+ "loss": 0.0171,
768
+ "num_input_tokens_seen": 650848,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.469453376205788,
773
+ "grad_norm": 3.225116729736328,
774
+ "learning_rate": 2.6743911843603134e-06,
775
+ "loss": 0.0375,
776
+ "num_input_tokens_seen": 657424,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.495176848874598,
781
+ "grad_norm": 1.8133978843688965,
782
+ "learning_rate": 2.6308398906073603e-06,
783
+ "loss": 0.0101,
784
+ "num_input_tokens_seen": 664128,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5209003215434085,
789
+ "grad_norm": 3.179337739944458,
790
+ "learning_rate": 2.587248741756253e-06,
791
+ "loss": 0.0282,
792
+ "num_input_tokens_seen": 671120,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.5466237942122185,
797
+ "grad_norm": 1.5852500200271606,
798
+ "learning_rate": 2.543631016093209e-06,
799
+ "loss": 0.0069,
800
+ "num_input_tokens_seen": 677920,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.572347266881029,
805
+ "grad_norm": 2.1428685188293457,
806
+ "learning_rate": 2.5e-06,
807
+ "loss": 0.0135,
808
+ "num_input_tokens_seen": 684960,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.598070739549839,
813
+ "grad_norm": 1.0775537490844727,
814
+ "learning_rate": 2.4563689839067913e-06,
815
+ "loss": 0.0062,
816
+ "num_input_tokens_seen": 691856,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.6237942122186495,
821
+ "grad_norm": 1.5073256492614746,
822
+ "learning_rate": 2.4127512582437486e-06,
823
+ "loss": 0.005,
824
+ "num_input_tokens_seen": 698512,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.64951768488746,
829
+ "grad_norm": 1.7251828908920288,
830
+ "learning_rate": 2.3691601093926406e-06,
831
+ "loss": 0.0285,
832
+ "num_input_tokens_seen": 705440,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.67524115755627,
837
+ "grad_norm": 2.271348237991333,
838
+ "learning_rate": 2.325608815639687e-06,
839
+ "loss": 0.0225,
840
+ "num_input_tokens_seen": 712528,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.7009646302250805,
845
+ "grad_norm": 0.9558768272399902,
846
+ "learning_rate": 2.2821106431308546e-06,
847
+ "loss": 0.028,
848
+ "num_input_tokens_seen": 719168,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.7266881028938905,
853
+ "grad_norm": 2.1378886699676514,
854
+ "learning_rate": 2.238678841830867e-06,
855
+ "loss": 0.0176,
856
+ "num_input_tokens_seen": 725904,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.752411575562701,
861
+ "grad_norm": 0.9674012660980225,
862
+ "learning_rate": 2.195326641487132e-06,
863
+ "loss": 0.0047,
864
+ "num_input_tokens_seen": 732480,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.778135048231511,
869
+ "grad_norm": 0.6068861484527588,
870
+ "learning_rate": 2.1520672475998374e-06,
871
+ "loss": 0.0135,
872
+ "num_input_tokens_seen": 739184,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8038585209003215,
877
+ "grad_norm": 0.833519458770752,
878
+ "learning_rate": 2.1089138373994226e-06,
879
+ "loss": 0.0044,
880
+ "num_input_tokens_seen": 746320,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.829581993569132,
885
+ "grad_norm": 1.4018948078155518,
886
+ "learning_rate": 2.0658795558326745e-06,
887
+ "loss": 0.0252,
888
+ "num_input_tokens_seen": 753136,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.855305466237942,
893
+ "grad_norm": 1.5698492527008057,
894
+ "learning_rate": 2.022977511558638e-06,
895
+ "loss": 0.0249,
896
+ "num_input_tokens_seen": 760096,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.8810289389067525,
901
+ "grad_norm": 2.051377534866333,
902
+ "learning_rate": 1.9802207729556023e-06,
903
+ "loss": 0.0146,
904
+ "num_input_tokens_seen": 767104,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.906752411575563,
909
+ "grad_norm": 0.48683854937553406,
910
+ "learning_rate": 1.937622364140338e-06,
911
+ "loss": 0.0044,
912
+ "num_input_tokens_seen": 773872,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 2.932475884244373,
917
+ "grad_norm": 0.9895896911621094,
918
+ "learning_rate": 1.895195261000831e-06,
919
+ "loss": 0.0054,
920
+ "num_input_tokens_seen": 780736,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 2.958199356913183,
925
+ "grad_norm": 0.8025338053703308,
926
+ "learning_rate": 1.852952387243698e-06,
927
+ "loss": 0.0106,
928
+ "num_input_tokens_seen": 787424,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 2.9839228295819935,
933
+ "grad_norm": 1.7318856716156006,
934
+ "learning_rate": 1.8109066104575023e-06,
935
+ "loss": 0.0167,
936
+ "num_input_tokens_seen": 794224,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.009646302250804,
941
+ "grad_norm": 1.5407195091247559,
942
+ "learning_rate": 1.7690707381931585e-06,
943
+ "loss": 0.009,
944
+ "num_input_tokens_seen": 801088,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.035369774919614,
949
+ "grad_norm": 0.25947141647338867,
950
+ "learning_rate": 1.7274575140626318e-06,
951
+ "loss": 0.0024,
952
+ "num_input_tokens_seen": 808048,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.0610932475884245,
957
+ "grad_norm": 2.6516857147216797,
958
+ "learning_rate": 1.686079613857109e-06,
959
+ "loss": 0.0235,
960
+ "num_input_tokens_seen": 814800,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.0868167202572345,
965
+ "grad_norm": 0.9633734822273254,
966
+ "learning_rate": 1.6449496416858285e-06,
967
+ "loss": 0.0179,
968
+ "num_input_tokens_seen": 821536,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.112540192926045,
973
+ "grad_norm": 1.0766749382019043,
974
+ "learning_rate": 1.6040801261367494e-06,
975
+ "loss": 0.0059,
976
+ "num_input_tokens_seen": 828128,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.1382636655948555,
981
+ "grad_norm": 0.2934500277042389,
982
+ "learning_rate": 1.56348351646022e-06,
983
+ "loss": 0.0017,
984
+ "num_input_tokens_seen": 834608,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.1639871382636655,
989
+ "grad_norm": 0.3029981553554535,
990
+ "learning_rate": 1.5231721787768162e-06,
991
+ "loss": 0.0018,
992
+ "num_input_tokens_seen": 841360,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.189710610932476,
997
+ "grad_norm": 0.44817763566970825,
998
+ "learning_rate": 1.4831583923105e-06,
999
+ "loss": 0.0032,
1000
+ "num_input_tokens_seen": 848496,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.215434083601286,
1005
+ "grad_norm": 0.21245715022087097,
1006
+ "learning_rate": 1.443454345648252e-06,
1007
+ "loss": 0.0019,
1008
+ "num_input_tokens_seen": 855424,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.2411575562700965,
1013
+ "grad_norm": 0.22589029371738434,
1014
+ "learning_rate": 1.4040721330273063e-06,
1015
+ "loss": 0.0014,
1016
+ "num_input_tokens_seen": 862224,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.266881028938907,
1021
+ "grad_norm": 0.5972980856895447,
1022
+ "learning_rate": 1.3650237506511333e-06,
1023
+ "loss": 0.0052,
1024
+ "num_input_tokens_seen": 869312,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.292604501607717,
1029
+ "grad_norm": 0.06931939721107483,
1030
+ "learning_rate": 1.3263210930352737e-06,
1031
+ "loss": 0.0005,
1032
+ "num_input_tokens_seen": 876272,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.3183279742765275,
1037
+ "grad_norm": 1.2623660564422607,
1038
+ "learning_rate": 1.2879759493841577e-06,
1039
+ "loss": 0.0131,
1040
+ "num_input_tokens_seen": 883072,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.3440514469453375,
1045
+ "grad_norm": 0.5440672636032104,
1046
+ "learning_rate": 1.2500000000000007e-06,
1047
+ "loss": 0.0009,
1048
+ "num_input_tokens_seen": 889920,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.369774919614148,
1053
+ "grad_norm": 0.6807874441146851,
1054
+ "learning_rate": 1.2124048127248644e-06,
1055
+ "loss": 0.0057,
1056
+ "num_input_tokens_seen": 896896,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.395498392282958,
1061
+ "grad_norm": 0.03898243606090546,
1062
+ "learning_rate": 1.1752018394169882e-06,
1063
+ "loss": 0.0002,
1064
+ "num_input_tokens_seen": 903600,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.4212218649517685,
1069
+ "grad_norm": 0.0243828147649765,
1070
+ "learning_rate": 1.1384024124624324e-06,
1071
+ "loss": 0.0002,
1072
+ "num_input_tokens_seen": 910208,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.446945337620579,
1077
+ "grad_norm": 2.5577075481414795,
1078
+ "learning_rate": 1.1020177413231334e-06,
1079
+ "loss": 0.0145,
1080
+ "num_input_tokens_seen": 917328,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.472668810289389,
1085
+ "grad_norm": 1.2599172592163086,
1086
+ "learning_rate": 1.0660589091223854e-06,
1087
+ "loss": 0.0034,
1088
+ "num_input_tokens_seen": 924192,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.4983922829581995,
1093
+ "grad_norm": 1.3292278051376343,
1094
+ "learning_rate": 1.0305368692688175e-06,
1095
+ "loss": 0.0156,
1096
+ "num_input_tokens_seen": 930784,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.5241157556270095,
1101
+ "grad_norm": 0.2977862060070038,
1102
+ "learning_rate": 9.95462442119879e-07,
1103
+ "loss": 0.0013,
1104
+ "num_input_tokens_seen": 937856,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.54983922829582,
1109
+ "grad_norm": 0.3527968227863312,
1110
+ "learning_rate": 9.608463116858544e-07,
1111
+ "loss": 0.0007,
1112
+ "num_input_tokens_seen": 944640,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.57556270096463,
1117
+ "grad_norm": 0.16851164400577545,
1118
+ "learning_rate": 9.266990223754069e-07,
1119
+ "loss": 0.0005,
1120
+ "num_input_tokens_seen": 951504,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.6012861736334405,
1125
+ "grad_norm": 0.4394027292728424,
1126
+ "learning_rate": 8.930309757836517e-07,
1127
+ "loss": 0.0034,
1128
+ "num_input_tokens_seen": 958240,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.627009646302251,
1133
+ "grad_norm": 0.0209315475076437,
1134
+ "learning_rate": 8.598524275237321e-07,
1135
+ "loss": 0.0001,
1136
+ "num_input_tokens_seen": 964912,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.652733118971061,
1141
+ "grad_norm": 0.35701486468315125,
1142
+ "learning_rate": 8.271734841028553e-07,
1143
+ "loss": 0.001,
1144
+ "num_input_tokens_seen": 971872,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.6784565916398715,
1149
+ "grad_norm": 2.0450756549835205,
1150
+ "learning_rate": 7.950040998437541e-07,
1151
+ "loss": 0.0123,
1152
+ "num_input_tokens_seen": 978640,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.7041800643086815,
1157
+ "grad_norm": 0.057205893099308014,
1158
+ "learning_rate": 7.633540738525066e-07,
1159
+ "loss": 0.0002,
1160
+ "num_input_tokens_seen": 985328,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.729903536977492,
1165
+ "grad_norm": 1.7251015901565552,
1166
+ "learning_rate": 7.322330470336314e-07,
1167
+ "loss": 0.011,
1168
+ "num_input_tokens_seen": 992224,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.755627009646302,
1173
+ "grad_norm": 0.417669415473938,
1174
+ "learning_rate": 7.016504991533727e-07,
1175
+ "loss": 0.0008,
1176
+ "num_input_tokens_seen": 998688,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.7813504823151125,
1181
+ "grad_norm": 0.06796720623970032,
1182
+ "learning_rate": 6.716157459520739e-07,
1183
+ "loss": 0.0003,
1184
+ "num_input_tokens_seen": 1006032,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.807073954983923,
1189
+ "grad_norm": 0.5570574998855591,
1190
+ "learning_rate": 6.421379363065142e-07,
1191
+ "loss": 0.0018,
1192
+ "num_input_tokens_seen": 1012944,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.832797427652733,
1197
+ "grad_norm": 0.557479977607727,
1198
+ "learning_rate": 6.1322604944307e-07,
1199
+ "loss": 0.0016,
1200
+ "num_input_tokens_seen": 1019856,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.8585209003215435,
1205
+ "grad_norm": 0.48776909708976746,
1206
+ "learning_rate": 5.848888922025553e-07,
1207
+ "loss": 0.0021,
1208
+ "num_input_tokens_seen": 1026656,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.884244372990354,
1213
+ "grad_norm": 0.025394350290298462,
1214
+ "learning_rate": 5.571350963575728e-07,
1215
+ "loss": 0.0001,
1216
+ "num_input_tokens_seen": 1033696,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 3.909967845659164,
1221
+ "grad_norm": 0.03195232152938843,
1222
+ "learning_rate": 5.299731159831953e-07,
1223
+ "loss": 0.0001,
1224
+ "num_input_tokens_seen": 1040240,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 3.935691318327974,
1229
+ "grad_norm": 0.0676019936800003,
1230
+ "learning_rate": 5.034112248817685e-07,
1231
+ "loss": 0.0003,
1232
+ "num_input_tokens_seen": 1046992,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 3.9614147909967845,
1237
+ "grad_norm": 0.04871657118201256,
1238
+ "learning_rate": 4.774575140626317e-07,
1239
+ "loss": 0.0002,
1240
+ "num_input_tokens_seen": 1053936,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 3.987138263665595,
1245
+ "grad_norm": 0.08272106945514679,
1246
+ "learning_rate": 4.5211988927752026e-07,
1247
+ "loss": 0.0002,
1248
+ "num_input_tokens_seen": 1060576,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.012861736334405,
1253
+ "grad_norm": 0.009170151315629482,
1254
+ "learning_rate": 4.27406068612396e-07,
1255
+ "loss": 0.0,
1256
+ "num_input_tokens_seen": 1067648,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.038585209003215,
1261
+ "grad_norm": 0.10544967651367188,
1262
+ "learning_rate": 4.033235801364402e-07,
1263
+ "loss": 0.0003,
1264
+ "num_input_tokens_seen": 1074512,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.064308681672026,
1269
+ "grad_norm": 0.04709336906671524,
1270
+ "learning_rate": 3.798797596089351e-07,
1271
+ "loss": 0.0002,
1272
+ "num_input_tokens_seen": 1081296,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.090032154340836,
1277
+ "grad_norm": 0.042879387736320496,
1278
+ "learning_rate": 3.5708174824471947e-07,
1279
+ "loss": 0.0001,
1280
+ "num_input_tokens_seen": 1087888,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.115755627009646,
1285
+ "grad_norm": 0.03649509325623512,
1286
+ "learning_rate": 3.3493649053890325e-07,
1287
+ "loss": 0.0001,
1288
+ "num_input_tokens_seen": 1094960,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.141479099678457,
1293
+ "grad_norm": 0.01273419987410307,
1294
+ "learning_rate": 3.134507321515107e-07,
1295
+ "loss": 0.0001,
1296
+ "num_input_tokens_seen": 1101776,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.167202572347267,
1301
+ "grad_norm": 0.006498055998235941,
1302
+ "learning_rate": 2.9263101785268253e-07,
1303
+ "loss": 0.0,
1304
+ "num_input_tokens_seen": 1108736,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.192926045016077,
1309
+ "grad_norm": 0.027757082134485245,
1310
+ "learning_rate": 2.7248368952908055e-07,
1311
+ "loss": 0.0001,
1312
+ "num_input_tokens_seen": 1115744,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.218649517684887,
1317
+ "grad_norm": 0.005632288288325071,
1318
+ "learning_rate": 2.53014884252083e-07,
1319
+ "loss": 0.0,
1320
+ "num_input_tokens_seen": 1122592,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.244372990353698,
1325
+ "grad_norm": 0.014449907466769218,
1326
+ "learning_rate": 2.3423053240837518e-07,
1327
+ "loss": 0.0001,
1328
+ "num_input_tokens_seen": 1129136,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.270096463022508,
1333
+ "grad_norm": 0.013245908543467522,
1334
+ "learning_rate": 2.1613635589349756e-07,
1335
+ "loss": 0.0001,
1336
+ "num_input_tokens_seen": 1136080,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.295819935691318,
1341
+ "grad_norm": 0.12783974409103394,
1342
+ "learning_rate": 1.9873786636889908e-07,
1343
+ "loss": 0.0002,
1344
+ "num_input_tokens_seen": 1142976,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.321543408360129,
1349
+ "grad_norm": 0.08086368441581726,
1350
+ "learning_rate": 1.8204036358303173e-07,
1351
+ "loss": 0.0002,
1352
+ "num_input_tokens_seen": 1149712,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.347266881028939,
1357
+ "grad_norm": 0.018286822363734245,
1358
+ "learning_rate": 1.6604893375699594e-07,
1359
+ "loss": 0.0001,
1360
+ "num_input_tokens_seen": 1156336,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.372990353697749,
1365
+ "grad_norm": 0.009972570464015007,
1366
+ "learning_rate": 1.507684480352292e-07,
1367
+ "loss": 0.0001,
1368
+ "num_input_tokens_seen": 1163120,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.39871382636656,
1373
+ "grad_norm": 0.9909194707870483,
1374
+ "learning_rate": 1.362035610017079e-07,
1375
+ "loss": 0.0115,
1376
+ "num_input_tokens_seen": 1170032,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.42443729903537,
1381
+ "grad_norm": 0.21059785783290863,
1382
+ "learning_rate": 1.223587092621162e-07,
1383
+ "loss": 0.0005,
1384
+ "num_input_tokens_seen": 1176832,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.45016077170418,
1389
+ "grad_norm": 0.08872511237859726,
1390
+ "learning_rate": 1.0923811009241142e-07,
1391
+ "loss": 0.0003,
1392
+ "num_input_tokens_seen": 1183856,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.47588424437299,
1397
+ "grad_norm": 0.7515408396720886,
1398
+ "learning_rate": 9.684576015420277e-08,
1399
+ "loss": 0.005,
1400
+ "num_input_tokens_seen": 1190544,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.501607717041801,
1405
+ "grad_norm": 0.0772569328546524,
1406
+ "learning_rate": 8.518543427732951e-08,
1407
+ "loss": 0.0003,
1408
+ "num_input_tokens_seen": 1197168,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.527331189710611,
1413
+ "grad_norm": 0.19207893311977386,
1414
+ "learning_rate": 7.426068431000883e-08,
1415
+ "loss": 0.0008,
1416
+ "num_input_tokens_seen": 1203776,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.553054662379421,
1421
+ "grad_norm": 0.007837573066353798,
1422
+ "learning_rate": 6.407483803691216e-08,
1423
+ "loss": 0.0,
1424
+ "num_input_tokens_seen": 1210816,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.578778135048232,
1429
+ "grad_norm": 0.009602434933185577,
1430
+ "learning_rate": 5.463099816548578e-08,
1431
+ "loss": 0.0,
1432
+ "num_input_tokens_seen": 1217696,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.604501607717042,
1437
+ "grad_norm": 1.3553417921066284,
1438
+ "learning_rate": 4.593204138084006e-08,
1439
+ "loss": 0.0042,
1440
+ "num_input_tokens_seen": 1224704,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.630225080385852,
1445
+ "grad_norm": 0.17981038987636566,
1446
+ "learning_rate": 3.798061746947995e-08,
1447
+ "loss": 0.0004,
1448
+ "num_input_tokens_seen": 1231664,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.655948553054662,
1453
+ "grad_norm": 0.04047521948814392,
1454
+ "learning_rate": 3.077914851215585e-08,
1455
+ "loss": 0.0001,
1456
+ "num_input_tokens_seen": 1238240,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.681672025723473,
1461
+ "grad_norm": 0.02045159973204136,
1462
+ "learning_rate": 2.4329828146074096e-08,
1463
+ "loss": 0.0001,
1464
+ "num_input_tokens_seen": 1244832,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.707395498392283,
1469
+ "grad_norm": 0.10965674370527267,
1470
+ "learning_rate": 1.8634620896695044e-08,
1471
+ "loss": 0.0004,
1472
+ "num_input_tokens_seen": 1251296,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.733118971061093,
1477
+ "grad_norm": 0.008195169270038605,
1478
+ "learning_rate": 1.3695261579316776e-08,
1479
+ "loss": 0.0,
1480
+ "num_input_tokens_seen": 1257968,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.758842443729904,
1485
+ "grad_norm": 0.25205764174461365,
1486
+ "learning_rate": 9.513254770636138e-09,
1487
+ "loss": 0.0009,
1488
+ "num_input_tokens_seen": 1264928,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.784565916398714,
1493
+ "grad_norm": 0.031606338918209076,
1494
+ "learning_rate": 6.089874350439507e-09,
1495
+ "loss": 0.0001,
1496
+ "num_input_tokens_seen": 1271792,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.810289389067524,
1501
+ "grad_norm": 0.19231323897838593,
1502
+ "learning_rate": 3.4261631135654174e-09,
1503
+ "loss": 0.0004,
1504
+ "num_input_tokens_seen": 1279024,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.836012861736334,
1509
+ "grad_norm": 0.06766192615032196,
1510
+ "learning_rate": 1.5229324522605949e-09,
1511
+ "loss": 0.0002,
1512
+ "num_input_tokens_seen": 1285792,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.861736334405145,
1517
+ "grad_norm": 0.005693785380572081,
1518
+ "learning_rate": 3.8076210902182607e-10,
1519
+ "loss": 0.0,
1520
+ "num_input_tokens_seen": 1292576,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 4.887459807073955,
1525
+ "grad_norm": 0.02735370770096779,
1526
+ "learning_rate": 0.0,
1527
+ "loss": 0.0001,
1528
+ "num_input_tokens_seen": 1299392,
1529
+ "step": 190
1530
+ }
1531
+ ],
1532
+ "logging_steps": 1,
1533
+ "max_steps": 190,
1534
+ "num_input_tokens_seen": 1299392,
1535
+ "num_train_epochs": 5,
1536
+ "save_steps": 1000,
1537
+ "stateful_callbacks": {
1538
+ "TrainerControl": {
1539
+ "args": {
1540
+ "should_epoch_stop": false,
1541
+ "should_evaluate": false,
1542
+ "should_log": false,
1543
+ "should_save": true,
1544
+ "should_training_stop": true
1545
+ },
1546
+ "attributes": {}
1547
+ }
1548
+ },
1549
+ "total_flos": 5.151317702790349e+16,
1550
+ "train_batch_size": 2,
1551
+ "trial_name": null,
1552
+ "trial_params": null
1553
+ }
checkpoint-190/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59c20394a81d6a411e14385c1f4bccd2cbf8486e7c193698844b9070fbad87d6
3
+ size 6584
checkpoint-190/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: auto
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: full
4
+ top.model_name: LLaMA2-7B-Chat
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: none
8
+ top.template: llama2
9
+ top.visual_inputs: false
10
+ train.additional_target: ''
11
+ train.badam_mode: layer
12
+ train.badam_switch_interval: 50
13
+ train.badam_switch_mode: ascending
14
+ train.badam_update_ratio: 0.05
15
+ train.batch_size: 2
16
+ train.compute_type: bf16
17
+ train.create_new_adapter: false
18
+ train.cutoff_len: 1024
19
+ train.dataset:
20
+ - truth_train_0716
21
+ train.dataset_dir: data
22
+ train.ds_offload: false
23
+ train.ds_stage: '2'
24
+ train.freeze_extra_modules: ''
25
+ train.freeze_trainable_layers: 2
26
+ train.freeze_trainable_modules: all
27
+ train.galore_rank: 16
28
+ train.galore_scale: 0.25
29
+ train.galore_target: all
30
+ train.galore_update_interval: 200
31
+ train.gradient_accumulation_steps: 8
32
+ train.learning_rate: 5e-6
33
+ train.logging_steps: 1
34
+ train.lora_alpha: 16
35
+ train.lora_dropout: 0
36
+ train.lora_rank: 8
37
+ train.lora_target: ''
38
+ train.loraplus_lr_ratio: 0
39
+ train.lr_scheduler_type: cosine
40
+ train.max_grad_norm: '1.0'
41
+ train.max_samples: '100000'
42
+ train.neat_packing: false
43
+ train.neftune_alpha: 0
44
+ train.num_train_epochs: '5.0'
45
+ train.optim: adamw_torch
46
+ train.packing: false
47
+ train.ppo_score_norm: false
48
+ train.ppo_whiten_rewards: false
49
+ train.pref_beta: 0.1
50
+ train.pref_ftx: 0
51
+ train.pref_loss: sigmoid
52
+ train.report_to: false
53
+ train.resize_vocab: false
54
+ train.reward_model: null
55
+ train.save_steps: 1000
56
+ train.shift_attn: false
57
+ train.training_stage: Supervised Fine-Tuning
58
+ train.use_badam: false
59
+ train.use_dora: false
60
+ train.use_galore: false
61
+ train.use_llama_pro: false
62
+ train.use_pissa: false
63
+ train.use_rslora: false
64
+ train.val_size: 0
65
+ train.warmup_steps: 10
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ad2a4f8c844b27f40af4f7ebd576dc04d590cf97967cd141f9ff0e37e9b7f06
3
+ size 4938985352
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d6911d18e1230b44c2dcec0b8b93af000e046d3a3672425c51c3905490a01f9
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38aea6ed7c69811e9b91746ce9ba805addb67a766dad6944d6b53d929f4af38e
3
+ size 3590488816
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
running_log.txt ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
2
+
3
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
4
+
5
+ 07/16/2024 09:07:34 - INFO - llamafactory.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
6
+
7
+ [INFO|parser.py:325] 2024-07-16 09:07:34,077 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
8
+
9
+ 07/16/2024 09:07:34 - INFO - llamafactory.hparams.parser - Process rank: 7, device: cuda:7, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
10
+
11
+ 07/16/2024 09:07:34 - INFO - llamafactory.hparams.parser - Process rank: 5, device: cuda:5, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
12
+
13
+ 07/16/2024 09:07:34 - INFO - llamafactory.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
14
+
15
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 09:07:34,347 >> loading file tokenizer.model from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.model
16
+
17
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 09:07:34,347 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.json
18
+
19
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 09:07:34,348 >> loading file added_tokens.json from cache at None
20
+
21
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 09:07:34,348 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/special_tokens_map.json
22
+
23
+ [INFO|tokenization_utils_base.py:2161] 2024-07-16 09:07:34,348 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer_config.json
24
+
25
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
26
+
27
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
28
+
29
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
30
+
31
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
32
+
33
+ [INFO|template.py:372] 2024-07-16 09:07:34,452 >> Add pad token: </s>
34
+
35
+ [INFO|loader.py:50] 2024-07-16 09:07:34,453 >> Loading dataset 0716_truthfulqa_benchmark_train.json...
