shantipriya's picture
Update README.md
3d13e2f verified
|
raw
history blame
3.2 kB
metadata
license: llama3
library_name: peft
base_model: unsloth/llama-3-8b-bnb-4bit
model-index:
  - name: Llama3_8B_Odia_Unsloth
    results: []

Llama3_8B_Odia_Unsloth

Llama3_8B_Odia_Unsloth is a fine-tuned Odia large language model with 8 billion parameters, and it is based on Llama3. The model is fine-tuned on a comprehensive 171k Odia instruction set, encompassing domain-specific and cultural nuances.

The fine-tuning process leverages Unsloth, expediting the training process for optimal efficiency.

For more details about the model, data, training procedure, and evaluations, go through the blog post.

Model Description

  • Model type: A 8B fine-tuned model
  • Primary Language(s): Odia and English
  • License: Llama3

Inference

Sample inference script.

#Install Unsloth
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass


from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "OdiaGenAI-LLM/Llama3_8B_Odia_Unsloth",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

FastLanguageModel.for_inference(model) 
inputs = tokenizer(
[
    alpaca_prompt.format(
        "କୋଭିଡ୍ 19 ର ଲକ୍ଷଣଗୁଡ଼ିକ କ’ଣ?", # instruction
        "", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True)
tokenizer.batch_decode(outputs)

Citation Information

If you find this model useful, please consider giving 👏 and citing:

@misc{Llama3_8B_Odia_Unsloth,
  author = {Shantipriya Parida and Sambit Sekhar and Debasish Dhal and Shakshi Panwar},
  title = {OdiaGenAI Releases Llama3 Fine-tuned Model for the Odia Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\url{https://huggingface.co/OdiaGenAI}},
}

Contributions

  • Dr.Shantipriya Parida
  • Sambit Sekhar
  • Debasish Dhal
  • Shakshi Panwar