Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.2
|
| 3 |
+
datasets:
|
| 4 |
+
- OctoThinker/MegaMath-Web-Pro-Max
|
| 5 |
+
- LLM360/MegaMath
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
base_model:
|
| 9 |
+
- meta-llama/Llama-3.2-3B
|
| 10 |
+
pipeline_tag: text-generation
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# [OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling](https://arxiv.org/abs/2506.20512)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## OctoThinker-3B-Hybrid-Zero
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
The OctoThinker family is built on carefully studied mid-training insights, starting from the Llama-3 family, to create a reinforcement learning–friendly base language model.
|
| 21 |
+
|
| 22 |
+
OctoThinker-3B-Hybrid-Zero is trained using the R1-Zero-style reinforcement learning technique, starting from OctoThinker-3B-Hybrid-Base without any supervised fine-tuning (SFT).
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
### Training Recipe for OctoThinker-3B-Hybrid-Base
|
| 26 |
+
|
| 27 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
| 28 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/olNNY0cy0wVxAQh2VwewO.png" alt="Data Pipeline" style="width:90%;">
|
| 29 |
+
|
| 30 |
+
</div>
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### Evaluation Results of OctoThinker-3B-Base Series
|
| 36 |
+
|
| 37 |
+
Note that we adopt the few-shot prompting evaluation for these base language models.
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
| 41 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/UCZ9MahRYqLY0iKjiWMqS.png" alt="Data Pipeline" style="width:80%;">
|
| 42 |
+
|
| 43 |
+
</div>
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
### RL Training Dynamics of OctoThinker-3B-Zero Series
|
| 48 |
+
|
| 49 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
| 50 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/e21Eg8jj_ITxC4YcIJUmx.png" alt="Data Pipeline" style="width:80%;">
|
| 51 |
+
</div>
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
### More about OctoThinker
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
| 59 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/bn85CEB_DW6azJ7KJp11Q.png" alt="Data Pipeline" style="width:100%;">
|
| 60 |
+
</div>
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
## Citation
|
| 64 |
+
|
| 65 |
+
Check out our [paper](https://arxiv.org/abs/2506.20512) for more details. If you use our models, datasets or find our work useful, please cite
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
@article{wang2025octothinker,
|
| 69 |
+
title={OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling},
|
| 70 |
+
author={Wang, Zengzhi and Zhou, Fan and Li, Xuefeng and Liu, Pengfei},
|
| 71 |
+
year={2025},
|
| 72 |
+
journal={arXiv preprint arXiv:2506.20512},
|
| 73 |
+
note={Preprint}
|
| 74 |
+
}
|
| 75 |
+
```
|