olm-chat-7b / sagemaker_train /launch_sagemaker_train.py
henhenhahi111112's picture
Upload folder using huggingface_hub
af6e330 verified
raw
history blame
7.43 kB
import argparse
import time
import os
import subprocess
from datetime import datetime
from pathlib import Path
import boto3
import sagemaker
from sagemaker.pytorch import PyTorch
NAME = "openlm-main"
INSTANCE_MAPPER = {
"p4": "ml.p4d.24xlarge",
"p4de": "ml.p4de.24xlarge",
"p5": "ml.p5.48xlarge",
}
def run_command(command):
print(f"=> {command}")
subprocess.run(command, shell=True, check=True)
def get_image(user, instance_type, build_type=None, profile="default", region="us-east-1"):
os.environ["AWS_PROFILE"] = f"{profile}"
account = subprocess.getoutput(
f"aws --region {region} --profile {profile} sts get-caller-identity --query Account --output text"
)
docker_dir = Path(__file__).parent
if instance_type in ("p4", "p4de"):
algorithm_name = f"{user}-{NAME}-p4"
dockerfile_base = docker_dir / "Dockerfile"
dockerfile_update = docker_dir / "Dockerfile_update"
elif instance_type == "p5":
algorithm_name = f"{user}-{NAME}-p5"
dockerfile_base = docker_dir / "Dockerfile"
dockerfile_update = docker_dir / "Dockerfile_update"
else:
raise ValueError(f"Unknown instance_type: {instance_type}")
fullname = f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"
if build_type is None:
return fullname
login_cmd = f"aws ecr get-login-password --region {region} --profile {profile} | docker login --username AWS --password-stdin"
if build_type == "full":
print("Building container")
commands = [
# Log in to Sagemaker account to get image.
f"{login_cmd} 763104351884.dkr.ecr.{region}.amazonaws.com",
f"docker build --progress=plain -f {dockerfile_base} --build-arg AWS_REGION={region} -t {algorithm_name} .",
f"docker tag {algorithm_name} {fullname}",
f"{login_cmd} {fullname}",
(
f"aws --region {region} ecr describe-repositories --repository-names {algorithm_name} || "
f"aws --region {region} ecr create-repository --repository-name {algorithm_name}"
),
]
elif build_type == "update":
print("Updating container")
commands = [
f"docker build --progress=plain -f {dockerfile_update} --build-arg BASE_DOCKER={algorithm_name} -t {algorithm_name} .",
f"docker tag {algorithm_name} {fullname}",
f"{login_cmd} {fullname}",
]
else:
raise ValueError(f"Unknown build_type: {build_type}")
# Create command, making sure to exit if any part breaks.
command = "\n".join([f"{x} || exit 1" for x in commands])
run_command(command)
run_command(f"docker push {fullname}")
print("Sleeping for 5 seconds to ensure push succeeded")
time.sleep(5)
return f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"
def main():
# Use first line of file docstring as description if it exists.
parser = argparse.ArgumentParser()
parser.add_argument("--build-type", choices=["full", "update"], help="Build image from scratch")
parser.add_argument("--local", action="store_true")
parser.add_argument("--user", required=True, help="User name")
parser.add_argument("--cfg-path", required=True, help="Launch config")
# AWS profile args
parser.add_argument("--region", default="us-east-1", help="AWS region")
parser.add_argument("--profile", default="default", help="AWS profile to use")
parser.add_argument("--arn", default=None, help="If None, reads from SAGEMAKER_ARN env var")
parser.add_argument(
"--s3-remote-sync", default=None, help="S3 path to sync to. If none, reads from S3_REMOTE_SYNC env var"
)
# Instance args
parser.add_argument("--instance-count", default=1, type=int, help="Number of instances")
parser.add_argument("--instance-type", default="p4de", choices=list(INSTANCE_MAPPER.keys()))
parser.add_argument("--spot-instance", action="store_true")
args = parser.parse_args()
main_after_setup_move(args)
def main_after_setup_move(args):
if args.arn is None:
assert "SAGEMAKER_ARN" in os.environ, "Please specify --arn or set the SAGEMAKER_ARN environment variable"
args.arn = os.environ["SAGEMAKER_ARN"]
if args.s3_remote_sync is None:
assert (
"S3_REMOTE_SYNC" in os.environ
), "Please specify --s3-remote-sync or set the S3_REMOTE_SYNC environment variable"
args.s3_remote_sync = os.environ["S3_REMOTE_SYNC"]
image = get_image(
args.user,
args.instance_type,
region=args.region,
build_type=args.build_type,
profile=args.profile,
)
##########
# Create session and make sure of account and region
##########
sagemaker_session = sagemaker.Session(boto_session=boto3.session.Session(region_name=args.region))
if args.local:
from sagemaker.local import LocalSession
sagemaker_session = LocalSession()
role = args.arn
# provide a pre-existing role ARN as an alternative to creating a new role
role_name = role.split(["/"][-1])
print(f"SageMaker Execution Role:{role}")
print(f"The name of the Execution role: {role_name[-1]}")
client = boto3.client("sts")
account = client.get_caller_identity()["Account"]
print(f"AWS account:{account}")
session = boto3.session.Session()
region = session.region_name
print(f"AWS region:{region}")
##########
# Configure the training
##########
base_job_name = f"{args.user.replace('.', '-')}-{NAME}"
checkpoint_local_path = "/opt/ml/checkpoints"
def get_job_name(base):
now = datetime.now()
# Format example: 2023-03-03-10-14-02-324
now_ms_str = f"{now.microsecond // 1000:03d}"
date_str = f"{now.strftime('%Y-%m-%d-%H-%M-%S')}-{now_ms_str}"
job_name = "_".join([base, date_str])
return job_name
job_name = get_job_name(base_job_name)
output_root = f"{args.s3_remote_sync}/sagemaker/{args.user}/{NAME}/"
output_s3 = os.path.join(output_root, job_name)
estimator = PyTorch(
entry_point="open_lm/main.py",
sagemaker_session=sagemaker_session,
base_job_name=base_job_name,
hyperparameters={"config": args.cfg_path},
role=role,
image_uri=image,
instance_count=args.instance_count,
instance_type="local_gpu" if args.local else INSTANCE_MAPPER[args.instance_type],
train_use_spot_instances=args.spot_instance,
output_path=output_s3,
job_name=job_name,
checkpoint_s3_uri=None if args.local else f"{output_s3}/checkpoint",
checkpoint_local_path=None if args.local else checkpoint_local_path,
code_location=output_s3,
# Training using SMDataParallel Distributed Training Framework
distribution={"torch_distributed": {"enabled": True}},
# Max run 5 days
max_run=5 * 24 * 60 * 60,
max_wait=5 * 24 * 60 * 60 if args.spot_instance else None,
input_mode="FastFile",
# environment={"TORCH_DISTRIBUTED_DEBUG": "DETAIL", "TORCH_CPP_LOG_LEVEL": "INFO"},
environment={"SM_USE_RESERVED_CAPACITY": "1"},
keep_alive_period_in_seconds=30 * 60 if not args.spot_instance else None, # 30 minutes
)
estimator.fit()
if __name__ == "__main__":
main()