36
+
37
+ 07/16/2024 09:07:34 - INFO - llamafactory.hparams.parser - Process rank: 6, device: cuda:6, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
38
+
39
+ 07/16/2024 09:07:34 - INFO - llamafactory.data.template - Add pad token: </s>
40
+
41
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
42
+
43
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
44
+
45
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
46
+
47
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
48
+
49
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
50
+
51
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
52
+
53
+ 07/16/2024 09:07:36 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train.json...
54
+
55
+ [INFO|configuration_utils.py:733] 2024-07-16 09:07:37,470 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/config.json
56
+
57
+ [INFO|configuration_utils.py:800] 2024-07-16 09:07:37,473 >> Model config LlamaConfig {
58
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
59
+ "architectures": [
60
+ "LlamaForCausalLM"
61
+ ],
62
+ "attention_bias": false,
63
+ "attention_dropout": 0.0,
64
+ "bos_token_id": 1,
65
+ "eos_token_id": 2,
66
+ "hidden_act": "silu",
67
+ "hidden_size": 4096,
68
+ "initializer_range": 0.02,
69
+ "intermediate_size": 11008,
70
+ "max_position_embeddings": 4096,
71
+ "mlp_bias": false,
72
+ "model_type": "llama",
73
+ "num_attention_heads": 32,
74
+ "num_hidden_layers": 32,
75
+ "num_key_value_heads": 32,
76
+ "pretraining_tp": 1,
77
+ "rms_norm_eps": 1e-05,
78
+ "rope_scaling": null,
79
+ "rope_theta": 10000.0,
80
+ "tie_word_embeddings": false,
81
+ "torch_dtype": "float16",
82
+ "transformers_version": "4.42.3",
83
+ "use_cache": true,
84
+ "vocab_size": 32000
85
+ }
86
+
87
+
88
+ [INFO|modeling_utils.py:3556] 2024-07-16 09:07:37,523 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/model.safetensors.index.json
89
+
90
+ [INFO|modeling_utils.py:1531] 2024-07-16 09:07:37,524 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
91
+
92
+ [INFO|configuration_utils.py:1000] 2024-07-16 09:07:37,526 >> Generate config GenerationConfig {
93
+ "bos_token_id": 1,
94
+ "eos_token_id": 2
95
+ }
96
+
97
+
98
+ [INFO|modeling_utils.py:4364] 2024-07-16 09:07:54,870 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
99
+
100
+
101
+ [INFO|modeling_utils.py:4372] 2024-07-16 09:07:54,870 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Llama-2-7b-chat-hf.
102
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
103
+
104
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
105
+
106
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
107
+
108
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
109
+
110
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
111
+
112
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
113
+
114
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
115
+
116
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
117
+
118
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
119
+
120
+ [INFO|configuration_utils.py:955] 2024-07-16 09:07:55,055 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/generation_config.json
121
+
122
+ [INFO|configuration_utils.py:1000] 2024-07-16 09:07:55,055 >> Generate config GenerationConfig {
123
+ "bos_token_id": 1,
124
+ "do_sample": true,
125
+ "eos_token_id": 2,
126
+ "max_length": 4096,
127
+ "pad_token_id": 0,
128
+ "temperature": 0.6,
129
+ "top_p": 0.9
130
+ }
131
+
132
+
133
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
134
+
135
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
136
+
137
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
138
+
139
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
140
+
141
+ [INFO|checkpointing.py:103] 2024-07-16 09:07:55,062 >> Gradient checkpointing enabled.
142
+
143
+ [INFO|attention.py:80] 2024-07-16 09:07:55,062 >> Using torch SDPA for faster training and inference.
144
+
145
+ [INFO|adapter.py:302] 2024-07-16 09:07:55,062 >> Upcasting trainable params to float32.
146
+
147
+ [INFO|adapter.py:48] 2024-07-16 09:07:55,062 >> Fine-tuning method: Full
148
+
149
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
150
+
151
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
152
+
153
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
154
+
155
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
156
+
157
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
158
+
159
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
160
+
161
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
162
+
163
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
164
+
165
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
166
+
167
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
168
+
169
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
170
+
171
+ [INFO|loader.py:196] 2024-07-16 09:07:55,174 >> trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
172
+
173
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
174
+
175
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
176
+
177
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
178
+
179
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
180
+
181
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
182
+
183
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
184
+
185
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
186
+
187
+ [INFO|trainer.py:642] 2024-07-16 09:07:55,179 >> Using auto half precision backend
188
+
189
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
190
+
191
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
192
+
193
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
194
+
195
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
196
+
197
+ 07/16/2024 09:07:55 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
198
+
199
+ [INFO|trainer.py:2128] 2024-07-16 09:08:14,231 >> ***** Running training *****
200
+
201
+ [INFO|trainer.py:2129] 2024-07-16 09:08:14,231 >> Num examples = 4,968
202
+
203
+ [INFO|trainer.py:2130] 2024-07-16 09:08:14,231 >> Num Epochs = 5
204
+
205
+ [INFO|trainer.py:2131] 2024-07-16 09:08:14,231 >> Instantaneous batch size per device = 2
206
+
207
+ [INFO|trainer.py:2134] 2024-07-16 09:08:14,231 >> Total train batch size (w. parallel, distributed & accumulation) = 128
208
+
209
+ [INFO|trainer.py:2135] 2024-07-16 09:08:14,231 >> Gradient Accumulation steps = 8
210
+
211
+ [INFO|trainer.py:2136] 2024-07-16 09:08:14,231 >> Total optimization steps = 190
212
+
213
+ [INFO|trainer.py:2137] 2024-07-16 09:08:14,233 >> Number of trainable parameters = 6,738,415,616
214
+
215
+ [INFO|callbacks.py:310] 2024-07-16 09:08:27,214 >> {'loss': 8.3599, 'learning_rate': 5.0000e-07, 'epoch': 0.03, 'throughput': 548.54}
216
+
217
+ [INFO|callbacks.py:310] 2024-07-16 09:08:38,345 >> {'loss': 8.1891, 'learning_rate': 1.0000e-06, 'epoch': 0.05, 'throughput': 575.99}
218
+
219
+ [INFO|callbacks.py:310] 2024-07-16 09:08:49,459 >> {'loss': 8.0792, 'learning_rate': 1.5000e-06, 'epoch': 0.08, 'throughput': 586.40}
220
+
221
+ [INFO|callbacks.py:310] 2024-07-16 09:09:00,554 >> {'loss': 7.9682, 'learning_rate': 2.0000e-06, 'epoch': 0.10, 'throughput': 586.87}
222
+
223
+ [INFO|callbacks.py:310] 2024-07-16 09:09:11,650 >> {'loss': 6.9482, 'learning_rate': 2.5000e-06, 'epoch': 0.13, 'throughput': 599.42}
224
+
225
+ [INFO|callbacks.py:310] 2024-07-16 09:09:22,743 >> {'loss': 5.1505, 'learning_rate': 3.0000e-06, 'epoch': 0.15, 'throughput': 599.28}
226
+
227
+ [INFO|callbacks.py:310] 2024-07-16 09:09:33,861 >> {'loss': 4.7491, 'learning_rate': 3.5000e-06, 'epoch': 0.18, 'throughput': 596.99}
228
+
229
+ [INFO|callbacks.py:310] 2024-07-16 09:09:44,975 >> {'loss': 3.2164, 'learning_rate': 4.0000e-06, 'epoch': 0.21, 'throughput': 600.21}
230
+
231
+ [INFO|callbacks.py:310] 2024-07-16 09:09:56,098 >> {'loss': 2.7761, 'learning_rate': 4.5000e-06, 'epoch': 0.23, 'throughput': 603.94}
232
+
233
+ [INFO|callbacks.py:310] 2024-07-16 09:10:07,219 >> {'loss': 0.6703, 'learning_rate': 5.0000e-06, 'epoch': 0.26, 'throughput': 605.96}
234
+
235
+ [INFO|callbacks.py:310] 2024-07-16 09:10:18,354 >> {'loss': 0.3255, 'learning_rate': 4.9996e-06, 'epoch': 0.28, 'throughput': 605.48}
236
+
237
+ [INFO|callbacks.py:310] 2024-07-16 09:10:29,443 >> {'loss': 0.3301, 'learning_rate': 4.9985e-06, 'epoch': 0.31, 'throughput': 605.64}
238
+
239
+ [INFO|callbacks.py:310] 2024-07-16 09:10:40,548 >> {'loss': 0.2121, 'learning_rate': 4.9966e-06, 'epoch': 0.33, 'throughput': 606.15}
240
+
241
+ [INFO|callbacks.py:310] 2024-07-16 09:10:51,649 >> {'loss': 1.1565, 'learning_rate': 4.9939e-06, 'epoch': 0.36, 'throughput': 607.41}
242
+
243
+ [INFO|callbacks.py:310] 2024-07-16 09:11:02,736 >> {'loss': 0.8054, 'learning_rate': 4.9905e-06, 'epoch': 0.39, 'throughput': 606.19}
244
+
245
+ [INFO|callbacks.py:310] 2024-07-16 09:11:13,851 >> {'loss': 0.2386, 'learning_rate': 4.9863e-06, 'epoch': 0.41, 'throughput': 607.52}
246
+
247
+ [INFO|callbacks.py:310] 2024-07-16 09:11:24,984 >> {'loss': 0.3161, 'learning_rate': 4.9814e-06, 'epoch': 0.44, 'throughput': 606.78}
248
+
249
+ [INFO|callbacks.py:310] 2024-07-16 09:11:36,116 >> {'loss': 0.2773, 'learning_rate': 4.9757e-06, 'epoch': 0.46, 'throughput': 607.80}
250
+
251
+ [INFO|callbacks.py:310] 2024-07-16 09:11:47,247 >> {'loss': 0.2062, 'learning_rate': 4.9692e-06, 'epoch': 0.49, 'throughput': 608.19}
252
+
253
+ [INFO|callbacks.py:310] 2024-07-16 09:11:58,362 >> {'loss': 0.1837, 'learning_rate': 4.9620e-06, 'epoch': 0.51, 'throughput': 609.22}
254
+
255
+ [INFO|callbacks.py:310] 2024-07-16 09:12:09,457 >> {'loss': 0.1735, 'learning_rate': 4.9541e-06, 'epoch': 0.54, 'throughput': 610.01}
256
+
257
+ [INFO|callbacks.py:310] 2024-07-16 09:12:20,540 >> {'loss': 0.1588, 'learning_rate': 4.9454e-06, 'epoch': 0.57, 'throughput': 609.91}
258
+
259
+ [INFO|callbacks.py:310] 2024-07-16 09:12:31,647 >> {'loss': 0.1443, 'learning_rate': 4.9359e-06, 'epoch': 0.59, 'throughput': 610.82}
260
+
261
+ [INFO|callbacks.py:310] 2024-07-16 09:12:42,733 >> {'loss': 0.1570, 'learning_rate': 4.9257e-06, 'epoch': 0.62, 'throughput': 609.97}
262
+
263
+ [INFO|callbacks.py:310] 2024-07-16 09:12:53,861 >> {'loss': 0.1199, 'learning_rate': 4.9148e-06, 'epoch': 0.64, 'throughput': 609.21}
264
+
265
+ [INFO|callbacks.py:310] 2024-07-16 09:13:04,974 >> {'loss': 0.1539, 'learning_rate': 4.9032e-06, 'epoch': 0.67, 'throughput': 609.20}
266
+
267
+ [INFO|callbacks.py:310] 2024-07-16 09:13:16,096 >> {'loss': 0.1208, 'learning_rate': 4.8908e-06, 'epoch': 0.69, 'throughput': 609.87}
268
+
269
+ [INFO|callbacks.py:310] 2024-07-16 09:13:27,217 >> {'loss': 0.0954, 'learning_rate': 4.8776e-06, 'epoch': 0.72, 'throughput': 610.39}
270
+
271
+ [INFO|callbacks.py:310] 2024-07-16 09:13:38,328 >> {'loss': 0.1387, 'learning_rate': 4.8638e-06, 'epoch': 0.75, 'throughput': 611.13}
272
+
273
+ [INFO|callbacks.py:310] 2024-07-16 09:13:49,415 >> {'loss': 0.1484, 'learning_rate': 4.8492e-06, 'epoch': 0.77, 'throughput': 612.02}
274
+
275
+ [INFO|callbacks.py:310] 2024-07-16 09:14:00,513 >> {'loss': 0.0998, 'learning_rate': 4.8340e-06, 'epoch': 0.80, 'throughput': 612.22}
276
+
277
+ [INFO|callbacks.py:310] 2024-07-16 09:14:11,593 >> {'loss': 0.1068, 'learning_rate': 4.8180e-06, 'epoch': 0.82, 'throughput': 612.05}
278
+
279
+ [INFO|callbacks.py:310] 2024-07-16 09:14:22,685 >> {'loss': 0.0801, 'learning_rate': 4.8013e-06, 'epoch': 0.85, 'throughput': 612.99}
280
+
281
+ [INFO|callbacks.py:310] 2024-07-16 09:14:33,813 >> {'loss': 0.1066, 'learning_rate': 4.7839e-06, 'epoch': 0.87, 'throughput': 612.89}
282
+
283
+ [INFO|callbacks.py:310] 2024-07-16 09:14:44,935 >> {'loss': 0.1038, 'learning_rate': 4.7658e-06, 'epoch': 0.90, 'throughput': 613.01}
284
+
285
+ [INFO|callbacks.py:310] 2024-07-16 09:14:56,047 >> {'loss': 0.1060, 'learning_rate': 4.7470e-06, 'epoch': 0.93, 'throughput': 612.94}
286
+
287
+ [INFO|callbacks.py:310] 2024-07-16 09:15:07,172 >> {'loss': 0.1107, 'learning_rate': 4.7275e-06, 'epoch': 0.95, 'throughput': 613.01}
288
+
289
+ [INFO|callbacks.py:310] 2024-07-16 09:15:18,265 >> {'loss': 0.1372, 'learning_rate': 4.7074e-06, 'epoch': 0.98, 'throughput': 613.54}
290
+
291
+ [INFO|callbacks.py:310] 2024-07-16 09:15:29,366 >> {'loss': 0.0816, 'learning_rate': 4.6865e-06, 'epoch': 1.00, 'throughput': 613.88}
292
+
293
+ [INFO|callbacks.py:310] 2024-07-16 09:15:40,449 >> {'loss': 0.0743, 'learning_rate': 4.6651e-06, 'epoch': 1.03, 'throughput': 614.30}
294
+
295
+ [INFO|callbacks.py:310] 2024-07-16 09:15:51,540 >> {'loss': 0.0720, 'learning_rate': 4.6429e-06, 'epoch': 1.05, 'throughput': 614.77}
296
+
297
+ [INFO|callbacks.py:310] 2024-07-16 09:16:02,629 >> {'loss': 0.0596, 'learning_rate': 4.6201e-06, 'epoch': 1.08, 'throughput': 614.97}
298
+
299
+ [INFO|callbacks.py:310] 2024-07-16 09:16:13,746 >> {'loss': 0.0544, 'learning_rate': 4.5967e-06, 'epoch': 1.11, 'throughput': 615.46}
300
+
301
+ [INFO|callbacks.py:310] 2024-07-16 09:16:24,855 >> {'loss': 0.0342, 'learning_rate': 4.5726e-06, 'epoch': 1.13, 'throughput': 615.55}
302
+
303
+ [INFO|callbacks.py:310] 2024-07-16 09:16:35,985 >> {'loss': 0.0394, 'learning_rate': 4.5479e-06, 'epoch': 1.16, 'throughput': 615.19}
304
+
305
+ [INFO|callbacks.py:310] 2024-07-16 09:16:47,103 >> {'loss': 0.0196, 'learning_rate': 4.5225e-06, 'epoch': 1.18, 'throughput': 615.36}
306
+
307
+ [INFO|callbacks.py:310] 2024-07-16 09:16:58,199 >> {'loss': 0.0411, 'learning_rate': 4.4966e-06, 'epoch': 1.21, 'throughput': 615.43}
308
+
309
+ [INFO|callbacks.py:310] 2024-07-16 09:17:09,282 >> {'loss': 0.0257, 'learning_rate': 4.4700e-06, 'epoch': 1.23, 'throughput': 614.94}
310
+
311
+ [INFO|callbacks.py:310] 2024-07-16 09:17:20,373 >> {'loss': 0.0289, 'learning_rate': 4.4429e-06, 'epoch': 1.26, 'throughput': 615.29}
312
+
313
+ [INFO|callbacks.py:310] 2024-07-16 09:17:31,470 >> {'loss': 0.1193, 'learning_rate': 4.4151e-06, 'epoch': 1.29, 'throughput': 615.01}
314
+
315
+ [INFO|callbacks.py:310] 2024-07-16 09:17:42,559 >> {'loss': 0.0883, 'learning_rate': 4.3868e-06, 'epoch': 1.31, 'throughput': 614.92}
316
+
317
+ [INFO|callbacks.py:310] 2024-07-16 09:17:53,670 >> {'loss': 0.0377, 'learning_rate': 4.3579e-06, 'epoch': 1.34, 'throughput': 614.86}
318
+
319
+ [INFO|callbacks.py:310] 2024-07-16 09:18:04,800 >> {'loss': 0.0602, 'learning_rate': 4.3284e-06, 'epoch': 1.36, 'throughput': 614.73}
320
+
321
+ [INFO|callbacks.py:310] 2024-07-16 09:18:15,923 >> {'loss': 0.0830, 'learning_rate': 4.2983e-06, 'epoch': 1.39, 'throughput': 614.38}
322
+
323
+ [INFO|callbacks.py:310] 2024-07-16 09:18:27,039 >> {'loss': 0.0358, 'learning_rate': 4.2678e-06, 'epoch': 1.41, 'throughput': 614.72}
324
+
325
+ [INFO|callbacks.py:310] 2024-07-16 09:18:38,136 >> {'loss': 0.0321, 'learning_rate': 4.2366e-06, 'epoch': 1.44, 'throughput': 614.84}
326
+
327
+ [INFO|callbacks.py:310] 2024-07-16 09:18:49,231 >> {'loss': 0.0452, 'learning_rate': 4.2050e-06, 'epoch': 1.47, 'throughput': 615.11}
328
+
329
+ [INFO|callbacks.py:310] 2024-07-16 09:19:00,331 >> {'loss': 0.0915, 'learning_rate': 4.1728e-06, 'epoch': 1.49, 'throughput': 615.02}
330
+
331
+ [INFO|callbacks.py:310] 2024-07-16 09:19:11,424 >> {'loss': 0.0651, 'learning_rate': 4.1401e-06, 'epoch': 1.52, 'throughput': 614.81}
332
+
333
+ [INFO|callbacks.py:310] 2024-07-16 09:19:22,545 >> {'loss': 0.0868, 'learning_rate': 4.1070e-06, 'epoch': 1.54, 'throughput': 614.92}
334
+
335
+ [INFO|callbacks.py:310] 2024-07-16 09:19:33,666 >> {'loss': 0.0554, 'learning_rate': 4.0733e-06, 'epoch': 1.57, 'throughput': 615.06}
336
+
337
+ [INFO|callbacks.py:310] 2024-07-16 09:19:44,774 >> {'loss': 0.0336, 'learning_rate': 4.0392e-06, 'epoch': 1.59, 'throughput': 615.29}
338
+
339
+ [INFO|callbacks.py:310] 2024-07-16 09:19:55,885 >> {'loss': 0.0455, 'learning_rate': 4.0045e-06, 'epoch': 1.62, 'throughput': 615.69}
340
+
341
+ [INFO|callbacks.py:310] 2024-07-16 09:20:07,002 >> {'loss': 0.0406, 'learning_rate': 3.9695e-06, 'epoch': 1.65, 'throughput': 615.45}
342
+
343
+ [INFO|callbacks.py:310] 2024-07-16 09:20:18,095 >> {'loss': 0.0461, 'learning_rate': 3.9339e-06, 'epoch': 1.67, 'throughput': 615.37}
344
+
345
+ [INFO|callbacks.py:310] 2024-07-16 09:20:29,180 >> {'loss': 0.0466, 'learning_rate': 3.8980e-06, 'epoch': 1.70, 'throughput': 615.10}
346
+
347
+ [INFO|callbacks.py:310] 2024-07-16 09:20:40,282 >> {'loss': 0.0382, 'learning_rate': 3.8616e-06, 'epoch': 1.72, 'throughput': 615.23}
348
+
349
+ [INFO|callbacks.py:310] 2024-07-16 09:20:51,381 >> {'loss': 0.0426, 'learning_rate': 3.8248e-06, 'epoch': 1.75, 'throughput': 614.90}
350
+
351
+ [INFO|callbacks.py:310] 2024-07-16 09:21:02,489 >> {'loss': 0.0264, 'learning_rate': 3.7876e-06, 'epoch': 1.77, 'throughput': 615.03}
352
+
353
+ [INFO|callbacks.py:310] 2024-07-16 09:21:13,594 >> {'loss': 0.0567, 'learning_rate': 3.7500e-06, 'epoch': 1.80, 'throughput': 615.11}
354
+
355
+ [INFO|callbacks.py:310] 2024-07-16 09:21:24,706 >> {'loss': 0.0688, 'learning_rate': 3.7120e-06, 'epoch': 1.83, 'throughput': 615.35}
356
+
357
+ [INFO|callbacks.py:310] 2024-07-16 09:21:35,842 >> {'loss': 0.0351, 'learning_rate': 3.6737e-06, 'epoch': 1.85, 'throughput': 614.88}
358
+
359
+ [INFO|callbacks.py:310] 2024-07-16 09:21:46,947 >> {'loss': 0.0246, 'learning_rate': 3.6350e-06, 'epoch': 1.88, 'throughput': 614.93}
360
+
361
+ [INFO|callbacks.py:310] 2024-07-16 09:21:58,021 >> {'loss': 0.0364, 'learning_rate': 3.5959e-06, 'epoch': 1.90, 'throughput': 615.23}
362
+
363
+ [INFO|callbacks.py:310] 2024-07-16 09:22:09,127 >> {'loss': 0.0352, 'learning_rate': 3.5565e-06, 'epoch': 1.93, 'throughput': 615.23}
364
+
365
+ [INFO|callbacks.py:310] 2024-07-16 09:22:20,219 >> {'loss': 0.0915, 'learning_rate': 3.5168e-06, 'epoch': 1.95, 'throughput': 615.24}
366
+
367
+ [INFO|callbacks.py:310] 2024-07-16 09:22:31,310 >> {'loss': 0.0327, 'learning_rate': 3.4768e-06, 'epoch': 1.98, 'throughput': 614.95}
368
+
369
+ [INFO|callbacks.py:310] 2024-07-16 09:22:42,417 >> {'loss': 0.0448, 'learning_rate': 3.4365e-06, 'epoch': 2.01, 'throughput': 615.21}
370
+
371
+ [INFO|callbacks.py:310] 2024-07-16 09:22:53,536 >> {'loss': 0.0186, 'learning_rate': 3.3959e-06, 'epoch': 2.03, 'throughput': 615.29}
372
+
373
+ [INFO|callbacks.py:310] 2024-07-16 09:23:04,675 >> {'loss': 0.0342, 'learning_rate': 3.3551e-06, 'epoch': 2.06, 'throughput': 615.30}
374
+
375
+ [INFO|callbacks.py:310] 2024-07-16 09:23:15,801 >> {'loss': 0.0079, 'learning_rate': 3.3139e-06, 'epoch': 2.08, 'throughput': 615.14}
