|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: tmp |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tmp |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3272 |
|
- Precision: 0.5560 |
|
- Recall: 0.3209 |
|
- F1: 0.4069 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| |
|
| 0.7083 | 0.35 | 500 | 0.4423 | 0.2785 | 0.0529 | 0.0889 | |
|
| 0.4849 | 0.7 | 1000 | 0.4009 | 0.3623 | 0.1803 | 0.2408 | |
|
| 0.4021 | 1.04 | 1500 | 0.3621 | 0.5027 | 0.2212 | 0.3072 | |
|
| 0.3276 | 1.39 | 2000 | 0.3606 | 0.4006 | 0.3077 | 0.3481 | |
|
| 0.2857 | 1.74 | 2500 | 0.3432 | 0.5073 | 0.25 | 0.3349 | |
|
| 0.251 | 2.09 | 3000 | 0.3481 | 0.4431 | 0.3413 | 0.3856 | |
|
| 0.2184 | 2.43 | 3500 | 0.3309 | 0.5274 | 0.3353 | 0.4100 | |
|
| 0.2162 | 2.78 | 4000 | 0.3411 | 0.4167 | 0.3726 | 0.3934 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|