376
+
377
+ [INFO|callbacks.py:310] 2024-07-16 09:23:26,896 >> {'loss': 0.0177, 'learning_rate': 3.2725e-06, 'epoch': 2.11, 'throughput': 615.01}
378
+
379
+ [INFO|callbacks.py:310] 2024-07-16 09:23:37,991 >> {'loss': 0.0139, 'learning_rate': 3.2309e-06, 'epoch': 2.14, 'throughput': 614.74}
380
+
381
+ [INFO|callbacks.py:310] 2024-07-16 09:23:49,080 >> {'loss': 0.0103, 'learning_rate': 3.1891e-06, 'epoch': 2.16, 'throughput': 615.15}
382
+
383
+ [INFO|callbacks.py:310] 2024-07-16 09:24:00,169 >> {'loss': 0.0221, 'learning_rate': 3.1470e-06, 'epoch': 2.19, 'throughput': 615.35}
384
+
385
+ [INFO|callbacks.py:310] 2024-07-16 09:24:11,255 >> {'loss': 0.0021, 'learning_rate': 3.1048e-06, 'epoch': 2.21, 'throughput': 615.26}
386
+
387
+ [INFO|callbacks.py:310] 2024-07-16 09:24:22,375 >> {'loss': 0.0110, 'learning_rate': 3.0624e-06, 'epoch': 2.24, 'throughput': 615.65}
388
+
389
+ [INFO|callbacks.py:310] 2024-07-16 09:24:33,470 >> {'loss': 0.0081, 'learning_rate': 3.0198e-06, 'epoch': 2.26, 'throughput': 615.45}
390
+
391
+ [INFO|callbacks.py:310] 2024-07-16 09:24:44,602 >> {'loss': 0.0149, 'learning_rate': 2.9770e-06, 'epoch': 2.29, 'throughput': 615.35}
392
+
393
+ [INFO|callbacks.py:310] 2024-07-16 09:24:55,725 >> {'loss': 0.0010, 'learning_rate': 2.9341e-06, 'epoch': 2.32, 'throughput': 615.53}
394
+
395
+ [INFO|callbacks.py:310] 2024-07-16 09:25:06,826 >> {'loss': 0.0070, 'learning_rate': 2.8911e-06, 'epoch': 2.34, 'throughput': 615.54}
396
+
397
+ [INFO|callbacks.py:310] 2024-07-16 09:25:17,934 >> {'loss': 0.0089, 'learning_rate': 2.8479e-06, 'epoch': 2.37, 'throughput': 615.48}
398
+
399
+ [INFO|callbacks.py:310] 2024-07-16 09:25:29,026 >> {'loss': 0.0013, 'learning_rate': 2.8047e-06, 'epoch': 2.39, 'throughput': 615.67}
400
+
401
+ [INFO|callbacks.py:310] 2024-07-16 09:25:40,116 >> {'loss': 0.0267, 'learning_rate': 2.7613e-06, 'epoch': 2.42, 'throughput': 615.82}
402
+
403
+ [INFO|callbacks.py:310] 2024-07-16 09:25:51,214 >> {'loss': 0.0171, 'learning_rate': 2.7179e-06, 'epoch': 2.44, 'throughput': 615.76}
404
+
405
+ [INFO|callbacks.py:310] 2024-07-16 09:26:02,342 >> {'loss': 0.0375, 'learning_rate': 2.6744e-06, 'epoch': 2.47, 'throughput': 615.50}
406
+
407
+ [INFO|callbacks.py:310] 2024-07-16 09:26:13,469 >> {'loss': 0.0101, 'learning_rate': 2.6308e-06, 'epoch': 2.50, 'throughput': 615.37}
408
+
409
+ [INFO|callbacks.py:310] 2024-07-16 09:26:24,600 >> {'loss': 0.0282, 'learning_rate': 2.5872e-06, 'epoch': 2.52, 'throughput': 615.50}
410
+
411
+ [INFO|callbacks.py:310] 2024-07-16 09:26:35,708 >> {'loss': 0.0069, 'learning_rate': 2.5436e-06, 'epoch': 2.55, 'throughput': 615.47}
412
+
413
+ [INFO|callbacks.py:310] 2024-07-16 09:26:46,803 >> {'loss': 0.0135, 'learning_rate': 2.5000e-06, 'epoch': 2.57, 'throughput': 615.66}
414
+
415
+ [INFO|callbacks.py:310] 2024-07-16 09:26:57,903 >> {'loss': 0.0062, 'learning_rate': 2.4564e-06, 'epoch': 2.60, 'throughput': 615.71}
416
+
417
+ [INFO|callbacks.py:310] 2024-07-16 09:27:08,991 >> {'loss': 0.0050, 'learning_rate': 2.4128e-06, 'epoch': 2.62, 'throughput': 615.56}
418
+
419
+ [INFO|callbacks.py:310] 2024-07-16 09:27:20,085 >> {'loss': 0.0285, 'learning_rate': 2.3692e-06, 'epoch': 2.65, 'throughput': 615.65}
420
+
421
+ [INFO|callbacks.py:310] 2024-07-16 09:27:31,191 >> {'loss': 0.0225, 'learning_rate': 2.3256e-06, 'epoch': 2.68, 'throughput': 615.86}
422
+
423
+ [INFO|callbacks.py:310] 2024-07-16 09:27:42,299 >> {'loss': 0.0280, 'learning_rate': 2.2821e-06, 'epoch': 2.70, 'throughput': 615.69}
424
+
425
+ [INFO|callbacks.py:310] 2024-07-16 09:27:53,416 >> {'loss': 0.0176, 'learning_rate': 2.2387e-06, 'epoch': 2.73, 'throughput': 615.60}
426
+
427
+ [INFO|callbacks.py:310] 2024-07-16 09:28:04,554 >> {'loss': 0.0047, 'learning_rate': 2.1953e-06, 'epoch': 2.75, 'throughput': 615.36}
428
+
429
+ [INFO|callbacks.py:310] 2024-07-16 09:28:15,674 >> {'loss': 0.0135, 'learning_rate': 2.1521e-06, 'epoch': 2.78, 'throughput': 615.25}
430
+
431
+ [INFO|callbacks.py:310] 2024-07-16 09:28:26,766 >> {'loss': 0.0044, 'learning_rate': 2.1089e-06, 'epoch': 2.80, 'throughput': 615.51}
432
+
433
+ [INFO|callbacks.py:310] 2024-07-16 09:28:37,852 >> {'loss': 0.0252, 'learning_rate': 2.0659e-06, 'epoch': 2.83, 'throughput': 615.50}
434
+
435
+ [INFO|callbacks.py:310] 2024-07-16 09:28:48,945 >> {'loss': 0.0249, 'learning_rate': 2.0230e-06, 'epoch': 2.86, 'throughput': 615.61}
436
+
437
+ [INFO|callbacks.py:310] 2024-07-16 09:29:00,043 >> {'loss': 0.0146, 'learning_rate': 1.9802e-06, 'epoch': 2.88, 'throughput': 615.75}
438
+
439
+ [INFO|callbacks.py:310] 2024-07-16 09:29:11,162 >> {'loss': 0.0044, 'learning_rate': 1.9376e-06, 'epoch': 2.91, 'throughput': 615.69}
440
+
441
+ [INFO|callbacks.py:310] 2024-07-16 09:29:22,253 >> {'loss': 0.0054, 'learning_rate': 1.8952e-06, 'epoch': 2.93, 'throughput': 615.71}
442
+
443
+ [INFO|callbacks.py:310] 2024-07-16 09:29:33,390 >> {'loss': 0.0106, 'learning_rate': 1.8530e-06, 'epoch': 2.96, 'throughput': 615.58}
444
+
445
+ [INFO|callbacks.py:310] 2024-07-16 09:29:44,539 >> {'loss': 0.0167, 'learning_rate': 1.8109e-06, 'epoch': 2.98, 'throughput': 615.53}
446
+
447
+ [INFO|callbacks.py:310] 2024-07-16 09:29:55,648 >> {'loss': 0.0090, 'learning_rate': 1.7691e-06, 'epoch': 3.01, 'throughput': 615.55}
448
+
449
+ [INFO|callbacks.py:310] 2024-07-16 09:30:06,727 >> {'loss': 0.0024, 'learning_rate': 1.7275e-06, 'epoch': 3.04, 'throughput': 615.66}
450
+
451
+ [INFO|callbacks.py:310] 2024-07-16 09:30:17,830 >> {'loss': 0.0235, 'learning_rate': 1.6861e-06, 'epoch': 3.06, 'throughput': 615.60}
452
+
453
+ [INFO|callbacks.py:310] 2024-07-16 09:30:28,918 >> {'loss': 0.0179, 'learning_rate': 1.6449e-06, 'epoch': 3.09, 'throughput': 615.53}
454
+
455
+ [INFO|callbacks.py:310] 2024-07-16 09:30:40,012 >> {'loss': 0.0059, 'learning_rate': 1.6041e-06, 'epoch': 3.11, 'throughput': 615.35}
456
+
457
+ [INFO|callbacks.py:310] 2024-07-16 09:30:51,146 >> {'loss': 0.0017, 'learning_rate': 1.5635e-06, 'epoch': 3.14, 'throughput': 615.08}
458
+
459
+ [INFO|callbacks.py:310] 2024-07-16 09:31:02,257 >> {'loss': 0.0018, 'learning_rate': 1.5232e-06, 'epoch': 3.16, 'throughput': 615.02}
460
+
461
+ [INFO|callbacks.py:310] 2024-07-16 09:31:13,381 >> {'loss': 0.0032, 'learning_rate': 1.4832e-06, 'epoch': 3.19, 'throughput': 615.23}
462
+
463
+ [INFO|callbacks.py:310] 2024-07-16 09:31:24,512 >> {'loss': 0.0019, 'learning_rate': 1.4435e-06, 'epoch': 3.22, 'throughput': 615.29}
464
+
465
+ [INFO|callbacks.py:310] 2024-07-16 09:31:35,616 >> {'loss': 0.0014, 'learning_rate': 1.4041e-06, 'epoch': 3.24, 'throughput': 615.27}
466
+
467
+ [INFO|callbacks.py:310] 2024-07-16 09:31:46,705 >> {'loss': 0.0052, 'learning_rate': 1.3650e-06, 'epoch': 3.27, 'throughput': 615.45}
468
+
469
+ [INFO|callbacks.py:310] 2024-07-16 09:31:57,796 >> {'loss': 0.0005, 'learning_rate': 1.3263e-06, 'epoch': 3.29, 'throughput': 615.55}
470
+
471
+ [INFO|callbacks.py:310] 2024-07-16 09:32:08,900 >> {'loss': 0.0131, 'learning_rate': 1.2880e-06, 'epoch': 3.32, 'throughput': 615.52}
472
+
473
+ [INFO|callbacks.py:310] 2024-07-16 09:32:19,991 >> {'loss': 0.0009, 'learning_rate': 1.2500e-06, 'epoch': 3.34, 'throughput': 615.54}
474
+
475
+ [INFO|callbacks.py:310] 2024-07-16 09:32:31,110 >> {'loss': 0.0057, 'learning_rate': 1.2124e-06, 'epoch': 3.37, 'throughput': 615.63}
476
+
477
+ [INFO|callbacks.py:310] 2024-07-16 09:32:42,232 >> {'loss': 0.0002, 'learning_rate': 1.1752e-06, 'epoch': 3.40, 'throughput': 615.53}
478
+
479
+ [INFO|callbacks.py:310] 2024-07-16 09:32:53,354 >> {'loss': 0.0002, 'learning_rate': 1.1384e-06, 'epoch': 3.42, 'throughput': 615.37}
480
+
481
+ [INFO|callbacks.py:310] 2024-07-16 09:33:04,458 >> {'loss': 0.0145, 'learning_rate': 1.1020e-06, 'epoch': 3.45, 'throughput': 615.56}
482
+
483
+ [INFO|callbacks.py:310] 2024-07-16 09:33:15,548 >> {'loss': 0.0034, 'learning_rate': 1.0661e-06, 'epoch': 3.47, 'throughput': 615.59}
484
+
485
+ [INFO|callbacks.py:310] 2024-07-16 09:33:26,645 >> {'loss': 0.0156, 'learning_rate': 1.0305e-06, 'epoch': 3.50, 'throughput': 615.43}
486
+
487
+ [INFO|callbacks.py:310] 2024-07-16 09:33:37,738 >> {'loss': 0.0013, 'learning_rate': 9.9546e-07, 'epoch': 3.52, 'throughput': 615.59}
488
+
489
+ [INFO|callbacks.py:310] 2024-07-16 09:33:48,828 >> {'loss': 0.0007, 'learning_rate': 9.6085e-07, 'epoch': 3.55, 'throughput': 615.56}
490
+
491
+ [INFO|callbacks.py:310] 2024-07-16 09:33:59,926 >> {'loss': 0.0005, 'learning_rate': 9.2670e-07, 'epoch': 3.58, 'throughput': 615.58}
492
+
493
+ [INFO|callbacks.py:310] 2024-07-16 09:34:11,043 >> {'loss': 0.0034, 'learning_rate': 8.9303e-07, 'epoch': 3.60, 'throughput': 615.52}
494
+
495
+ [INFO|callbacks.py:310] 2024-07-16 09:34:22,149 >> {'loss': 0.0001, 'learning_rate': 8.5985e-07, 'epoch': 3.63, 'throughput': 615.41}
496
+
497
+ [INFO|callbacks.py:310] 2024-07-16 09:34:33,264 >> {'loss': 0.0010, 'learning_rate': 8.2717e-07, 'epoch': 3.65, 'throughput': 615.49}
498
+
499
+ [INFO|callbacks.py:310] 2024-07-16 09:34:44,385 >> {'loss': 0.0123, 'learning_rate': 7.9500e-07, 'epoch': 3.68, 'throughput': 615.44}
500
+
501
+ [INFO|callbacks.py:310] 2024-07-16 09:34:55,486 >> {'loss': 0.0002, 'learning_rate': 7.6335e-07, 'epoch': 3.70, 'throughput': 615.35}
502
+
503
+ [INFO|callbacks.py:310] 2024-07-16 09:35:06,571 >> {'loss': 0.0110, 'learning_rate': 7.3223e-07, 'epoch': 3.73, 'throughput': 615.39}
504
+
505
+ [INFO|callbacks.py:310] 2024-07-16 09:35:17,657 >> {'loss': 0.0008, 'learning_rate': 7.0165e-07, 'epoch': 3.76, 'throughput': 615.17}
506
+
507
+ [INFO|callbacks.py:310] 2024-07-16 09:35:28,737 >> {'loss': 0.0003, 'learning_rate': 6.7162e-07, 'epoch': 3.78, 'throughput': 615.50}
508
+
509
+ [INFO|callbacks.py:310] 2024-07-16 09:35:39,839 >> {'loss': 0.0018, 'learning_rate': 6.4214e-07, 'epoch': 3.81, 'throughput': 615.55}
510
+
511
+ [INFO|callbacks.py:310] 2024-07-16 09:35:50,950 >> {'loss': 0.0016, 'learning_rate': 6.1323e-07, 'epoch': 3.83, 'throughput': 615.59}
512
+
513
+ [INFO|callbacks.py:310] 2024-07-16 09:36:02,073 >> {'loss': 0.0021, 'learning_rate': 5.8489e-07, 'epoch': 3.86, 'throughput': 615.56}
514
+
515
+ [INFO|callbacks.py:310] 2024-07-16 09:36:13,188 >> {'loss': 0.0001, 'learning_rate': 5.5714e-07, 'epoch': 3.88, 'throughput': 615.68}
516
+
517
+ [INFO|callbacks.py:310] 2024-07-16 09:36:24,312 >> {'loss': 0.0001, 'learning_rate': 5.2997e-07, 'epoch': 3.91, 'throughput': 615.50}
518
+
519
+ [INFO|callbacks.py:310] 2024-07-16 09:36:35,410 >> {'loss': 0.0003, 'learning_rate': 5.0341e-07, 'epoch': 3.94, 'throughput': 615.45}
520
+
521
+ [INFO|callbacks.py:310] 2024-07-16 09:36:46,505 >> {'loss': 0.0002, 'learning_rate': 4.7746e-07, 'epoch': 3.96, 'throughput': 615.52}
522
+
523
+ [INFO|callbacks.py:310] 2024-07-16 09:36:57,590 >> {'loss': 0.0002, 'learning_rate': 4.5212e-07, 'epoch': 3.99, 'throughput': 615.41}
524
+
525
+ [INFO|callbacks.py:310] 2024-07-16 09:37:08,665 >> {'loss': 0.0000, 'learning_rate': 4.2741e-07, 'epoch': 4.01, 'throughput': 615.56}
526
+
527
+ [INFO|callbacks.py:310] 2024-07-16 09:37:19,763 >> {'loss': 0.0003, 'learning_rate': 4.0332e-07, 'epoch': 4.04, 'throughput': 615.58}
528
+
529
+ [INFO|callbacks.py:310] 2024-07-16 09:37:30,878 >> {'loss': 0.0002, 'learning_rate': 3.7988e-07, 'epoch': 4.06, 'throughput': 615.55}
530
+
531
+ [INFO|callbacks.py:310] 2024-07-16 09:37:41,999 >> {'loss': 0.0001, 'learning_rate': 3.5708e-07, 'epoch': 4.09, 'throughput': 615.40}
532
+
533
+ [INFO|callbacks.py:310] 2024-07-16 09:37:53,113 >> {'loss': 0.0001, 'learning_rate': 3.3494e-07, 'epoch': 4.12, 'throughput': 615.53}
534
+
535
+ [INFO|callbacks.py:310] 2024-07-16 09:38:04,234 >> {'loss': 0.0001, 'learning_rate': 3.1345e-07, 'epoch': 4.14, 'throughput': 615.52}
536
+
537
+ [INFO|callbacks.py:310] 2024-07-16 09:38:15,321 >> {'loss': 0.0000, 'learning_rate': 2.9263e-07, 'epoch': 4.17, 'throughput': 615.59}
538
+
539
+ [INFO|callbacks.py:310] 2024-07-16 09:38:26,408 >> {'loss': 0.0001, 'learning_rate': 2.7248e-07, 'epoch': 4.19, 'throughput': 615.69}
540
+
541
+ [INFO|callbacks.py:310] 2024-07-16 09:38:37,489 >> {'loss': 0.0000, 'learning_rate': 2.5301e-07, 'epoch': 4.22, 'throughput': 615.71}
542
+
543
+ [INFO|callbacks.py:310] 2024-07-16 09:38:48,575 >> {'loss': 0.0001, 'learning_rate': 2.3423e-07, 'epoch': 4.24, 'throughput': 615.55}
544
+
545
+ [INFO|callbacks.py:310] 2024-07-16 09:38:59,677 >> {'loss': 0.0001, 'learning_rate': 2.1614e-07, 'epoch': 4.27, 'throughput': 615.61}
546
+
547
+ [INFO|callbacks.py:310] 2024-07-16 09:39:10,799 >> {'loss': 0.0002, 'learning_rate': 1.9874e-07, 'epoch': 4.30, 'throughput': 615.64}
548
+
549
+ [INFO|callbacks.py:310] 2024-07-16 09:39:21,928 >> {'loss': 0.0002, 'learning_rate': 1.8204e-07, 'epoch': 4.32, 'throughput': 615.58}
550
+
551
+ [INFO|callbacks.py:310] 2024-07-16 09:39:33,061 >> {'loss': 0.0001, 'learning_rate': 1.6605e-07, 'epoch': 4.35, 'throughput': 615.46}
552
+
553
+ [INFO|callbacks.py:310] 2024-07-16 09:39:44,166 >> {'loss': 0.0001, 'learning_rate': 1.5077e-07, 'epoch': 4.37, 'throughput': 615.43}
554
+
555
+ [INFO|callbacks.py:310] 2024-07-16 09:39:55,251 >> {'loss': 0.0115, 'learning_rate': 1.3620e-07, 'epoch': 4.40, 'throughput': 615.48}
556
+
557
+ [INFO|callbacks.py:310] 2024-07-16 09:40:06,330 >> {'loss': 0.0005, 'learning_rate': 1.2236e-07, 'epoch': 4.42, 'throughput': 615.47}
558
+
559
+ [INFO|callbacks.py:310] 2024-07-16 09:40:17,431 >> {'loss': 0.0003, 'learning_rate': 1.0924e-07, 'epoch': 4.45, 'throughput': 615.57}
560
+
561
+ [INFO|callbacks.py:310] 2024-07-16 09:40:28,525 >> {'loss': 0.0050, 'learning_rate': 9.6846e-08, 'epoch': 4.48, 'throughput': 615.49}
562
+
563
+ [INFO|callbacks.py:310] 2024-07-16 09:40:39,640 >> {'loss': 0.0003, 'learning_rate': 8.5185e-08, 'epoch': 4.50, 'throughput': 615.38}
564
+
565
+ [INFO|callbacks.py:310] 2024-07-16 09:40:50,749 >> {'loss': 0.0008, 'learning_rate': 7.4261e-08, 'epoch': 4.53, 'throughput': 615.27}
566
+
567
+ [INFO|callbacks.py:310] 2024-07-16 09:41:01,862 >> {'loss': 0.0000, 'learning_rate': 6.4075e-08, 'epoch': 4.55, 'throughput': 615.37}
568
+
569
+ [INFO|callbacks.py:310] 2024-07-16 09:41:12,986 >> {'loss': 0.0000, 'learning_rate': 5.4631e-08, 'epoch': 4.58, 'throughput': 615.39}
570
+
571
+ [INFO|callbacks.py:310] 2024-07-16 09:41:24,079 >> {'loss': 0.0042, 'learning_rate': 4.5932e-08, 'epoch': 4.60, 'throughput': 615.48}
572
+
573
+ [INFO|callbacks.py:310] 2024-07-16 09:41:35,169 >> {'loss': 0.0004, 'learning_rate': 3.7981e-08, 'epoch': 4.63, 'throughput': 615.54}
574
+
575
+ [INFO|callbacks.py:310] 2024-07-16 09:41:46,249 >> {'loss': 0.0001, 'learning_rate': 3.0779e-08, 'epoch': 4.66, 'throughput': 615.42}
576
+
577
+ [INFO|callbacks.py:310] 2024-07-16 09:41:57,352 >> {'loss': 0.0001, 'learning_rate': 2.4330e-08, 'epoch': 4.68, 'throughput': 615.30}
578
+
579
+ [INFO|callbacks.py:310] 2024-07-16 09:42:08,449 >> {'loss': 0.0004, 'learning_rate': 1.8635e-08, 'epoch': 4.71, 'throughput': 615.12}
580
+
581
+ [INFO|callbacks.py:310] 2024-07-16 09:42:19,548 >> {'loss': 0.0000, 'learning_rate': 1.3695e-08, 'epoch': 4.73, 'throughput': 615.05}
582
+
583
+ [INFO|callbacks.py:310] 2024-07-16 09:42:30,662 >> {'loss': 0.0009, 'learning_rate': 9.5133e-09, 'epoch': 4.76, 'throughput': 615.11}
584
+
585
+ [INFO|callbacks.py:310] 2024-07-16 09:42:41,790 >> {'loss': 0.0001, 'learning_rate': 6.0899e-09, 'epoch': 4.78, 'throughput': 615.12}
586
+
587
+ [INFO|callbacks.py:310] 2024-07-16 09:42:52,921 >> {'loss': 0.0004, 'learning_rate': 3.4262e-09, 'epoch': 4.81, 'throughput': 615.30}
588
+
589
+ [INFO|callbacks.py:310] 2024-07-16 09:43:04,012 >> {'loss': 0.0002, 'learning_rate': 1.5229e-09, 'epoch': 4.84, 'throughput': 615.28}
590
+
591
+ [INFO|callbacks.py:310] 2024-07-16 09:43:15,108 >> {'loss': 0.0000, 'learning_rate': 3.8076e-10, 'epoch': 4.86, 'throughput': 615.26}
592
+
593
+ [INFO|callbacks.py:310] 2024-07-16 09:43:26,201 >> {'loss': 0.0001, 'learning_rate': 0.0000e+00, 'epoch': 4.89, 'throughput': 615.25}
594
+
595
+ [INFO|trainer.py:3478] 2024-07-16 09:43:32,570 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190
596
+
597
+ [INFO|configuration_utils.py:472] 2024-07-16 09:43:32,573 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190/config.json
598
+
599
+ [INFO|configuration_utils.py:769] 2024-07-16 09:43:32,573 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190/generation_config.json
600
+
601
+ [INFO|modeling_utils.py:2698] 2024-07-16 09:43:46,233 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190/model.safetensors.index.json.
602
+
603
+ [INFO|tokenization_utils_base.py:2574] 2024-07-16 09:43:46,233 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190/tokenizer_config.json
604
+
605
+ [INFO|tokenization_utils_base.py:2583] 2024-07-16 09:43:46,234 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/checkpoint-190/special_tokens_map.json
606
+
607
+ [INFO|trainer.py:2383] 2024-07-16 09:44:16,328 >>
608
+
609
+ Training completed. Do not forget to share your model on huggingface.co/models =)
610
+
611
+
612
+
613
+ [INFO|trainer.py:3478] 2024-07-16 09:44:22,736 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2
614
+
615
+ [INFO|configuration_utils.py:472] 2024-07-16 09:44:22,738 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/config.json
616
+
617
+ [INFO|configuration_utils.py:769] 2024-07-16 09:44:22,739 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/generation_config.json
618
+
619
+ [INFO|modeling_utils.py:2698] 2024-07-16 09:44:36,499 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/model.safetensors.index.json.
620
+
621
+ [INFO|tokenization_utils_base.py:2574] 2024-07-16 09:44:36,499 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/tokenizer_config.json
622
+
623
+ [INFO|tokenization_utils_base.py:2583] 2024-07-16 09:44:36,499 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-16-09-05-28_llama2/special_tokens_map.json
624
+
625
+ [WARNING|ploting.py:89] 2024-07-16 09:44:37,565 >> No metric eval_loss to plot.
626
+
627
+ [WARNING|ploting.py:89] 2024-07-16 09:44:37,565 >> No metric eval_accuracy to plot.
628
+
629
+ [INFO|modelcard.py:449] 2024-07-16 09:44:37,565 >> Dropping the following result as it does not have all the necessary fields:
630
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
631
+
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.887459807073955,
3
+ "num_input_tokens_seen": 1299392,
4
+ "total_flos": 5.151317702790349e+16,
5
+ "train_loss": 0.3433768034317166,
6
+ "train_runtime": 2162.0959,
7
+ "train_samples_per_second": 11.489,
8
+ "train_steps_per_second": 0.088
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 190, "loss": 8.3599, "learning_rate": 5.000000000000001e-07, "epoch": 0.02572347266881029, "percentage": 0.53, "elapsed_time": "0:00:12", "remaining_time": "0:40:53", "throughput": "548.54", "total_tokens": 7120}
2
+ {"current_steps": 2, "total_steps": 190, "loss": 8.1891, "learning_rate": 1.0000000000000002e-06, "epoch": 0.05144694533762058, "percentage": 1.05, "elapsed_time": "0:00:24", "remaining_time": "0:37:46", "throughput": "575.99", "total_tokens": 13888}
3
+ {"current_steps": 3, "total_steps": 190, "loss": 8.0792, "learning_rate": 1.5e-06, "epoch": 0.07717041800643087, "percentage": 1.58, "elapsed_time": "0:00:35", "remaining_time": "0:36:35", "throughput": "586.40", "total_tokens": 20656}
4
+ {"current_steps": 4, "total_steps": 190, "loss": 7.9682, "learning_rate": 2.0000000000000003e-06, "epoch": 0.10289389067524116, "percentage": 2.11, "elapsed_time": "0:00:46", "remaining_time": "0:35:53", "throughput": "586.87", "total_tokens": 27184}
5
+ {"current_steps": 5, "total_steps": 190, "loss": 6.9482, "learning_rate": 2.5e-06, "epoch": 0.12861736334405144, "percentage": 2.63, "elapsed_time": "0:00:57", "remaining_time": "0:35:24", "throughput": "599.42", "total_tokens": 34416}
6
+ {"current_steps": 6, "total_steps": 190, "loss": 5.1505, "learning_rate": 3e-06, "epoch": 0.15434083601286175, "percentage": 3.16, "elapsed_time": "0:01:08", "remaining_time": "0:35:00", "throughput": "599.28", "total_tokens": 41056}
7
+ {"current_steps": 7, "total_steps": 190, "loss": 4.7491, "learning_rate": 3.5e-06, "epoch": 0.18006430868167203, "percentage": 3.68, "elapsed_time": "0:01:19", "remaining_time": "0:34:41", "throughput": "596.99", "total_tokens": 47536}
8
+ {"current_steps": 8, "total_steps": 190, "loss": 3.2164, "learning_rate": 4.000000000000001e-06, "epoch": 0.2057877813504823, "percentage": 4.21, "elapsed_time": "0:01:30", "remaining_time": "0:34:24", "throughput": "600.21", "total_tokens": 54464}
9
+ {"current_steps": 9, "total_steps": 190, "loss": 2.7761, "learning_rate": 4.5e-06, "epoch": 0.2315112540192926, "percentage": 4.74, "elapsed_time": "0:01:41", "remaining_time": "0:34:08", "throughput": "603.94", "total_tokens": 61520}
10
+ {"current_steps": 10, "total_steps": 190, "loss": 0.6703, "learning_rate": 5e-06, "epoch": 0.2572347266881029, "percentage": 5.26, "elapsed_time": "0:01:52", "remaining_time": "0:33:53", "throughput": "605.96", "total_tokens": 68464}
11
+ {"current_steps": 11, "total_steps": 190, "loss": 0.3255, "learning_rate": 4.9996192378909785e-06, "epoch": 0.2829581993569132, "percentage": 5.79, "elapsed_time": "0:02:04", "remaining_time": "0:33:39", "throughput": "605.48", "total_tokens": 75152}
12
+ {"current_steps": 12, "total_steps": 190, "loss": 0.3301, "learning_rate": 4.99847706754774e-06, "epoch": 0.3086816720257235, "percentage": 6.32, "elapsed_time": "0:02:15", "remaining_time": "0:33:25", "throughput": "605.64", "total_tokens": 81888}
13
+ {"current_steps": 13, "total_steps": 190, "loss": 0.2121, "learning_rate": 4.9965738368864345e-06, "epoch": 0.33440514469453375, "percentage": 6.84, "elapsed_time": "0:02:26", "remaining_time": "0:33:12", "throughput": "606.15", "total_tokens": 88688}
14
+ {"current_steps": 14, "total_steps": 190, "loss": 1.1565, "learning_rate": 4.993910125649561e-06, "epoch": 0.36012861736334406, "percentage": 7.37, "elapsed_time": "0:02:37", "remaining_time": "0:32:58", "throughput": "607.41", "total_tokens": 95616}
15
+ {"current_steps": 15, "total_steps": 190, "loss": 0.8054, "learning_rate": 4.990486745229364e-06, "epoch": 0.3858520900321543, "percentage": 7.89, "elapsed_time": "0:02:48", "remaining_time": "0:32:45", "throughput": "606.19", "total_tokens": 102144}
16
+ {"current_steps": 16, "total_steps": 190, "loss": 0.2386, "learning_rate": 4.986304738420684e-06, "epoch": 0.4115755627009646, "percentage": 8.42, "elapsed_time": "0:02:59", "remaining_time": "0:32:33", "throughput": "607.52", "total_tokens": 109120}
17
+ {"current_steps": 17, "total_steps": 190, "loss": 0.3161, "learning_rate": 4.981365379103306e-06, "epoch": 0.43729903536977494, "percentage": 8.95, "elapsed_time": "0:03:10", "remaining_time": "0:32:21", "throughput": "606.78", "total_tokens": 115744}
18
+ {"current_steps": 18, "total_steps": 190, "loss": 0.2773, "learning_rate": 4.975670171853926e-06, "epoch": 0.4630225080385852, "percentage": 9.47, "elapsed_time": "0:03:21", "remaining_time": "0:32:09", "throughput": "607.80", "total_tokens": 122704}
19
+ {"current_steps": 19, "total_steps": 190, "loss": 0.2062, "learning_rate": 4.9692208514878445e-06, "epoch": 0.4887459807073955, "percentage": 10.0, "elapsed_time": "0:03:33", "remaining_time": "0:31:57", "throughput": "608.19", "total_tokens": 129552}
20
+ {"current_steps": 20, "total_steps": 190, "loss": 0.1837, "learning_rate": 4.962019382530521e-06, "epoch": 0.5144694533762058, "percentage": 10.53, "elapsed_time": "0:03:44", "remaining_time": "0:31:45", "throughput": "609.22", "total_tokens": 136544}
21
+ {"current_steps": 21, "total_steps": 190, "loss": 0.1735, "learning_rate": 4.9540679586191605e-06, "epoch": 0.5401929260450161, "percentage": 11.05, "elapsed_time": "0:03:55", "remaining_time": "0:31:32", "throughput": "610.01", "total_tokens": 143488}
22
+ {"current_steps": 22, "total_steps": 190, "loss": 0.1588, "learning_rate": 4.9453690018345144e-06, "epoch": 0.5659163987138264, "percentage": 11.58, "elapsed_time": "0:04:06", "remaining_time": "0:31:20", "throughput": "609.91", "total_tokens": 150224}
23
+ {"current_steps": 23, "total_steps": 190, "loss": 0.1443, "learning_rate": 4.935925161963089e-06, "epoch": 0.5916398713826366, "percentage": 12.11, "elapsed_time": "0:04:17", "remaining_time": "0:31:09", "throughput": "610.82", "total_tokens": 157232}
24
+ {"current_steps": 24, "total_steps": 190, "loss": 0.157, "learning_rate": 4.925739315689991e-06, "epoch": 0.617363344051447, "percentage": 12.63, "elapsed_time": "0:04:28", "remaining_time": "0:30:57", "throughput": "609.97", "total_tokens": 163776}
25
+ {"current_steps": 25, "total_steps": 190, "loss": 0.1199, "learning_rate": 4.914814565722671e-06, "epoch": 0.6430868167202572, "percentage": 13.16, "elapsed_time": "0:04:39", "remaining_time": "0:30:45", "throughput": "609.21", "total_tokens": 170352}
26
+ {"current_steps": 26, "total_steps": 190, "loss": 0.1539, "learning_rate": 4.903154239845798e-06, "epoch": 0.6688102893890675, "percentage": 13.68, "elapsed_time": "0:04:50", "remaining_time": "0:30:33", "throughput": "609.20", "total_tokens": 177120}
27
+ {"current_steps": 27, "total_steps": 190, "loss": 0.1208, "learning_rate": 4.890761889907589e-06, "epoch": 0.6945337620578779, "percentage": 14.21, "elapsed_time": "0:05:01", "remaining_time": "0:30:22", "throughput": "609.87", "total_tokens": 184096}
28
+ {"current_steps": 28, "total_steps": 190, "loss": 0.0954, "learning_rate": 4.8776412907378845e-06, "epoch": 0.7202572347266881, "percentage": 14.74, "elapsed_time": "0:05:12", "remaining_time": "0:30:10", "throughput": "610.39", "total_tokens": 191040}
29
+ {"current_steps": 29, "total_steps": 190, "loss": 0.1387, "learning_rate": 4.863796438998293e-06, "epoch": 0.7459807073954984, "percentage": 15.26, "elapsed_time": "0:05:24", "remaining_time": "0:29:59", "throughput": "611.13", "total_tokens": 198064}
30
+ {"current_steps": 30, "total_steps": 190, "loss": 0.1484, "learning_rate": 4.849231551964771e-06, "epoch": 0.7717041800643086, "percentage": 15.79, "elapsed_time": "0:05:35", "remaining_time": "0:29:47", "throughput": "612.02", "total_tokens": 205136}
31
+ {"current_steps": 31, "total_steps": 190, "loss": 0.0998, "learning_rate": 4.833951066243004e-06, "epoch": 0.797427652733119, "percentage": 16.32, "elapsed_time": "0:05:46", "remaining_time": "0:29:36", "throughput": "612.22", "total_tokens": 212000}
32
+ {"current_steps": 32, "total_steps": 190, "loss": 0.1068, "learning_rate": 4.817959636416969e-06, "epoch": 0.8231511254019293, "percentage": 16.84, "elapsed_time": "0:05:57", "remaining_time": "0:29:24", "throughput": "612.05", "total_tokens": 218720}
33
+ {"current_steps": 33, "total_steps": 190, "loss": 0.0801, "learning_rate": 4.801262133631101e-06, "epoch": 0.8488745980707395, "percentage": 17.37, "elapsed_time": "0:06:08", "remaining_time": "0:29:12", "throughput": "612.99", "total_tokens": 225856}
34
+ {"current_steps": 34, "total_steps": 190, "loss": 0.1066, "learning_rate": 4.783863644106502e-06, "epoch": 0.8745980707395499, "percentage": 17.89, "elapsed_time": "0:06:19", "remaining_time": "0:29:01", "throughput": "612.89", "total_tokens": 232640}
35
+ {"current_steps": 35, "total_steps": 190, "loss": 0.1038, "learning_rate": 4.765769467591626e-06, "epoch": 0.9003215434083601, "percentage": 18.42, "elapsed_time": "0:06:30", "remaining_time": "0:28:50", "throughput": "613.01", "total_tokens": 239504}
36
+ {"current_steps": 36, "total_steps": 190, "loss": 0.106, "learning_rate": 4.746985115747918e-06, "epoch": 0.9260450160771704, "percentage": 18.95, "elapsed_time": "0:06:41", "remaining_time": "0:28:38", "throughput": "612.94", "total_tokens": 246288}
37
+ {"current_steps": 37, "total_steps": 190, "loss": 0.1107, "learning_rate": 4.72751631047092e-06, "epoch": 0.9517684887459807, "percentage": 19.47, "elapsed_time": "0:06:52", "remaining_time": "0:28:27", "throughput": "613.01", "total_tokens": 253136}
38
+ {"current_steps": 38, "total_steps": 190, "loss": 0.1372, "learning_rate": 4.707368982147318e-06, "epoch": 0.977491961414791, "percentage": 20.0, "elapsed_time": "0:07:04", "remaining_time": "0:28:16", "throughput": "613.54", "total_tokens": 260160}
39
+ {"current_steps": 39, "total_steps": 190, "loss": 0.0816, "learning_rate": 4.68654926784849e-06, "epoch": 1.0032154340836013, "percentage": 20.53, "elapsed_time": "0:07:15", "remaining_time": "0:28:04", "throughput": "613.88", "total_tokens": 267120}
40
+ {"current_steps": 40, "total_steps": 190, "loss": 0.0743, "learning_rate": 4.665063509461098e-06, "epoch": 1.0289389067524115, "percentage": 21.05, "elapsed_time": "0:07:26", "remaining_time": "0:27:53", "throughput": "614.30", "total_tokens": 274112}
41
+ {"current_steps": 41, "total_steps": 190, "loss": 0.072, "learning_rate": 4.642918251755281e-06, "epoch": 1.0546623794212218, "percentage": 21.58, "elapsed_time": "0:07:37", "remaining_time": "0:27:41", "throughput": "614.77", "total_tokens": 281136}
42
+ {"current_steps": 42, "total_steps": 190, "loss": 0.0596, "learning_rate": 4.620120240391065e-06, "epoch": 1.0803858520900322, "percentage": 22.11, "elapsed_time": "0:07:48", "remaining_time": "0:27:30", "throughput": "614.97", "total_tokens": 288048}
43
+ {"current_steps": 43, "total_steps": 190, "loss": 0.0544, "learning_rate": 4.596676419863561e-06, "epoch": 1.1061093247588425, "percentage": 22.63, "elapsed_time": "0:07:59", "remaining_time": "0:27:19", "throughput": "615.46", "total_tokens": 295120}
44
+ {"current_steps": 44, "total_steps": 190, "loss": 0.0342, "learning_rate": 4.572593931387604e-06, "epoch": 1.1318327974276527, "percentage": 23.16, "elapsed_time": "0:08:10", "remaining_time": "0:27:07", "throughput": "615.55", "total_tokens": 302000}
45
+ {"current_steps": 45, "total_steps": 190, "loss": 0.0394, "learning_rate": 4.54788011072248e-06, "epoch": 1.157556270096463, "percentage": 23.68, "elapsed_time": "0:08:21", "remaining_time": "0:26:56", "throughput": "615.19", "total_tokens": 308672}
46
+ {"current_steps": 46, "total_steps": 190, "loss": 0.0196, "learning_rate": 4.522542485937369e-06, "epoch": 1.1832797427652733, "percentage": 24.21, "elapsed_time": "0:08:32", "remaining_time": "0:26:45", "throughput": "615.36", "total_tokens": 315600}
47
+ {"current_steps": 47, "total_steps": 190, "loss": 0.0411, "learning_rate": 4.496588775118232e-06, "epoch": 1.2090032154340835, "percentage": 24.74, "elapsed_time": "0:08:43", "remaining_time": "0:26:34", "throughput": "615.43", "total_tokens": 322464}
48
+ {"current_steps": 48, "total_steps": 190, "loss": 0.0257, "learning_rate": 4.470026884016805e-06, "epoch": 1.234726688102894, "percentage": 25.26, "elapsed_time": "0:08:55", "remaining_time": "0:26:22", "throughput": "614.94", "total_tokens": 329024}
49
+ {"current_steps": 49, "total_steps": 190, "loss": 0.0289, "learning_rate": 4.442864903642428e-06, "epoch": 1.2604501607717042, "percentage": 25.79, "elapsed_time": "0:09:06", "remaining_time": "0:26:11", "throughput": "615.29", "total_tokens": 336032}
50
+ {"current_steps": 50, "total_steps": 190, "loss": 0.1193, "learning_rate": 4.415111107797445e-06, "epoch": 1.2861736334405145, "percentage": 26.32, "elapsed_time": "0:09:17", "remaining_time": "0:26:00", "throughput": "615.01", "total_tokens": 342704}
51
+ {"current_steps": 51, "total_steps": 190, "loss": 0.0883, "learning_rate": 4.386773950556931e-06, "epoch": 1.3118971061093248, "percentage": 26.84, "elapsed_time": "0:09:28", "remaining_time": "0:25:48", "throughput": "614.92", "total_tokens": 349472}
52
+ {"current_steps": 52, "total_steps": 190, "loss": 0.0377, "learning_rate": 4.357862063693486e-06, "epoch": 1.337620578778135, "percentage": 27.37, "elapsed_time": "0:09:39", "remaining_time": "0:25:37", "throughput": "614.86", "total_tokens": 356272}
53
+ {"current_steps": 53, "total_steps": 190, "loss": 0.0602, "learning_rate": 4.328384254047927e-06, "epoch": 1.3633440514469453, "percentage": 27.89, "elapsed_time": "0:09:50", "remaining_time": "0:25:26", "throughput": "614.73", "total_tokens": 363040}
54
+ {"current_steps": 54, "total_steps": 190, "loss": 0.083, "learning_rate": 4.2983495008466285e-06, "epoch": 1.3890675241157555, "percentage": 28.42, "elapsed_time": "0:10:01", "remaining_time": "0:25:15", "throughput": "614.38", "total_tokens": 369664}
55
+ {"current_steps": 55, "total_steps": 190, "loss": 0.0358, "learning_rate": 4.267766952966369e-06, "epoch": 1.414790996784566, "percentage": 28.95, "elapsed_time": "0:10:12", "remaining_time": "0:25:04", "throughput": "614.72", "total_tokens": 376704}
56
+ {"current_steps": 56, "total_steps": 190, "loss": 0.0321, "learning_rate": 4.236645926147493e-06, "epoch": 1.4405144694533762, "percentage": 29.47, "elapsed_time": "0:10:23", "remaining_time": "0:24:52", "throughput": "614.84", "total_tokens": 383600}
57
+ {"current_steps": 57, "total_steps": 190, "loss": 0.0452, "learning_rate": 4.204995900156247e-06, "epoch": 1.4662379421221865, "percentage": 30.0, "elapsed_time": "0:10:34", "remaining_time": "0:24:41", "throughput": "615.11", "total_tokens": 390592}
58
+ {"current_steps": 58, "total_steps": 190, "loss": 0.0915, "learning_rate": 4.172826515897146e-06, "epoch": 1.4919614147909968, "percentage": 30.53, "elapsed_time": "0:10:46", "remaining_time": "0:24:30", "throughput": "615.02", "total_tokens": 397360}
59
+ {"current_steps": 59, "total_steps": 190, "loss": 0.0651, "learning_rate": 4.140147572476269e-06, "epoch": 1.517684887459807, "percentage": 31.05, "elapsed_time": "0:10:57", "remaining_time": "0:24:19", "throughput": "614.81", "total_tokens": 404048}
60
+ {"current_steps": 60, "total_steps": 190, "loss": 0.0868, "learning_rate": 4.106969024216348e-06, "epoch": 1.5434083601286175, "percentage": 31.58, "elapsed_time": "0:11:08", "remaining_time": "0:24:08", "throughput": "614.92", "total_tokens": 410960}
61
+ {"current_steps": 61, "total_steps": 190, "loss": 0.0554, "learning_rate": 4.073300977624594e-06, "epoch": 1.5691318327974275, "percentage": 32.11, "elapsed_time": "0:11:19", "remaining_time": "0:23:56", "throughput": "615.06", "total_tokens": 417888}
62
+ {"current_steps": 62, "total_steps": 190, "loss": 0.0336, "learning_rate": 4.039153688314146e-06, "epoch": 1.594855305466238, "percentage": 32.63, "elapsed_time": "0:11:30", "remaining_time": "0:23:45", "throughput": "615.29", "total_tokens": 424880}
63
+ {"current_steps": 63, "total_steps": 190, "loss": 0.0455, "learning_rate": 4.0045375578801216e-06, "epoch": 1.6205787781350482, "percentage": 33.16, "elapsed_time": "0:11:41", "remaining_time": "0:23:34", "throughput": "615.69", "total_tokens": 432000}
64
+ {"current_steps": 64, "total_steps": 190, "loss": 0.0406, "learning_rate": 3.969463130731183e-06, "epoch": 1.6463022508038585, "percentage": 33.68, "elapsed_time": "0:11:52", "remaining_time": "0:23:23", "throughput": "615.45", "total_tokens": 438672}
65
+ {"current_steps": 65, "total_steps": 190, "loss": 0.0461, "learning_rate": 3.933941090877615e-06, "epoch": 1.6720257234726688, "percentage": 34.21, "elapsed_time": "0:12:03", "remaining_time": "0:23:12", "throughput": "615.37", "total_tokens": 445440}
66
+ {"current_steps": 66, "total_steps": 190, "loss": 0.0466, "learning_rate": 3.897982258676867e-06, "epoch": 1.697749196141479, "percentage": 34.74, "elapsed_time": "0:12:14", "remaining_time": "0:23:00", "throughput": "615.10", "total_tokens": 452064}
67
+ {"current_steps": 67, "total_steps": 190, "loss": 0.0382, "learning_rate": 3.861597587537568e-06, "epoch": 1.7234726688102895, "percentage": 35.26, "elapsed_time": "0:12:26", "remaining_time": "0:22:49", "throughput": "615.23", "total_tokens": 458992}
68
+ {"current_steps": 68, "total_steps": 190, "loss": 0.0426, "learning_rate": 3.824798160583012e-06, "epoch": 1.7491961414790995, "percentage": 35.79, "elapsed_time": "0:12:37", "remaining_time": "0:22:38", "throughput": "614.90", "total_tokens": 465568}
69
+ {"current_steps": 69, "total_steps": 190, "loss": 0.0264, "learning_rate": 3.787595187275136e-06, "epoch": 1.77491961414791, "percentage": 36.32, "elapsed_time": "0:12:48", "remaining_time": "0:22:27", "throughput": "615.03", "total_tokens": 472496}
70
+ {"current_steps": 70, "total_steps": 190, "loss": 0.0567, "learning_rate": 3.7500000000000005e-06, "epoch": 1.8006430868167203, "percentage": 36.84, "elapsed_time": "0:12:59", "remaining_time": "0:22:16", "throughput": "615.11", "total_tokens": 479392}
71
+ {"current_steps": 71, "total_steps": 190, "loss": 0.0688, "learning_rate": 3.7120240506158433e-06, "epoch": 1.8263665594855305, "percentage": 37.37, "elapsed_time": "0:13:10", "remaining_time": "0:22:04", "throughput": "615.35", "total_tokens": 486416}
72
+ {"current_steps": 72, "total_steps": 190, "loss": 0.0351, "learning_rate": 3.6736789069647273e-06, "epoch": 1.852090032154341, "percentage": 37.89, "elapsed_time": "0:13:21", "remaining_time": "0:21:53", "throughput": "614.88", "total_tokens": 492896}
73
+ {"current_steps": 73, "total_steps": 190, "loss": 0.0246, "learning_rate": 3.634976249348867e-06, "epoch": 1.877813504823151, "percentage": 38.42, "elapsed_time": "0:13:32", "remaining_time": "0:21:42", "throughput": "614.93", "total_tokens": 499760}
74
+ {"current_steps": 74, "total_steps": 190, "loss": 0.0364, "learning_rate": 3.595927866972694e-06, "epoch": 1.9035369774919615, "percentage": 38.95, "elapsed_time": "0:13:43", "remaining_time": "0:21:31", "throughput": "615.23", "total_tokens": 506816}
75
+ {"current_steps": 75, "total_steps": 190, "loss": 0.0352, "learning_rate": 3.556545654351749e-06, "epoch": 1.9292604501607717, "percentage": 39.47, "elapsed_time": "0:13:54", "remaining_time": "0:21:20", "throughput": "615.23", "total_tokens": 513648}
76
+ {"current_steps": 76, "total_steps": 190, "loss": 0.0915, "learning_rate": 3.516841607689501e-06, "epoch": 1.954983922829582, "percentage": 40.0, "elapsed_time": "0:14:05", "remaining_time": "0:21:08", "throughput": "615.24", "total_tokens": 520480}
77
+ {"current_steps": 77, "total_steps": 190, "loss": 0.0327, "learning_rate": 3.476827821223184e-06, "epoch": 1.9807073954983923, "percentage": 40.53, "elapsed_time": "0:14:17", "remaining_time": "0:20:57", "throughput": "614.95", "total_tokens": 527056}
78
+ {"current_steps": 78, "total_steps": 190, "loss": 0.0448, "learning_rate": 3.436516483539781e-06, "epoch": 2.0064308681672025, "percentage": 41.05, "elapsed_time": "0:14:28", "remaining_time": "0:20:46", "throughput": "615.21", "total_tokens": 534112}
79
+ {"current_steps": 79, "total_steps": 190, "loss": 0.0186, "learning_rate": 3.39591987386325e-06, "epoch": 2.032154340836013, "percentage": 41.58, "elapsed_time": "0:14:39", "remaining_time": "0:20:35", "throughput": "615.29", "total_tokens": 541024}
80
+ {"current_steps": 80, "total_steps": 190, "loss": 0.0342, "learning_rate": 3.3550503583141726e-06, "epoch": 2.057877813504823, "percentage": 42.11, "elapsed_time": "0:14:50", "remaining_time": "0:20:24", "throughput": "615.30", "total_tokens": 547888}
81
+ {"current_steps": 81, "total_steps": 190, "loss": 0.0079, "learning_rate": 3.313920386142892e-06, "epoch": 2.0836012861736335, "percentage": 42.63, "elapsed_time": "0:15:01", "remaining_time": "0:20:13", "throughput": "615.14", "total_tokens": 554592}
82
+ {"current_steps": 82, "total_steps": 190, "loss": 0.0177, "learning_rate": 3.272542485937369e-06, "epoch": 2.1093247588424435, "percentage": 43.16, "elapsed_time": "0:15:12", "remaining_time": "0:20:02", "throughput": "615.01", "total_tokens": 561296}
83
+ {"current_steps": 83, "total_steps": 190, "loss": 0.0139, "learning_rate": 3.230929261806842e-06, "epoch": 2.135048231511254, "percentage": 43.68, "elapsed_time": "0:15:23", "remaining_time": "0:19:50", "throughput": "614.74", "total_tokens": 567872}
84
+ {"current_steps": 84, "total_steps": 190, "loss": 0.0103, "learning_rate": 3.189093389542498e-06, "epoch": 2.1607717041800645, "percentage": 44.21, "elapsed_time": "0:15:34", "remaining_time": "0:19:39", "throughput": "615.15", "total_tokens": 575072}
85
+ {"current_steps": 85, "total_steps": 190, "loss": 0.0221, "learning_rate": 3.147047612756302e-06, "epoch": 2.1864951768488745, "percentage": 44.74, "elapsed_time": "0:15:45", "remaining_time": "0:19:28", "throughput": "615.35", "total_tokens": 582080}
86
+ {"current_steps": 86, "total_steps": 190, "loss": 0.0021, "learning_rate": 3.1048047389991693e-06, "epoch": 2.212218649517685, "percentage": 45.26, "elapsed_time": "0:15:57", "remaining_time": "0:19:17", "throughput": "615.26", "total_tokens": 588816}
87
+ {"current_steps": 87, "total_steps": 190, "loss": 0.011, "learning_rate": 3.062377635859663e-06, "epoch": 2.237942122186495, "percentage": 45.79, "elapsed_time": "0:16:08", "remaining_time": "0:19:06", "throughput": "615.65", "total_tokens": 596032}
88
+ {"current_steps": 88, "total_steps": 190, "loss": 0.0081, "learning_rate": 3.019779227044398e-06, "epoch": 2.2636655948553055, "percentage": 46.32, "elapsed_time": "0:16:19", "remaining_time": "0:18:55", "throughput": "615.45", "total_tokens": 602672}
89
+ {"current_steps": 89, "total_steps": 190, "loss": 0.0149, "learning_rate": 2.9770224884413625e-06, "epoch": 2.289389067524116, "percentage": 46.84, "elapsed_time": "0:16:30", "remaining_time": "0:18:43", "throughput": "615.35", "total_tokens": 609424}
90
+ {"current_steps": 90, "total_steps": 190, "loss": 0.001, "learning_rate": 2.9341204441673267e-06, "epoch": 2.315112540192926, "percentage": 47.37, "elapsed_time": "0:16:41", "remaining_time": "0:18:32", "throughput": "615.53", "total_tokens": 616448}
91
+ {"current_steps": 91, "total_steps": 190, "loss": 0.007, "learning_rate": 2.8910861626005774e-06, "epoch": 2.3408360128617365, "percentage": 47.89, "elapsed_time": "0:16:52", "remaining_time": "0:18:21", "throughput": "615.54", "total_tokens": 623296}
92
+ {"current_steps": 92, "total_steps": 190, "loss": 0.0089, "learning_rate": 2.847932752400164e-06, "epoch": 2.3665594855305465, "percentage": 48.42, "elapsed_time": "0:17:03", "remaining_time": "0:18:10", "throughput": "615.48", "total_tokens": 630064}
93
+ {"current_steps": 93, "total_steps": 190, "loss": 0.0013, "learning_rate": 2.804673358512869e-06, "epoch": 2.392282958199357, "percentage": 48.95, "elapsed_time": "0:17:14", "remaining_time": "0:17:59", "throughput": "615.67", "total_tokens": 637088}
94
+ {"current_steps": 94, "total_steps": 190, "loss": 0.0267, "learning_rate": 2.761321158169134e-06, "epoch": 2.418006430868167, "percentage": 49.47, "elapsed_time": "0:17:25", "remaining_time": "0:17:48", "throughput": "615.82", "total_tokens": 644080}
95
+ {"current_steps": 95, "total_steps": 190, "loss": 0.0171, "learning_rate": 2.717889356869146e-06, "epoch": 2.4437299035369775, "percentage": 50.0, "elapsed_time": "0:17:36", "remaining_time": "0:17:36", "throughput": "615.76", "total_tokens": 650848}
96
+ {"current_steps": 96, "total_steps": 190, "loss": 0.0375, "learning_rate": 2.6743911843603134e-06, "epoch": 2.469453376205788, "percentage": 50.53, "elapsed_time": "0:17:48", "remaining_time": "0:17:25", "throughput": "615.50", "total_tokens": 657424}
97
+ {"current_steps": 97, "total_steps": 190, "loss": 0.0101, "learning_rate": 2.6308398906073603e-06, "epoch": 2.495176848874598, "percentage": 51.05, "elapsed_time": "0:17:59", "remaining_time": "0:17:14", "throughput": "615.37", "total_tokens": 664128}
98
+ {"current_steps": 98, "total_steps": 190, "loss": 0.0282, "learning_rate": 2.587248741756253e-06, "epoch": 2.5209003215434085, "percentage": 51.58, "elapsed_time": "0:18:10", "remaining_time": "0:17:03", "throughput": "615.50", "total_tokens": 671120}
99
+ {"current_steps": 99, "total_steps": 190, "loss": 0.0069, "learning_rate": 2.543631016093209e-06, "epoch": 2.5466237942122185, "percentage": 52.11, "elapsed_time": "0:18:21", "remaining_time": "0:16:52", "throughput": "615.47", "total_tokens": 677920}
100
+ {"current_steps": 100, "total_steps": 190, "loss": 0.0135, "learning_rate": 2.5e-06, "epoch": 2.572347266881029, "percentage": 52.63, "elapsed_time": "0:18:32", "remaining_time": "0:16:41", "throughput": "615.66", "total_tokens": 684960}
101
+ {"current_steps": 101, "total_steps": 190, "loss": 0.0062, "learning_rate": 2.4563689839067913e-06, "epoch": 2.598070739549839, "percentage": 53.16, "elapsed_time": "0:18:43", "remaining_time": "0:16:30", "throughput": "615.71", "total_tokens": 691856}
102
+ {"current_steps": 102, "total_steps": 190, "loss": 0.005, "learning_rate": 2.4127512582437486e-06, "epoch": 2.6237942122186495, "percentage": 53.68, "elapsed_time": "0:18:54", "remaining_time": "0:16:19", "throughput": "615.56", "total_tokens": 698512}
103
+ {"current_steps": 103, "total_steps": 190, "loss": 0.0285, "learning_rate": 2.3691601093926406e-06, "epoch": 2.64951768488746, "percentage": 54.21, "elapsed_time": "0:19:05", "remaining_time": "0:16:07", "throughput": "615.65", "total_tokens": 705440}
104
+ {"current_steps": 104, "total_steps": 190, "loss": 0.0225, "learning_rate": 2.325608815639687e-06, "epoch": 2.67524115755627, "percentage": 54.74, "elapsed_time": "0:19:16", "remaining_time": "0:15:56", "throughput": "615.86", "total_tokens": 712528}
105
+ {"current_steps": 105, "total_steps": 190, "loss": 0.028, "learning_rate": 2.2821106431308546e-06, "epoch": 2.7009646302250805, "percentage": 55.26, "elapsed_time": "0:19:28", "remaining_time": "0:15:45", "throughput": "615.69", "total_tokens": 719168}
106
+ {"current_steps": 106, "total_steps": 190, "loss": 0.0176, "learning_rate": 2.238678841830867e-06, "epoch": 2.7266881028938905, "percentage": 55.79, "elapsed_time": "0:19:39", "remaining_time": "0:15:34", "throughput": "615.60", "total_tokens": 725904}
107
+ {"current_steps": 107, "total_steps": 190, "loss": 0.0047, "learning_rate": 2.195326641487132e-06, "epoch": 2.752411575562701, "percentage": 56.32, "elapsed_time": "0:19:50", "remaining_time": "0:15:23", "throughput": "615.36", "total_tokens": 732480}
108
+ {"current_steps": 108, "total_steps": 190, "loss": 0.0135, "learning_rate": 2.1520672475998374e-06, "epoch": 2.778135048231511, "percentage": 56.84, "elapsed_time": "0:20:01", "remaining_time": "0:15:12", "throughput": "615.25", "total_tokens": 739184}
109
+ {"current_steps": 109, "total_steps": 190, "loss": 0.0044, "learning_rate": 2.1089138373994226e-06, "epoch": 2.8038585209003215, "percentage": 57.37, "elapsed_time": "0:20:12", "remaining_time": "0:15:01", "throughput": "615.51", "total_tokens": 746320}
110
+ {"current_steps": 110, "total_steps": 190, "loss": 0.0252, "learning_rate": 2.0658795558326745e-06, "epoch": 2.829581993569132, "percentage": 57.89, "elapsed_time": "0:20:23", "remaining_time": "0:14:49", "throughput": "615.50", "total_tokens": 753136}
111
+ {"current_steps": 111, "total_steps": 190, "loss": 0.0249, "learning_rate": 2.022977511558638e-06, "epoch": 2.855305466237942, "percentage": 58.42, "elapsed_time": "0:20:34", "remaining_time": "0:14:38", "throughput": "615.61", "total_tokens": 760096}
112
+ {"current_steps": 112, "total_steps": 190, "loss": 0.0146, "learning_rate": 1.9802207729556023e-06, "epoch": 2.8810289389067525, "percentage": 58.95, "elapsed_time": "0:20:45", "remaining_time": "0:14:27", "throughput": "615.75", "total_tokens": 767104}
113
+ {"current_steps": 113, "total_steps": 190, "loss": 0.0044, "learning_rate": 1.937622364140338e-06, "epoch": 2.906752411575563, "percentage": 59.47, "elapsed_time": "0:20:56", "remaining_time": "0:14:16", "throughput": "615.69", "total_tokens": 773872}
114
+ {"current_steps": 114, "total_steps": 190, "loss": 0.0054, "learning_rate": 1.895195261000831e-06, "epoch": 2.932475884244373, "percentage": 60.0, "elapsed_time": "0:21:08", "remaining_time": "0:14:05", "throughput": "615.71", "total_tokens": 780736}
115
+ {"current_steps": 115, "total_steps": 190, "loss": 0.0106, "learning_rate": 1.852952387243698e-06, "epoch": 2.958199356913183, "percentage": 60.53, "elapsed_time": "0:21:19", "remaining_time": "0:13:54", "throughput": "615.58", "total_tokens": 787424}
116
+ {"current_steps": 116, "total_steps": 190, "loss": 0.0167, "learning_rate": 1.8109066104575023e-06, "epoch": 2.9839228295819935, "percentage": 61.05, "elapsed_time": "0:21:30", "remaining_time": "0:13:43", "throughput": "615.53", "total_tokens": 794224}
117
+ {"current_steps": 117, "total_steps": 190, "loss": 0.009, "learning_rate": 1.7690707381931585e-06, "epoch": 3.009646302250804, "percentage": 61.58, "elapsed_time": "0:21:41", "remaining_time": "0:13:31", "throughput": "615.55", "total_tokens": 801088}
118
+ {"current_steps": 118, "total_steps": 190, "loss": 0.0024, "learning_rate": 1.7274575140626318e-06, "epoch": 3.035369774919614, "percentage": 62.11, "elapsed_time": "0:21:52", "remaining_time": "0:13:20", "throughput": "615.66", "total_tokens": 808048}
119
+ {"current_steps": 119, "total_steps": 190, "loss": 0.0235, "learning_rate": 1.686079613857109e-06, "epoch": 3.0610932475884245, "percentage": 62.63, "elapsed_time": "0:22:03", "remaining_time": "0:13:09", "throughput": "615.60", "total_tokens": 814800}
120
+ {"current_steps": 120, "total_steps": 190, "loss": 0.0179, "learning_rate": 1.6449496416858285e-06, "epoch": 3.0868167202572345, "percentage": 63.16, "elapsed_time": "0:22:14", "remaining_time": "0:12:58", "throughput": "615.53", "total_tokens": 821536}
121
+ {"current_steps": 121, "total_steps": 190, "loss": 0.0059, "learning_rate": 1.6040801261367494e-06, "epoch": 3.112540192926045, "percentage": 63.68, "elapsed_time": "0:22:25", "remaining_time": "0:12:47", "throughput": "615.35", "total_tokens": 828128}
122
+ {"current_steps": 122, "total_steps": 190, "loss": 0.0017, "learning_rate": 1.56348351646022e-06, "epoch": 3.1382636655948555, "percentage": 64.21, "elapsed_time": "0:22:36", "remaining_time": "0:12:36", "throughput": "615.08", "total_tokens": 834608}
123
+ {"current_steps": 123, "total_steps": 190, "loss": 0.0018, "learning_rate": 1.5231721787768162e-06, "epoch": 3.1639871382636655, "percentage": 64.74, "elapsed_time": "0:22:48", "remaining_time": "0:12:25", "throughput": "615.02", "total_tokens": 841360}
124
+ {"current_steps": 124, "total_steps": 190, "loss": 0.0032, "learning_rate": 1.4831583923105e-06, "epoch": 3.189710610932476, "percentage": 65.26, "elapsed_time": "0:22:59", "remaining_time": "0:12:14", "throughput": "615.23", "total_tokens": 848496}
125
+ {"current_steps": 125, "total_steps": 190, "loss": 0.0019, "learning_rate": 1.443454345648252e-06, "epoch": 3.215434083601286, "percentage": 65.79, "elapsed_time": "0:23:10", "remaining_time": "0:12:02", "throughput": "615.29", "total_tokens": 855424}
126
+ {"current_steps": 126, "total_steps": 190, "loss": 0.0014, "learning_rate": 1.4040721330273063e-06, "epoch": 3.2411575562700965, "percentage": 66.32, "elapsed_time": "0:23:21", "remaining_time": "0:11:51", "throughput": "615.27", "total_tokens": 862224}
127
+ {"current_steps": 127, "total_steps": 190, "loss": 0.0052, "learning_rate": 1.3650237506511333e-06, "epoch": 3.266881028938907, "percentage": 66.84, "elapsed_time": "0:23:32", "remaining_time": "0:11:40", "throughput": "615.45", "total_tokens": 869312}
128
+ {"current_steps": 128, "total_steps": 190, "loss": 0.0005, "learning_rate": 1.3263210930352737e-06, "epoch": 3.292604501607717, "percentage": 67.37, "elapsed_time": "0:23:43", "remaining_time": "0:11:29", "throughput": "615.55", "total_tokens": 876272}
129
+ {"current_steps": 129, "total_steps": 190, "loss": 0.0131, "learning_rate": 1.2879759493841577e-06, "epoch": 3.3183279742765275, "percentage": 67.89, "elapsed_time": "0:23:54", "remaining_time": "0:11:18", "throughput": "615.52", "total_tokens": 883072}
130
+ {"current_steps": 130, "total_steps": 190, "loss": 0.0009, "learning_rate": 1.2500000000000007e-06, "epoch": 3.3440514469453375, "percentage": 68.42, "elapsed_time": "0:24:05", "remaining_time": "0:11:07", "throughput": "615.54", "total_tokens": 889920}
131
+ {"current_steps": 131, "total_steps": 190, "loss": 0.0057, "learning_rate": 1.2124048127248644e-06, "epoch": 3.369774919614148, "percentage": 68.95, "elapsed_time": "0:24:16", "remaining_time": "0:10:56", "throughput": "615.63", "total_tokens": 896896}
132
+ {"current_steps": 132, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.1752018394169882e-06, "epoch": 3.395498392282958, "percentage": 69.47, "elapsed_time": "0:24:27", "remaining_time": "0:10:45", "throughput": "615.53", "total_tokens": 903600}
133
+ {"current_steps": 133, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.1384024124624324e-06, "epoch": 3.4212218649517685, "percentage": 70.0, "elapsed_time": "0:24:39", "remaining_time": "0:10:33", "throughput": "615.37", "total_tokens": 910208}
134
+ {"current_steps": 134, "total_steps": 190, "loss": 0.0145, "learning_rate": 1.1020177413231334e-06, "epoch": 3.446945337620579, "percentage": 70.53, "elapsed_time": "0:24:50", "remaining_time": "0:10:22", "throughput": "615.56", "total_tokens": 917328}
135
+ {"current_steps": 135, "total_steps": 190, "loss": 0.0034, "learning_rate": 1.0660589091223854e-06, "epoch": 3.472668810289389, "percentage": 71.05, "elapsed_time": "0:25:01", "remaining_time": "0:10:11", "throughput": "615.59", "total_tokens": 924192}
136
+ {"current_steps": 136, "total_steps": 190, "loss": 0.0156, "learning_rate": 1.0305368692688175e-06, "epoch": 3.4983922829581995, "percentage": 71.58, "elapsed_time": "0:25:12", "remaining_time": "0:10:00", "throughput": "615.43", "total_tokens": 930784}
137
+ {"current_steps": 137, "total_steps": 190, "loss": 0.0013, "learning_rate": 9.95462442119879e-07, "epoch": 3.5241157556270095, "percentage": 72.11, "elapsed_time": "0:25:23", "remaining_time": "0:09:49", "throughput": "615.59", "total_tokens": 937856}
138
+ {"current_steps": 138, "total_steps": 190, "loss": 0.0007, "learning_rate": 9.608463116858544e-07, "epoch": 3.54983922829582, "percentage": 72.63, "elapsed_time": "0:25:34", "remaining_time": "0:09:38", "throughput": "615.56", "total_tokens": 944640}
139
+ {"current_steps": 139, "total_steps": 190, "loss": 0.0005, "learning_rate": 9.266990223754069e-07, "epoch": 3.57556270096463, "percentage": 73.16, "elapsed_time": "0:25:45", "remaining_time": "0:09:27", "throughput": "615.58", "total_tokens": 951504}
140
+ {"current_steps": 140, "total_steps": 190, "loss": 0.0034, "learning_rate": 8.930309757836517e-07, "epoch": 3.6012861736334405, "percentage": 73.68, "elapsed_time": "0:25:56", "remaining_time": "0:09:16", "throughput": "615.52", "total_tokens": 958240}
141
+ {"current_steps": 141, "total_steps": 190, "loss": 0.0001, "learning_rate": 8.598524275237321e-07, "epoch": 3.627009646302251, "percentage": 74.21, "elapsed_time": "0:26:07", "remaining_time": "0:09:04", "throughput": "615.41", "total_tokens": 964912}
142
+ {"current_steps": 142, "total_steps": 190, "loss": 0.001, "learning_rate": 8.271734841028553e-07, "epoch": 3.652733118971061, "percentage": 74.74, "elapsed_time": "0:26:19", "remaining_time": "0:08:53", "throughput": "615.49", "total_tokens": 971872}
143
+ {"current_steps": 143, "total_steps": 190, "loss": 0.0123, "learning_rate": 7.950040998437541e-07, "epoch": 3.6784565916398715, "percentage": 75.26, "elapsed_time": "0:26:30", "remaining_time": "0:08:42", "throughput": "615.44", "total_tokens": 978640}
144
+ {"current_steps": 144, "total_steps": 190, "loss": 0.0002, "learning_rate": 7.633540738525066e-07, "epoch": 3.7041800643086815, "percentage": 75.79, "elapsed_time": "0:26:41", "remaining_time": "0:08:31", "throughput": "615.35", "total_tokens": 985328}
145
+ {"current_steps": 145, "total_steps": 190, "loss": 0.011, "learning_rate": 7.322330470336314e-07, "epoch": 3.729903536977492, "percentage": 76.32, "elapsed_time": "0:26:52", "remaining_time": "0:08:20", "throughput": "615.39", "total_tokens": 992224}
146
+ {"current_steps": 146, "total_steps": 190, "loss": 0.0008, "learning_rate": 7.016504991533727e-07, "epoch": 3.755627009646302, "percentage": 76.84, "elapsed_time": "0:27:03", "remaining_time": "0:08:09", "throughput": "615.17", "total_tokens": 998688}
147
+ {"current_steps": 147, "total_steps": 190, "loss": 0.0003, "learning_rate": 6.716157459520739e-07, "epoch": 3.7813504823151125, "percentage": 77.37, "elapsed_time": "0:27:14", "remaining_time": "0:07:58", "throughput": "615.50", "total_tokens": 1006032}
148
+ {"current_steps": 148, "total_steps": 190, "loss": 0.0018, "learning_rate": 6.421379363065142e-07, "epoch": 3.807073954983923, "percentage": 77.89, "elapsed_time": "0:27:25", "remaining_time": "0:07:46", "throughput": "615.55", "total_tokens": 1012944}
149
+ {"current_steps": 149, "total_steps": 190, "loss": 0.0016, "learning_rate": 6.1322604944307e-07, "epoch": 3.832797427652733, "percentage": 78.42, "elapsed_time": "0:27:36", "remaining_time": "0:07:35", "throughput": "615.59", "total_tokens": 1019856}
150
+ {"current_steps": 150, "total_steps": 190, "loss": 0.0021, "learning_rate": 5.848888922025553e-07, "epoch": 3.8585209003215435, "percentage": 78.95, "elapsed_time": "0:27:47", "remaining_time": "0:07:24", "throughput": "615.56", "total_tokens": 1026656}
151
+ {"current_steps": 151, "total_steps": 190, "loss": 0.0001, "learning_rate": 5.571350963575728e-07, "epoch": 3.884244372990354, "percentage": 79.47, "elapsed_time": "0:27:58", "remaining_time": "0:07:13", "throughput": "615.68", "total_tokens": 1033696}
152
+ {"current_steps": 152, "total_steps": 190, "loss": 0.0001, "learning_rate": 5.299731159831953e-07, "epoch": 3.909967845659164, "percentage": 80.0, "elapsed_time": "0:28:10", "remaining_time": "0:07:02", "throughput": "615.50", "total_tokens": 1040240}
153
+ {"current_steps": 153, "total_steps": 190, "loss": 0.0003, "learning_rate": 5.034112248817685e-07, "epoch": 3.935691318327974, "percentage": 80.53, "elapsed_time": "0:28:21", "remaining_time": "0:06:51", "throughput": "615.45", "total_tokens": 1046992}
154
+ {"current_steps": 154, "total_steps": 190, "loss": 0.0002, "learning_rate": 4.774575140626317e-07, "epoch": 3.9614147909967845, "percentage": 81.05, "elapsed_time": "0:28:32", "remaining_time": "0:06:40", "throughput": "615.52", "total_tokens": 1053936}
155
+ {"current_steps": 155, "total_steps": 190, "loss": 0.0002, "learning_rate": 4.5211988927752026e-07, "epoch": 3.987138263665595, "percentage": 81.58, "elapsed_time": "0:28:43", "remaining_time": "0:06:29", "throughput": "615.41", "total_tokens": 1060576}
156
+ {"current_steps": 156, "total_steps": 190, "loss": 0.0, "learning_rate": 4.27406068612396e-07, "epoch": 4.012861736334405, "percentage": 82.11, "elapsed_time": "0:28:54", "remaining_time": "0:06:18", "throughput": "615.56", "total_tokens": 1067648}
157
+ {"current_steps": 157, "total_steps": 190, "loss": 0.0003, "learning_rate": 4.033235801364402e-07, "epoch": 4.038585209003215, "percentage": 82.63, "elapsed_time": "0:29:05", "remaining_time": "0:06:06", "throughput": "615.58", "total_tokens": 1074512}
158
+ {"current_steps": 158, "total_steps": 190, "loss": 0.0002, "learning_rate": 3.798797596089351e-07, "epoch": 4.064308681672026, "percentage": 83.16, "elapsed_time": "0:29:16", "remaining_time": "0:05:55", "throughput": "615.55", "total_tokens": 1081296}
159
+ {"current_steps": 159, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.5708174824471947e-07, "epoch": 4.090032154340836, "percentage": 83.68, "elapsed_time": "0:29:27", "remaining_time": "0:05:44", "throughput": "615.40", "total_tokens": 1087888}
160
+ {"current_steps": 160, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.3493649053890325e-07, "epoch": 4.115755627009646, "percentage": 84.21, "elapsed_time": "0:29:38", "remaining_time": "0:05:33", "throughput": "615.53", "total_tokens": 1094960}
161
+ {"current_steps": 161, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.134507321515107e-07, "epoch": 4.141479099678457, "percentage": 84.74, "elapsed_time": "0:29:50", "remaining_time": "0:05:22", "throughput": "615.52", "total_tokens": 1101776}
162
+ {"current_steps": 162, "total_steps": 190, "loss": 0.0, "learning_rate": 2.9263101785268253e-07, "epoch": 4.167202572347267, "percentage": 85.26, "elapsed_time": "0:30:01", "remaining_time": "0:05:11", "throughput": "615.59", "total_tokens": 1108736}
163
+ {"current_steps": 163, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.7248368952908055e-07, "epoch": 4.192926045016077, "percentage": 85.79, "elapsed_time": "0:30:12", "remaining_time": "0:05:00", "throughput": "615.69", "total_tokens": 1115744}
164
+ {"current_steps": 164, "total_steps": 190, "loss": 0.0, "learning_rate": 2.53014884252083e-07, "epoch": 4.218649517684887, "percentage": 86.32, "elapsed_time": "0:30:23", "remaining_time": "0:04:49", "throughput": "615.71", "total_tokens": 1122592}
165
+ {"current_steps": 165, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.3423053240837518e-07, "epoch": 4.244372990353698, "percentage": 86.84, "elapsed_time": "0:30:34", "remaining_time": "0:04:37", "throughput": "615.55", "total_tokens": 1129136}
166
+ {"current_steps": 166, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.1613635589349756e-07, "epoch": 4.270096463022508, "percentage": 87.37, "elapsed_time": "0:30:45", "remaining_time": "0:04:26", "throughput": "615.61", "total_tokens": 1136080}
167
+ {"current_steps": 167, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.9873786636889908e-07, "epoch": 4.295819935691318, "percentage": 87.89, "elapsed_time": "0:30:56", "remaining_time": "0:04:15", "throughput": "615.64", "total_tokens": 1142976}
168
+ {"current_steps": 168, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.8204036358303173e-07, "epoch": 4.321543408360129, "percentage": 88.42, "elapsed_time": "0:31:07", "remaining_time": "0:04:04", "throughput": "615.58", "total_tokens": 1149712}
169
+ {"current_steps": 169, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.6604893375699594e-07, "epoch": 4.347266881028939, "percentage": 88.95, "elapsed_time": "0:31:18", "remaining_time": "0:03:53", "throughput": "615.46", "total_tokens": 1156336}
170
+ {"current_steps": 170, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.507684480352292e-07, "epoch": 4.372990353697749, "percentage": 89.47, "elapsed_time": "0:31:29", "remaining_time": "0:03:42", "throughput": "615.43", "total_tokens": 1163120}
171
+ {"current_steps": 171, "total_steps": 190, "loss": 0.0115, "learning_rate": 1.362035610017079e-07, "epoch": 4.39871382636656, "percentage": 90.0, "elapsed_time": "0:31:41", "remaining_time": "0:03:31", "throughput": "615.48", "total_tokens": 1170032}
172
+ {"current_steps": 172, "total_steps": 190, "loss": 0.0005, "learning_rate": 1.223587092621162e-07, "epoch": 4.42443729903537, "percentage": 90.53, "elapsed_time": "0:31:52", "remaining_time": "0:03:20", "throughput": "615.47", "total_tokens": 1176832}
173
+ {"current_steps": 173, "total_steps": 190, "loss": 0.0003, "learning_rate": 1.0923811009241142e-07, "epoch": 4.45016077170418, "percentage": 91.05, "elapsed_time": "0:32:03", "remaining_time": "0:03:08", "throughput": "615.57", "total_tokens": 1183856}
174
+ {"current_steps": 174, "total_steps": 190, "loss": 0.005, "learning_rate": 9.684576015420277e-08, "epoch": 4.47588424437299, "percentage": 91.58, "elapsed_time": "0:32:14", "remaining_time": "0:02:57", "throughput": "615.49", "total_tokens": 1190544}
175
+ {"current_steps": 175, "total_steps": 190, "loss": 0.0003, "learning_rate": 8.518543427732951e-08, "epoch": 4.501607717041801, "percentage": 92.11, "elapsed_time": "0:32:25", "remaining_time": "0:02:46", "throughput": "615.38", "total_tokens": 1197168}
176
+ {"current_steps": 176, "total_steps": 190, "loss": 0.0008, "learning_rate": 7.426068431000883e-08, "epoch": 4.527331189710611, "percentage": 92.63, "elapsed_time": "0:32:36", "remaining_time": "0:02:35", "throughput": "615.27", "total_tokens": 1203776}
177
+ {"current_steps": 177, "total_steps": 190, "loss": 0.0, "learning_rate": 6.407483803691216e-08, "epoch": 4.553054662379421, "percentage": 93.16, "elapsed_time": "0:32:47", "remaining_time": "0:02:24", "throughput": "615.37", "total_tokens": 1210816}
178
+ {"current_steps": 178, "total_steps": 190, "loss": 0.0, "learning_rate": 5.463099816548578e-08, "epoch": 4.578778135048232, "percentage": 93.68, "elapsed_time": "0:32:58", "remaining_time": "0:02:13", "throughput": "615.39", "total_tokens": 1217696}
179
+ {"current_steps": 179, "total_steps": 190, "loss": 0.0042, "learning_rate": 4.593204138084006e-08, "epoch": 4.604501607717042, "percentage": 94.21, "elapsed_time": "0:33:09", "remaining_time": "0:02:02", "throughput": "615.48", "total_tokens": 1224704}
180
+ {"current_steps": 180, "total_steps": 190, "loss": 0.0004, "learning_rate": 3.798061746947995e-08, "epoch": 4.630225080385852, "percentage": 94.74, "elapsed_time": "0:33:20", "remaining_time": "0:01:51", "throughput": "615.54", "total_tokens": 1231664}
181
+ {"current_steps": 181, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.077914851215585e-08, "epoch": 4.655948553054662, "percentage": 95.26, "elapsed_time": "0:33:32", "remaining_time": "0:01:40", "throughput": "615.42", "total_tokens": 1238240}
182
+ {"current_steps": 182, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.4329828146074096e-08, "epoch": 4.681672025723473, "percentage": 95.79, "elapsed_time": "0:33:43", "remaining_time": "0:01:28", "throughput": "615.30", "total_tokens": 1244832}
183
+ {"current_steps": 183, "total_steps": 190, "loss": 0.0004, "learning_rate": 1.8634620896695044e-08, "epoch": 4.707395498392283, "percentage": 96.32, "elapsed_time": "0:33:54", "remaining_time": "0:01:17", "throughput": "615.12", "total_tokens": 1251296}
184
+ {"current_steps": 184, "total_steps": 190, "loss": 0.0, "learning_rate": 1.3695261579316776e-08, "epoch": 4.733118971061093, "percentage": 96.84, "elapsed_time": "0:34:05", "remaining_time": "0:01:06", "throughput": "615.05", "total_tokens": 1257968}
185
+ {"current_steps": 185, "total_steps": 190, "loss": 0.0009, "learning_rate": 9.513254770636138e-09, "epoch": 4.758842443729904, "percentage": 97.37, "elapsed_time": "0:34:16", "remaining_time": "0:00:55", "throughput": "615.11", "total_tokens": 1264928}
186
+ {"current_steps": 186, "total_steps": 190, "loss": 0.0001, "learning_rate": 6.089874350439507e-09, "epoch": 4.784565916398714, "percentage": 97.89, "elapsed_time": "0:34:27", "remaining_time": "0:00:44", "throughput": "615.12", "total_tokens": 1271792}
187
+ {"current_steps": 187, "total_steps": 190, "loss": 0.0004, "learning_rate": 3.4261631135654174e-09, "epoch": 4.810289389067524, "percentage": 98.42, "elapsed_time": "0:34:38", "remaining_time": "0:00:33", "throughput": "615.30", "total_tokens": 1279024}
188
+ {"current_steps": 188, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.5229324522605949e-09, "epoch": 4.836012861736334, "percentage": 98.95, "elapsed_time": "0:34:49", "remaining_time": "0:00:22", "throughput": "615.28", "total_tokens": 1285792}
189
+ {"current_steps": 189, "total_steps": 190, "loss": 0.0, "learning_rate": 3.8076210902182607e-10, "epoch": 4.861736334405145, "percentage": 99.47, "elapsed_time": "0:35:00", "remaining_time": "0:00:11", "throughput": "615.26", "total_tokens": 1292576}
190
+ {"current_steps": 190, "total_steps": 190, "loss": 0.0001, "learning_rate": 0.0, "epoch": 4.887459807073955, "percentage": 100.0, "elapsed_time": "0:35:11", "remaining_time": "0:00:00", "throughput": "615.25", "total_tokens": 1299392}
191
+ {"current_steps": 190, "total_steps": 190, "epoch": 4.887459807073955, "percentage": 100.0, "elapsed_time": "0:36:02", "remaining_time": "0:00:00", "throughput": "600.99", "total_tokens": 1299392}
trainer_state.json ADDED
@@ -0,0 +1,1563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.887459807073955,
5
+ "eval_steps": 500,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02572347266881029,
13
+ "grad_norm": 268.0186767578125,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 8.3599,
16
+ "num_input_tokens_seen": 7120,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.05144694533762058,
21
+ "grad_norm": 277.9050598144531,
22
+ "learning_rate": 1.0000000000000002e-06,
23
+ "loss": 8.1891,
24
+ "num_input_tokens_seen": 13888,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.07717041800643087,
29
+ "grad_norm": 277.69873046875,
30
+ "learning_rate": 1.5e-06,
31
+ "loss": 8.0792,
32
+ "num_input_tokens_seen": 20656,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.10289389067524116,
37
+ "grad_norm": 267.486328125,
38
+ "learning_rate": 2.0000000000000003e-06,
39
+ "loss": 7.9682,
40
+ "num_input_tokens_seen": 27184,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.12861736334405144,
45
+ "grad_norm": 301.225830078125,
46
+ "learning_rate": 2.5e-06,
47
+ "loss": 6.9482,
48
+ "num_input_tokens_seen": 34416,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.15434083601286175,
53
+ "grad_norm": 137.74415588378906,
54
+ "learning_rate": 3e-06,
55
+ "loss": 5.1505,
56
+ "num_input_tokens_seen": 41056,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.18006430868167203,
61
+ "grad_norm": 113.7622299194336,
62
+ "learning_rate": 3.5e-06,
63
+ "loss": 4.7491,
64
+ "num_input_tokens_seen": 47536,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.2057877813504823,
69
+ "grad_norm": 109.39883422851562,
70
+ "learning_rate": 4.000000000000001e-06,
71
+ "loss": 3.2164,
72
+ "num_input_tokens_seen": 54464,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.2315112540192926,
77
+ "grad_norm": 119.0561294555664,
78
+ "learning_rate": 4.5e-06,
79
+ "loss": 2.7761,
80
+ "num_input_tokens_seen": 61520,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.2572347266881029,
85
+ "grad_norm": 111.31031036376953,
86
+ "learning_rate": 5e-06,
87
+ "loss": 0.6703,
88
+ "num_input_tokens_seen": 68464,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.2829581993569132,
93
+ "grad_norm": 39.81684494018555,
94
+ "learning_rate": 4.9996192378909785e-06,
95
+ "loss": 0.3255,
96
+ "num_input_tokens_seen": 75152,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.3086816720257235,
101
+ "grad_norm": 41.08443069458008,
102
+ "learning_rate": 4.99847706754774e-06,
103
+ "loss": 0.3301,
104
+ "num_input_tokens_seen": 81888,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.33440514469453375,
109
+ "grad_norm": 17.01146125793457,
110
+ "learning_rate": 4.9965738368864345e-06,
111
+ "loss": 0.2121,
112
+ "num_input_tokens_seen": 88688,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.36012861736334406,
117
+ "grad_norm": 73.99099731445312,
118
+ "learning_rate": 4.993910125649561e-06,
119
+ "loss": 1.1565,
120
+ "num_input_tokens_seen": 95616,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.3858520900321543,
125
+ "grad_norm": 114.83367919921875,
126
+ "learning_rate": 4.990486745229364e-06,
127
+ "loss": 0.8054,
128
+ "num_input_tokens_seen": 102144,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.4115755627009646,
133
+ "grad_norm": 18.247591018676758,
134
+ "learning_rate": 4.986304738420684e-06,
135
+ "loss": 0.2386,
136
+ "num_input_tokens_seen": 109120,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.43729903536977494,
141
+ "grad_norm": 27.782032012939453,
142
+ "learning_rate": 4.981365379103306e-06,
143
+ "loss": 0.3161,
144
+ "num_input_tokens_seen": 115744,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.4630225080385852,
149
+ "grad_norm": 21.16512107849121,
150
+ "learning_rate": 4.975670171853926e-06,
151
+ "loss": 0.2773,
152
+ "num_input_tokens_seen": 122704,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.4887459807073955,
157
+ "grad_norm": 6.738564491271973,
158
+ "learning_rate": 4.9692208514878445e-06,
159
+ "loss": 0.2062,
160
+ "num_input_tokens_seen": 129552,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.5144694533762058,
165
+ "grad_norm": 3.6603872776031494,
166
+ "learning_rate": 4.962019382530521e-06,
167
+ "loss": 0.1837,
168
+ "num_input_tokens_seen": 136544,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.5401929260450161,
173
+ "grad_norm": 10.339789390563965,
174
+ "learning_rate": 4.9540679586191605e-06,
175
+ "loss": 0.1735,
176
+ "num_input_tokens_seen": 143488,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.5659163987138264,
181
+ "grad_norm": 4.833702087402344,
182
+ "learning_rate": 4.9453690018345144e-06,
183
+ "loss": 0.1588,
184
+ "num_input_tokens_seen": 150224,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.5916398713826366,
189
+ "grad_norm": 4.9161152839660645,
190
+ "learning_rate": 4.935925161963089e-06,
191
+ "loss": 0.1443,
192
+ "num_input_tokens_seen": 157232,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.617363344051447,
197
+ "grad_norm": 9.033807754516602,
198
+ "learning_rate": 4.925739315689991e-06,
199
+ "loss": 0.157,
200
+ "num_input_tokens_seen": 163776,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.6430868167202572,
205
+ "grad_norm": 4.518654823303223,
206
+ "learning_rate": 4.914814565722671e-06,
207
+ "loss": 0.1199,
208
+ "num_input_tokens_seen": 170352,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.6688102893890675,
213
+ "grad_norm": 10.43909740447998,
214
+ "learning_rate": 4.903154239845798e-06,
215
+ "loss": 0.1539,
216
+ "num_input_tokens_seen": 177120,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.6945337620578779,
221
+ "grad_norm": 9.000858306884766,
222
+ "learning_rate": 4.890761889907589e-06,
223
+ "loss": 0.1208,
224
+ "num_input_tokens_seen": 184096,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.7202572347266881,
229
+ "grad_norm": 3.3685858249664307,
230
+ "learning_rate": 4.8776412907378845e-06,
231
+ "loss": 0.0954,
232
+ "num_input_tokens_seen": 191040,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.7459807073954984,
237
+ "grad_norm": 6.876232147216797,
238
+ "learning_rate": 4.863796438998293e-06,
239
+ "loss": 0.1387,
240
+ "num_input_tokens_seen": 198064,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.7717041800643086,
245
+ "grad_norm": 11.019433975219727,
246
+ "learning_rate": 4.849231551964771e-06,
247
+ "loss": 0.1484,
248
+ "num_input_tokens_seen": 205136,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.797427652733119,
253
+ "grad_norm": 4.780524730682373,
254
+ "learning_rate": 4.833951066243004e-06,
255
+ "loss": 0.0998,
256
+ "num_input_tokens_seen": 212000,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.8231511254019293,
261
+ "grad_norm": 3.613060235977173,
262
+ "learning_rate": 4.817959636416969e-06,
263
+ "loss": 0.1068,
264
+ "num_input_tokens_seen": 218720,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.8488745980707395,
269
+ "grad_norm": 5.576949596405029,
270
+ "learning_rate": 4.801262133631101e-06,
271
+ "loss": 0.0801,
272
+ "num_input_tokens_seen": 225856,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.8745980707395499,
277
+ "grad_norm": 3.3204915523529053,
278
+ "learning_rate": 4.783863644106502e-06,
279
+ "loss": 0.1066,
280
+ "num_input_tokens_seen": 232640,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.9003215434083601,
285
+ "grad_norm": 3.090853452682495,
286
+ "learning_rate": 4.765769467591626e-06,
287
+ "loss": 0.1038,
288
+ "num_input_tokens_seen": 239504,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.9260450160771704,
293
+ "grad_norm": 6.979610443115234,
294
+ "learning_rate": 4.746985115747918e-06,
295
+ "loss": 0.106,
296
+ "num_input_tokens_seen": 246288,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.9517684887459807,
301
+ "grad_norm": 3.491868495941162,
302
+ "learning_rate": 4.72751631047092e-06,
303
+ "loss": 0.1107,
304
+ "num_input_tokens_seen": 253136,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.977491961414791,
309
+ "grad_norm": 6.108020782470703,
310
+ "learning_rate": 4.707368982147318e-06,
311
+ "loss": 0.1372,
312
+ "num_input_tokens_seen": 260160,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 1.0032154340836013,
317
+ "grad_norm": 1.9764081239700317,
318
+ "learning_rate": 4.68654926784849e-06,
319
+ "loss": 0.0816,
320
+ "num_input_tokens_seen": 267120,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 1.0289389067524115,
325
+ "grad_norm": 2.5603554248809814,
326
+ "learning_rate": 4.665063509461098e-06,
327
+ "loss": 0.0743,
328
+ "num_input_tokens_seen": 274112,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 1.0546623794212218,
333
+ "grad_norm": 5.457398414611816,
334
+ "learning_rate": 4.642918251755281e-06,
335
+ "loss": 0.072,
336
+ "num_input_tokens_seen": 281136,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 1.0803858520900322,
341
+ "grad_norm": 4.488720417022705,
342
+ "learning_rate": 4.620120240391065e-06,
343
+ "loss": 0.0596,
344
+ "num_input_tokens_seen": 288048,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 1.1061093247588425,
349
+ "grad_norm": 2.8057987689971924,
350
+ "learning_rate": 4.596676419863561e-06,
351
+ "loss": 0.0544,
352
+ "num_input_tokens_seen": 295120,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 1.1318327974276527,
357
+ "grad_norm": 2.921278476715088,
358
+ "learning_rate": 4.572593931387604e-06,
359
+ "loss": 0.0342,
360
+ "num_input_tokens_seen": 302000,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 1.157556270096463,
365
+ "grad_norm": 2.9281697273254395,
366
+ "learning_rate": 4.54788011072248e-06,
367
+ "loss": 0.0394,
368
+ "num_input_tokens_seen": 308672,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 1.1832797427652733,
373
+ "grad_norm": 4.087917327880859,
374
+ "learning_rate": 4.522542485937369e-06,
375
+ "loss": 0.0196,
376
+ "num_input_tokens_seen": 315600,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 1.2090032154340835,
381
+ "grad_norm": 3.390829086303711,
382
+ "learning_rate": 4.496588775118232e-06,
383
+ "loss": 0.0411,
384
+ "num_input_tokens_seen": 322464,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 1.234726688102894,
389
+ "grad_norm": 4.550433158874512,
390
+ "learning_rate": 4.470026884016805e-06,
391
+ "loss": 0.0257,
392
+ "num_input_tokens_seen": 329024,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 1.2604501607717042,
397
+ "grad_norm": 6.6677446365356445,
398
+ "learning_rate": 4.442864903642428e-06,
399
+ "loss": 0.0289,
400
+ "num_input_tokens_seen": 336032,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 1.2861736334405145,
405
+ "grad_norm": 7.874734878540039,
406
+ "learning_rate": 4.415111107797445e-06,
407
+ "loss": 0.1193,
408
+ "num_input_tokens_seen": 342704,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 1.3118971061093248,
413
+ "grad_norm": 5.971132278442383,
414
+ "learning_rate": 4.386773950556931e-06,
415
+ "loss": 0.0883,
416
+ "num_input_tokens_seen": 349472,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 1.337620578778135,
421
+ "grad_norm": 4.0566725730896,
422
+ "learning_rate": 4.357862063693486e-06,
423
+ "loss": 0.0377,
424
+ "num_input_tokens_seen": 356272,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 1.3633440514469453,
429
+ "grad_norm": 5.443573474884033,
430
+ "learning_rate": 4.328384254047927e-06,
431
+ "loss": 0.0602,
432
+ "num_input_tokens_seen": 363040,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 1.3890675241157555,
437
+ "grad_norm": 6.038252353668213,
438
+ "learning_rate": 4.2983495008466285e-06,
439
+ "loss": 0.083,
440
+ "num_input_tokens_seen": 369664,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 1.414790996784566,
445
+ "grad_norm": 2.8046696186065674,
446
+ "learning_rate": 4.267766952966369e-06,
447
+ "loss": 0.0358,
448
+ "num_input_tokens_seen": 376704,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 1.4405144694533762,
453
+ "grad_norm": 2.451719284057617,
454
+ "learning_rate": 4.236645926147493e-06,
455
+ "loss": 0.0321,
456
+ "num_input_tokens_seen": 383600,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 1.4662379421221865,
461
+ "grad_norm": 3.4111475944519043,
462
+ "learning_rate": 4.204995900156247e-06,
463
+ "loss": 0.0452,
464
+ "num_input_tokens_seen": 390592,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 1.4919614147909968,
469
+ "grad_norm": 3.065139055252075,
470
+ "learning_rate": 4.172826515897146e-06,
471
+ "loss": 0.0915,
472
+ "num_input_tokens_seen": 397360,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 1.517684887459807,
477
+ "grad_norm": 3.0692198276519775,
478
+ "learning_rate": 4.140147572476269e-06,
479
+ "loss": 0.0651,
480
+ "num_input_tokens_seen": 404048,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 1.5434083601286175,
485
+ "grad_norm": 3.6201350688934326,
486
+ "learning_rate": 4.106969024216348e-06,
487
+ "loss": 0.0868,
488
+ "num_input_tokens_seen": 410960,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 1.5691318327974275,
493
+ "grad_norm": 2.289900779724121,
494
+ "learning_rate": 4.073300977624594e-06,
495
+ "loss": 0.0554,
496
+ "num_input_tokens_seen": 417888,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 1.594855305466238,
501
+ "grad_norm": 1.4743808507919312,
502
+ "learning_rate": 4.039153688314146e-06,
503
+ "loss": 0.0336,
504
+ "num_input_tokens_seen": 424880,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.6205787781350482,
509
+ "grad_norm": 2.1891098022460938,
510
+ "learning_rate": 4.0045375578801216e-06,
511
+ "loss": 0.0455,
512
+ "num_input_tokens_seen": 432000,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.6463022508038585,
517
+ "grad_norm": 1.8203191757202148,
518
+ "learning_rate": 3.969463130731183e-06,
519
+ "loss": 0.0406,
520
+ "num_input_tokens_seen": 438672,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.6720257234726688,
525
+ "grad_norm": 2.453317165374756,
526
+ "learning_rate": 3.933941090877615e-06,
527
+ "loss": 0.0461,
528
+ "num_input_tokens_seen": 445440,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.697749196141479,
533
+ "grad_norm": 2.035806894302368,
534
+ "learning_rate": 3.897982258676867e-06,
535
+ "loss": 0.0466,
536
+ "num_input_tokens_seen": 452064,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.7234726688102895,
541
+ "grad_norm": 3.169175386428833,
542
+ "learning_rate": 3.861597587537568e-06,
543
+ "loss": 0.0382,
544
+ "num_input_tokens_seen": 458992,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.7491961414790995,
549
+ "grad_norm": 2.0320234298706055,
550
+ "learning_rate": 3.824798160583012e-06,
551
+ "loss": 0.0426,
552
+ "num_input_tokens_seen": 465568,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.77491961414791,
557
+ "grad_norm": 4.094840049743652,
558
+ "learning_rate": 3.787595187275136e-06,
559
+ "loss": 0.0264,
560
+ "num_input_tokens_seen": 472496,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.8006430868167203,
565
+ "grad_norm": 4.245150089263916,
566
+ "learning_rate": 3.7500000000000005e-06,
567
+ "loss": 0.0567,
568
+ "num_input_tokens_seen": 479392,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.8263665594855305,
573
+ "grad_norm": 3.226271152496338,
574
+ "learning_rate": 3.7120240506158433e-06,
575
+ "loss": 0.0688,
576
+ "num_input_tokens_seen": 486416,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.852090032154341,
581
+ "grad_norm": 2.070322275161743,
582
+ "learning_rate": 3.6736789069647273e-06,
583
+ "loss": 0.0351,
584
+ "num_input_tokens_seen": 492896,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.877813504823151,
589
+ "grad_norm": 2.4622035026550293,
590
+ "learning_rate": 3.634976249348867e-06,
591
+ "loss": 0.0246,
592
+ "num_input_tokens_seen": 499760,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.9035369774919615,
597
+ "grad_norm": 3.902181625366211,
598
+ "learning_rate": 3.595927866972694e-06,
599
+ "loss": 0.0364,
600
+ "num_input_tokens_seen": 506816,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.9292604501607717,
605
+ "grad_norm": 4.0147480964660645,
606
+ "learning_rate": 3.556545654351749e-06,
607
+ "loss": 0.0352,
608
+ "num_input_tokens_seen": 513648,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.954983922829582,
613
+ "grad_norm": 3.6791763305664062,
614
+ "learning_rate": 3.516841607689501e-06,
615
+ "loss": 0.0915,
616
+ "num_input_tokens_seen": 520480,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.9807073954983923,
621
+ "grad_norm": 1.641350269317627,
622
+ "learning_rate": 3.476827821223184e-06,
623
+ "loss": 0.0327,
624
+ "num_input_tokens_seen": 527056,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 2.0064308681672025,
629
+ "grad_norm": 3.6227402687072754,
630
+ "learning_rate": 3.436516483539781e-06,
631
+ "loss": 0.0448,
632
+ "num_input_tokens_seen": 534112,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 2.032154340836013,
637
+ "grad_norm": 1.654789924621582,
638
+ "learning_rate": 3.39591987386325e-06,
639
+ "loss": 0.0186,
640
+ "num_input_tokens_seen": 541024,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 2.057877813504823,
645
+ "grad_norm": 2.0418519973754883,
646
+ "learning_rate": 3.3550503583141726e-06,
647
+ "loss": 0.0342,
648
+ "num_input_tokens_seen": 547888,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 2.0836012861736335,
653
+ "grad_norm": 1.0242717266082764,
654
+ "learning_rate": 3.313920386142892e-06,
655
+ "loss": 0.0079,
656
+ "num_input_tokens_seen": 554592,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 2.1093247588424435,
661
+ "grad_norm": 1.59933602809906,
662
+ "learning_rate": 3.272542485937369e-06,
663
+ "loss": 0.0177,
664
+ "num_input_tokens_seen": 561296,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 2.135048231511254,
669
+ "grad_norm": 1.83909273147583,
670
+ "learning_rate": 3.230929261806842e-06,
671
+ "loss": 0.0139,
672
+ "num_input_tokens_seen": 567872,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 2.1607717041800645,
677
+ "grad_norm": 1.933048963546753,
678
+ "learning_rate": 3.189093389542498e-06,
679
+ "loss": 0.0103,
680
+ "num_input_tokens_seen": 575072,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 2.1864951768488745,
685
+ "grad_norm": 2.1397433280944824,
686
+ "learning_rate": 3.147047612756302e-06,
687
+ "loss": 0.0221,
688
+ "num_input_tokens_seen": 582080,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 2.212218649517685,
693
+ "grad_norm": 0.7958673238754272,
694
+ "learning_rate": 3.1048047389991693e-06,
695
+ "loss": 0.0021,
696
+ "num_input_tokens_seen": 588816,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 2.237942122186495,
701
+ "grad_norm": 1.8060617446899414,
702
+ "learning_rate": 3.062377635859663e-06,
703
+ "loss": 0.011,
704
+ "num_input_tokens_seen": 596032,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 2.2636655948553055,
709
+ "grad_norm": 1.7997971773147583,
710
+ "learning_rate": 3.019779227044398e-06,
711
+ "loss": 0.0081,
712
+ "num_input_tokens_seen": 602672,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 2.289389067524116,
717
+ "grad_norm": 2.0229434967041016,
718
+ "learning_rate": 2.9770224884413625e-06,
719
+ "loss": 0.0149,
720
+ "num_input_tokens_seen": 609424,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 2.315112540192926,
725
+ "grad_norm": 0.5248342156410217,
726
+ "learning_rate": 2.9341204441673267e-06,
727
+ "loss": 0.001,
728
+ "num_input_tokens_seen": 616448,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 2.3408360128617365,
733
+ "grad_norm": 1.1899443864822388,
734
+ "learning_rate": 2.8910861626005774e-06,
735
+ "loss": 0.007,
736
+ "num_input_tokens_seen": 623296,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 2.3665594855305465,
741
+ "grad_norm": 3.1920082569122314,
742
+ "learning_rate": 2.847932752400164e-06,
743
+ "loss": 0.0089,
744
+ "num_input_tokens_seen": 630064,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 2.392282958199357,
749
+ "grad_norm": 0.37337368726730347,
750
+ "learning_rate": 2.804673358512869e-06,
751
+ "loss": 0.0013,
752
+ "num_input_tokens_seen": 637088,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 2.418006430868167,
757
+ "grad_norm": 4.124266147613525,
758
+ "learning_rate": 2.761321158169134e-06,
759
+ "loss": 0.0267,
760
+ "num_input_tokens_seen": 644080,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 2.4437299035369775,
765
+ "grad_norm": 1.9108864068984985,
766
+ "learning_rate": 2.717889356869146e-06,
767
+ "loss": 0.0171,
768
+ "num_input_tokens_seen": 650848,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 2.469453376205788,
773
+ "grad_norm": 3.225116729736328,
774
+ "learning_rate": 2.6743911843603134e-06,
775
+ "loss": 0.0375,
776
+ "num_input_tokens_seen": 657424,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 2.495176848874598,
781
+ "grad_norm": 1.8133978843688965,
782
+ "learning_rate": 2.6308398906073603e-06,
783
+ "loss": 0.0101,
784
+ "num_input_tokens_seen": 664128,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 2.5209003215434085,
789
+ "grad_norm": 3.179337739944458,
790
+ "learning_rate": 2.587248741756253e-06,
791
+ "loss": 0.0282,
792
+ "num_input_tokens_seen": 671120,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 2.5466237942122185,
797
+ "grad_norm": 1.5852500200271606,
798
+ "learning_rate": 2.543631016093209e-06,
799
+ "loss": 0.0069,
800
+ "num_input_tokens_seen": 677920,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 2.572347266881029,
805
+ "grad_norm": 2.1428685188293457,
806
+ "learning_rate": 2.5e-06,
807
+ "loss": 0.0135,
808
+ "num_input_tokens_seen": 684960,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 2.598070739549839,
813
+ "grad_norm": 1.0775537490844727,
814
+ "learning_rate": 2.4563689839067913e-06,
815
+ "loss": 0.0062,
816
+ "num_input_tokens_seen": 691856,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 2.6237942122186495,
821
+ "grad_norm": 1.5073256492614746,
822
+ "learning_rate": 2.4127512582437486e-06,
823
+ "loss": 0.005,
824
+ "num_input_tokens_seen": 698512,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 2.64951768488746,
829
+ "grad_norm": 1.7251828908920288,
830
+ "learning_rate": 2.3691601093926406e-06,
831
+ "loss": 0.0285,
832
+ "num_input_tokens_seen": 705440,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 2.67524115755627,
837
+ "grad_norm": 2.271348237991333,
838
+ "learning_rate": 2.325608815639687e-06,
839
+ "loss": 0.0225,
840
+ "num_input_tokens_seen": 712528,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 2.7009646302250805,
845
+ "grad_norm": 0.9558768272399902,
846
+ "learning_rate": 2.2821106431308546e-06,
847
+ "loss": 0.028,
848
+ "num_input_tokens_seen": 719168,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 2.7266881028938905,
853
+ "grad_norm": 2.1378886699676514,
854
+ "learning_rate": 2.238678841830867e-06,
855
+ "loss": 0.0176,
856
+ "num_input_tokens_seen": 725904,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 2.752411575562701,
861
+ "grad_norm": 0.9674012660980225,
862
+ "learning_rate": 2.195326641487132e-06,
863
+ "loss": 0.0047,
864
+ "num_input_tokens_seen": 732480,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 2.778135048231511,
869
+ "grad_norm": 0.6068861484527588,
870
+ "learning_rate": 2.1520672475998374e-06,
871
+ "loss": 0.0135,
872
+ "num_input_tokens_seen": 739184,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 2.8038585209003215,
877
+ "grad_norm": 0.833519458770752,
878
+ "learning_rate": 2.1089138373994226e-06,
879
+ "loss": 0.0044,
880
+ "num_input_tokens_seen": 746320,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 2.829581993569132,
885
+ "grad_norm": 1.4018948078155518,
886
+ "learning_rate": 2.0658795558326745e-06,
887
+ "loss": 0.0252,
888
+ "num_input_tokens_seen": 753136,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 2.855305466237942,
893
+ "grad_norm": 1.5698492527008057,
894
+ "learning_rate": 2.022977511558638e-06,
895
+ "loss": 0.0249,
896
+ "num_input_tokens_seen": 760096,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 2.8810289389067525,
901
+ "grad_norm": 2.051377534866333,
902
+ "learning_rate": 1.9802207729556023e-06,
903
+ "loss": 0.0146,
904
+ "num_input_tokens_seen": 767104,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 2.906752411575563,
909
+ "grad_norm": 0.48683854937553406,
910
+ "learning_rate": 1.937622364140338e-06,
911
+ "loss": 0.0044,
912
+ "num_input_tokens_seen": 773872,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 2.932475884244373,
917
+ "grad_norm": 0.9895896911621094,
918
+ "learning_rate": 1.895195261000831e-06,
919
+ "loss": 0.0054,
920
+ "num_input_tokens_seen": 780736,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 2.958199356913183,
925
+ "grad_norm": 0.8025338053703308,
926
+ "learning_rate": 1.852952387243698e-06,
927
+ "loss": 0.0106,
928
+ "num_input_tokens_seen": 787424,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 2.9839228295819935,
933
+ "grad_norm": 1.7318856716156006,
934
+ "learning_rate": 1.8109066104575023e-06,
935
+ "loss": 0.0167,
936
+ "num_input_tokens_seen": 794224,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 3.009646302250804,
941
+ "grad_norm": 1.5407195091247559,
942
+ "learning_rate": 1.7690707381931585e-06,
943
+ "loss": 0.009,
944
+ "num_input_tokens_seen": 801088,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 3.035369774919614,
949
+ "grad_norm": 0.25947141647338867,
950
+ "learning_rate": 1.7274575140626318e-06,
951
+ "loss": 0.0024,
952
+ "num_input_tokens_seen": 808048,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 3.0610932475884245,
957
+ "grad_norm": 2.6516857147216797,
958
+ "learning_rate": 1.686079613857109e-06,
959
+ "loss": 0.0235,
960
+ "num_input_tokens_seen": 814800,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 3.0868167202572345,
965
+ "grad_norm": 0.9633734822273254,
966
+ "learning_rate": 1.6449496416858285e-06,
967
+ "loss": 0.0179,
968
+ "num_input_tokens_seen": 821536,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 3.112540192926045,
973
+ "grad_norm": 1.0766749382019043,
974
+ "learning_rate": 1.6040801261367494e-06,
975
+ "loss": 0.0059,
976
+ "num_input_tokens_seen": 828128,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 3.1382636655948555,
981
+ "grad_norm": 0.2934500277042389,
982
+ "learning_rate": 1.56348351646022e-06,
983
+ "loss": 0.0017,
984
+ "num_input_tokens_seen": 834608,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 3.1639871382636655,
989
+ "grad_norm": 0.3029981553554535,
990
+ "learning_rate": 1.5231721787768162e-06,
991
+ "loss": 0.0018,
992
+ "num_input_tokens_seen": 841360,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 3.189710610932476,
997
+ "grad_norm": 0.44817763566970825,
998
+ "learning_rate": 1.4831583923105e-06,
999
+ "loss": 0.0032,
1000
+ "num_input_tokens_seen": 848496,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 3.215434083601286,
1005
+ "grad_norm": 0.21245715022087097,
1006
+ "learning_rate": 1.443454345648252e-06,
1007
+ "loss": 0.0019,
1008
+ "num_input_tokens_seen": 855424,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 3.2411575562700965,
1013
+ "grad_norm": 0.22589029371738434,
1014
+ "learning_rate": 1.4040721330273063e-06,
1015
+ "loss": 0.0014,
1016
+ "num_input_tokens_seen": 862224,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 3.266881028938907,
1021
+ "grad_norm": 0.5972980856895447,
1022
+ "learning_rate": 1.3650237506511333e-06,
1023
+ "loss": 0.0052,
1024
+ "num_input_tokens_seen": 869312,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 3.292604501607717,
1029
+ "grad_norm": 0.06931939721107483,
1030
+ "learning_rate": 1.3263210930352737e-06,
1031
+ "loss": 0.0005,
1032
+ "num_input_tokens_seen": 876272,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 3.3183279742765275,
1037
+ "grad_norm": 1.2623660564422607,
1038
+ "learning_rate": 1.2879759493841577e-06,
1039
+ "loss": 0.0131,
1040
+ "num_input_tokens_seen": 883072,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 3.3440514469453375,
1045
+ "grad_norm": 0.5440672636032104,
1046
+ "learning_rate": 1.2500000000000007e-06,
1047
+ "loss": 0.0009,
1048
+ "num_input_tokens_seen": 889920,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 3.369774919614148,
1053
+ "grad_norm": 0.6807874441146851,
1054
+ "learning_rate": 1.2124048127248644e-06,
1055
+ "loss": 0.0057,
1056
+ "num_input_tokens_seen": 896896,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 3.395498392282958,
1061
+ "grad_norm": 0.03898243606090546,
1062
+ "learning_rate": 1.1752018394169882e-06,
1063
+ "loss": 0.0002,
1064
+ "num_input_tokens_seen": 903600,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 3.4212218649517685,
1069
+ "grad_norm": 0.0243828147649765,
1070
+ "learning_rate": 1.1384024124624324e-06,
1071
+ "loss": 0.0002,
1072
+ "num_input_tokens_seen": 910208,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 3.446945337620579,
1077
+ "grad_norm": 2.5577075481414795,
1078
+ "learning_rate": 1.1020177413231334e-06,
1079
+ "loss": 0.0145,
1080
+ "num_input_tokens_seen": 917328,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 3.472668810289389,
1085
+ "grad_norm": 1.2599172592163086,
1086
+ "learning_rate": 1.0660589091223854e-06,
1087
+ "loss": 0.0034,
1088
+ "num_input_tokens_seen": 924192,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 3.4983922829581995,
1093
+ "grad_norm": 1.3292278051376343,
1094
+ "learning_rate": 1.0305368692688175e-06,
1095
+ "loss": 0.0156,
1096
+ "num_input_tokens_seen": 930784,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 3.5241157556270095,
1101
+ "grad_norm": 0.2977862060070038,
1102
+ "learning_rate": 9.95462442119879e-07,
1103
+ "loss": 0.0013,
1104
+ "num_input_tokens_seen": 937856,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 3.54983922829582,
1109
+ "grad_norm": 0.3527968227863312,
1110
+ "learning_rate": 9.608463116858544e-07,
1111
+ "loss": 0.0007,
1112
+ "num_input_tokens_seen": 944640,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 3.57556270096463,
1117
+ "grad_norm": 0.16851164400577545,
1118
+ "learning_rate": 9.266990223754069e-07,
1119
+ "loss": 0.0005,
1120
+ "num_input_tokens_seen": 951504,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 3.6012861736334405,
1125
+ "grad_norm": 0.4394027292728424,
1126
+ "learning_rate": 8.930309757836517e-07,
1127
+ "loss": 0.0034,
1128
+ "num_input_tokens_seen": 958240,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 3.627009646302251,
1133
+ "grad_norm": 0.0209315475076437,
1134
+ "learning_rate": 8.598524275237321e-07,
1135
+ "loss": 0.0001,
1136
+ "num_input_tokens_seen": 964912,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 3.652733118971061,
1141
+ "grad_norm": 0.35701486468315125,
1142
+ "learning_rate": 8.271734841028553e-07,
1143
+ "loss": 0.001,
1144
+ "num_input_tokens_seen": 971872,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 3.6784565916398715,
1149
+ "grad_norm": 2.0450756549835205,
1150
+ "learning_rate": 7.950040998437541e-07,
1151
+ "loss": 0.0123,
1152
+ "num_input_tokens_seen": 978640,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 3.7041800643086815,
1157
+ "grad_norm": 0.057205893099308014,
1158
+ "learning_rate": 7.633540738525066e-07,
1159
+ "loss": 0.0002,
1160
+ "num_input_tokens_seen": 985328,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 3.729903536977492,
1165
+ "grad_norm": 1.7251015901565552,
1166
+ "learning_rate": 7.322330470336314e-07,
1167
+ "loss": 0.011,
1168
+ "num_input_tokens_seen": 992224,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 3.755627009646302,
1173
+ "grad_norm": 0.417669415473938,
1174
+ "learning_rate": 7.016504991533727e-07,
1175
+ "loss": 0.0008,
1176
+ "num_input_tokens_seen": 998688,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 3.7813504823151125,
1181
+ "grad_norm": 0.06796720623970032,
1182
+ "learning_rate": 6.716157459520739e-07,
1183
+ "loss": 0.0003,
1184
+ "num_input_tokens_seen": 1006032,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 3.807073954983923,
1189
+ "grad_norm": 0.5570574998855591,
1190
+ "learning_rate": 6.421379363065142e-07,
1191
+ "loss": 0.0018,
1192
+ "num_input_tokens_seen": 1012944,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 3.832797427652733,
1197
+ "grad_norm": 0.557479977607727,
1198
+ "learning_rate": 6.1322604944307e-07,
1199
+ "loss": 0.0016,
1200
+ "num_input_tokens_seen": 1019856,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 3.8585209003215435,
1205
+ "grad_norm": 0.48776909708976746,
1206
+ "learning_rate": 5.848888922025553e-07,
1207
+ "loss": 0.0021,
1208
+ "num_input_tokens_seen": 1026656,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 3.884244372990354,
1213
+ "grad_norm": 0.025394350290298462,
1214
+ "learning_rate": 5.571350963575728e-07,
1215
+ "loss": 0.0001,
1216
+ "num_input_tokens_seen": 1033696,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 3.909967845659164,
1221
+ "grad_norm": 0.03195232152938843,
1222
+ "learning_rate": 5.299731159831953e-07,
1223
+ "loss": 0.0001,
1224
+ "num_input_tokens_seen": 1040240,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 3.935691318327974,
1229
+ "grad_norm": 0.0676019936800003,
1230
+ "learning_rate": 5.034112248817685e-07,
1231
+ "loss": 0.0003,
1232
+ "num_input_tokens_seen": 1046992,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 3.9614147909967845,
1237
+ "grad_norm": 0.04871657118201256,
1238
+ "learning_rate": 4.774575140626317e-07,
1239
+ "loss": 0.0002,
1240
+ "num_input_tokens_seen": 1053936,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 3.987138263665595,
1245
+ "grad_norm": 0.08272106945514679,
1246
+ "learning_rate": 4.5211988927752026e-07,
1247
+ "loss": 0.0002,
1248
+ "num_input_tokens_seen": 1060576,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 4.012861736334405,
1253
+ "grad_norm": 0.009170151315629482,
1254
+ "learning_rate": 4.27406068612396e-07,
1255
+ "loss": 0.0,
1256
+ "num_input_tokens_seen": 1067648,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 4.038585209003215,
1261
+ "grad_norm": 0.10544967651367188,
1262
+ "learning_rate": 4.033235801364402e-07,
1263
+ "loss": 0.0003,
1264
+ "num_input_tokens_seen": 1074512,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 4.064308681672026,
1269
+ "grad_norm": 0.04709336906671524,
1270
+ "learning_rate": 3.798797596089351e-07,
1271
+ "loss": 0.0002,
1272
+ "num_input_tokens_seen": 1081296,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 4.090032154340836,
1277
+ "grad_norm": 0.042879387736320496,
1278
+ "learning_rate": 3.5708174824471947e-07,
1279
+ "loss": 0.0001,
1280
+ "num_input_tokens_seen": 1087888,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 4.115755627009646,
1285
+ "grad_norm": 0.03649509325623512,
1286
+ "learning_rate": 3.3493649053890325e-07,
1287
+ "loss": 0.0001,
1288
+ "num_input_tokens_seen": 1094960,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 4.141479099678457,
1293
+ "grad_norm": 0.01273419987410307,
1294
+ "learning_rate": 3.134507321515107e-07,
1295
+ "loss": 0.0001,
1296
+ "num_input_tokens_seen": 1101776,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 4.167202572347267,
1301
+ "grad_norm": 0.006498055998235941,
1302
+ "learning_rate": 2.9263101785268253e-07,
1303
+ "loss": 0.0,
1304
+ "num_input_tokens_seen": 1108736,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 4.192926045016077,
1309
+ "grad_norm": 0.027757082134485245,
1310
+ "learning_rate": 2.7248368952908055e-07,
1311
+ "loss": 0.0001,
1312
+ "num_input_tokens_seen": 1115744,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 4.218649517684887,
1317
+ "grad_norm": 0.005632288288325071,
1318
+ "learning_rate": 2.53014884252083e-07,
1319
+ "loss": 0.0,
1320
+ "num_input_tokens_seen": 1122592,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 4.244372990353698,
1325
+ "grad_norm": 0.014449907466769218,
1326
+ "learning_rate": 2.3423053240837518e-07,
1327
+ "loss": 0.0001,
1328
+ "num_input_tokens_seen": 1129136,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 4.270096463022508,
1333
+ "grad_norm": 0.013245908543467522,
1334
+ "learning_rate": 2.1613635589349756e-07,
1335
+ "loss": 0.0001,
1336
+ "num_input_tokens_seen": 1136080,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 4.295819935691318,
1341
+ "grad_norm": 0.12783974409103394,
1342
+ "learning_rate": 1.9873786636889908e-07,
1343
+ "loss": 0.0002,
1344
+ "num_input_tokens_seen": 1142976,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 4.321543408360129,
1349
+ "grad_norm": 0.08086368441581726,
1350
+ "learning_rate": 1.8204036358303173e-07,
1351
+ "loss": 0.0002,
1352
+ "num_input_tokens_seen": 1149712,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 4.347266881028939,
1357
+ "grad_norm": 0.018286822363734245,
1358
+ "learning_rate": 1.6604893375699594e-07,
1359
+ "loss": 0.0001,
1360
+ "num_input_tokens_seen": 1156336,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 4.372990353697749,
1365
+ "grad_norm": 0.009972570464015007,
1366
+ "learning_rate": 1.507684480352292e-07,
1367
+ "loss": 0.0001,
1368
+ "num_input_tokens_seen": 1163120,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 4.39871382636656,
1373
+ "grad_norm": 0.9909194707870483,
1374
+ "learning_rate": 1.362035610017079e-07,
1375
+ "loss": 0.0115,
1376
+ "num_input_tokens_seen": 1170032,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 4.42443729903537,
1381
+ "grad_norm": 0.21059785783290863,
1382
+ "learning_rate": 1.223587092621162e-07,
1383
+ "loss": 0.0005,
1384
+ "num_input_tokens_seen": 1176832,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 4.45016077170418,
1389
+ "grad_norm": 0.08872511237859726,
1390
+ "learning_rate": 1.0923811009241142e-07,
1391
+ "loss": 0.0003,
1392
+ "num_input_tokens_seen": 1183856,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 4.47588424437299,
1397
+ "grad_norm": 0.7515408396720886,
1398
+ "learning_rate": 9.684576015420277e-08,
1399
+ "loss": 0.005,
1400
+ "num_input_tokens_seen": 1190544,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 4.501607717041801,
1405
+ "grad_norm": 0.0772569328546524,
1406
+ "learning_rate": 8.518543427732951e-08,
1407
+ "loss": 0.0003,
1408
+ "num_input_tokens_seen": 1197168,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 4.527331189710611,
1413
+ "grad_norm": 0.19207893311977386,
1414
+ "learning_rate": 7.426068431000883e-08,
1415
+ "loss": 0.0008,
1416
+ "num_input_tokens_seen": 1203776,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 4.553054662379421,
1421
+ "grad_norm": 0.007837573066353798,
1422
+ "learning_rate": 6.407483803691216e-08,
1423
+ "loss": 0.0,
1424
+ "num_input_tokens_seen": 1210816,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 4.578778135048232,
1429
+ "grad_norm": 0.009602434933185577,
1430
+ "learning_rate": 5.463099816548578e-08,
1431
+ "loss": 0.0,
1432
+ "num_input_tokens_seen": 1217696,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 4.604501607717042,
1437
+ "grad_norm": 1.3553417921066284,
1438
+ "learning_rate": 4.593204138084006e-08,
1439
+ "loss": 0.0042,
1440
+ "num_input_tokens_seen": 1224704,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 4.630225080385852,
1445
+ "grad_norm": 0.17981038987636566,
1446
+ "learning_rate": 3.798061746947995e-08,
1447
+ "loss": 0.0004,
1448
+ "num_input_tokens_seen": 1231664,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 4.655948553054662,
1453
+ "grad_norm": 0.04047521948814392,
1454
+ "learning_rate": 3.077914851215585e-08,
1455
+ "loss": 0.0001,
1456
+ "num_input_tokens_seen": 1238240,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 4.681672025723473,
1461
+ "grad_norm": 0.02045159973204136,
1462
+ "learning_rate": 2.4329828146074096e-08,
1463
+ "loss": 0.0001,
1464
+ "num_input_tokens_seen": 1244832,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 4.707395498392283,
1469
+ "grad_norm": 0.10965674370527267,
1470
+ "learning_rate": 1.8634620896695044e-08,
1471
+ "loss": 0.0004,
1472
+ "num_input_tokens_seen": 1251296,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 4.733118971061093,
1477
+ "grad_norm": 0.008195169270038605,
1478
+ "learning_rate": 1.3695261579316776e-08,
1479
+ "loss": 0.0,
1480
+ "num_input_tokens_seen": 1257968,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 4.758842443729904,
1485
+ "grad_norm": 0.25205764174461365,
1486
+ "learning_rate": 9.513254770636138e-09,
1487
+ "loss": 0.0009,
1488
+ "num_input_tokens_seen": 1264928,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 4.784565916398714,
1493
+ "grad_norm": 0.031606338918209076,
1494
+ "learning_rate": 6.089874350439507e-09,
1495
+ "loss": 0.0001,
1496
+ "num_input_tokens_seen": 1271792,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 4.810289389067524,
1501
+ "grad_norm": 0.19231323897838593,
1502
+ "learning_rate": 3.4261631135654174e-09,
1503
+ "loss": 0.0004,
1504
+ "num_input_tokens_seen": 1279024,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 4.836012861736334,
1509
+ "grad_norm": 0.06766192615032196,
1510
+ "learning_rate": 1.5229324522605949e-09,
1511
+ "loss": 0.0002,
1512
+ "num_input_tokens_seen": 1285792,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 4.861736334405145,
1517
+ "grad_norm": 0.005693785380572081,
1518
+ "learning_rate": 3.8076210902182607e-10,
1519
+ "loss": 0.0,
1520
+ "num_input_tokens_seen": 1292576,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 4.887459807073955,
1525
+ "grad_norm": 0.02735370770096779,
1526
+ "learning_rate": 0.0,
1527
+ "loss": 0.0001,
1528
+ "num_input_tokens_seen": 1299392,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 4.887459807073955,
1533
+ "num_input_tokens_seen": 1299392,
1534
+ "step": 190,
1535
+ "total_flos": 5.151317702790349e+16,
1536
+ "train_loss": 0.3433768034317166,
1537
+ "train_runtime": 2162.0959,
1538
+ "train_samples_per_second": 11.489,
1539
+ "train_steps_per_second": 0.088
1540
+ }
1541
+ ],
1542
+ "logging_steps": 1,
1543
+ "max_steps": 190,
1544
+ "num_input_tokens_seen": 1299392,
1545
+ "num_train_epochs": 5,
1546
+ "save_steps": 1000,
1547
+ "stateful_callbacks": {
1548
+ "TrainerControl": {
1549
+ "args": {
1550
+ "should_epoch_stop": false,
1551
+ "should_evaluate": false,
1552
+ "should_log": false,
1553
+ "should_save": true,
1554
+ "should_training_stop": true
1555
+ },
1556
+ "attributes": {}
1557
+ }
1558
+ },
1559
+ "total_flos": 5.151317702790349e+16,
1560
+ "train_batch_size": 2,
1561
+ "trial_name": null,
1562
+ "trial_params": null
1563
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59c20394a81d6a411e14385c1f4bccd2cbf8486e7c193698844b9070fbad87d6
3
+ size 6584