Upload ViT.py
Browse files
ViT.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.layers import Dense,LayerNormalization,Dropout,Identity,Activation
|
3 |
+
from tensorflow.keras import Model
|
4 |
+
|
5 |
+
|
6 |
+
def pair(t):
|
7 |
+
return t if isinstance(t, tuple) else (t, t)
|
8 |
+
|
9 |
+
|
10 |
+
class FeedForward:
|
11 |
+
def __init__(self, dim, hidden_dim, drop_rate = 0.):
|
12 |
+
self.net = tf.keras.Sequential()
|
13 |
+
self.net.add(LayerNormalization())
|
14 |
+
self.net.add(Dense(hidden_dim))
|
15 |
+
self.net.add(Activation('gelu'))
|
16 |
+
self.net.add(Dropout(drop_rate))
|
17 |
+
self.net.add(Dense(dim))
|
18 |
+
self.net.add(Dropout(drop_rate))
|
19 |
+
|
20 |
+
def __call__(self, x):
|
21 |
+
return self.net(x)
|
22 |
+
|
23 |
+
|
24 |
+
class Attention:
|
25 |
+
def __init__(self, dim, heads = 8, dim_head = 64, drop_rate = 0.):
|
26 |
+
inner_dim = dim_head * heads
|
27 |
+
project_out = not (heads == 1 and dim_head == dim)
|
28 |
+
|
29 |
+
self.heads = heads
|
30 |
+
self.scale = dim_head ** -0.5
|
31 |
+
|
32 |
+
self.norm = LayerNormalization()
|
33 |
+
|
34 |
+
self.attend = tf.nn.softmax
|
35 |
+
self.dropout = Dropout(drop_rate)
|
36 |
+
|
37 |
+
self.to_qkv = Dense(inner_dim * 3, use_bias = False)
|
38 |
+
|
39 |
+
if project_out:
|
40 |
+
self.to_out = tf.keras.Sequential()
|
41 |
+
self.to_out.add(Dense(dim))
|
42 |
+
self.to_out.add(Dropout(drop_rate))
|
43 |
+
else:
|
44 |
+
self.to_out = Identity()
|
45 |
+
|
46 |
+
def __call__(self, x):
|
47 |
+
x = self.norm(x)
|
48 |
+
|
49 |
+
qkv = self.to_qkv(x)
|
50 |
+
q, k, v = tf.split(qkv, 3, axis=-1)
|
51 |
+
b = q.shape[0]
|
52 |
+
h = self.heads
|
53 |
+
n = q.shape[1]
|
54 |
+
d = q.shape[2] // self.heads
|
55 |
+
q = tf.reshape(q, (b, h, n, d))
|
56 |
+
k = tf.reshape(k, (b, h, n, d))
|
57 |
+
v = tf.reshape(v, (b, h, n, d))
|
58 |
+
|
59 |
+
dots = tf.matmul(q, tf.transpose(k, [0, 1, 3, 2])) * self.scale
|
60 |
+
|
61 |
+
attn = self.attend(dots)
|
62 |
+
attn = self.dropout(attn)
|
63 |
+
|
64 |
+
out = tf.matmul(attn, v)
|
65 |
+
out = tf.transpose(out, [0, 1, 3, 2])
|
66 |
+
out = tf.reshape(out, shape=[-1, n, h*d])
|
67 |
+
return self.to_out(out)
|
68 |
+
|
69 |
+
|
70 |
+
class Transformer:
|
71 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
72 |
+
self.norm = LayerNormalization()
|
73 |
+
self.layers = []
|
74 |
+
for _ in range(depth):
|
75 |
+
self.layers.append([Attention(dim, heads = heads, dim_head = dim_head, drop_rate = dropout),
|
76 |
+
FeedForward(dim, mlp_dim, drop_rate = dropout)])
|
77 |
+
|
78 |
+
def __call__(self, x):
|
79 |
+
for attn, ff in self.layers:
|
80 |
+
x = attn(x) + x
|
81 |
+
x = ff(x) + x
|
82 |
+
|
83 |
+
return self.norm(x)
|
84 |
+
|
85 |
+
|
86 |
+
class ViT(Model):
|
87 |
+
def __init__(self, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, drop_rate = 0., emb_dropout = 0.):
|
88 |
+
super(ViT, self).__init__()
|
89 |
+
image_height, image_width = pair(image_size)
|
90 |
+
patch_height, patch_width = pair(patch_size)
|
91 |
+
self.p1, self.p2 = patch_height, patch_width
|
92 |
+
self.dim = dim
|
93 |
+
|
94 |
+
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
95 |
+
|
96 |
+
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
97 |
+
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
98 |
+
|
99 |
+
self.to_patch_embedding = tf.keras.Sequential()
|
100 |
+
self.to_patch_embedding.add(LayerNormalization())
|
101 |
+
self.to_patch_embedding.add(Dense(dim))
|
102 |
+
self.to_patch_embedding.add(LayerNormalization())
|
103 |
+
|
104 |
+
self.pos_embedding = tf.Variable(tf.random.normal((1, num_patches + 1, dim)))
|
105 |
+
self.cls_token = tf.Variable(tf.random.normal(((1, 1, dim))))
|
106 |
+
self.dropout = Dropout(emb_dropout)
|
107 |
+
|
108 |
+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, drop_rate)
|
109 |
+
|
110 |
+
self.pool = pool
|
111 |
+
self.to_latent = Identity()
|
112 |
+
|
113 |
+
self.mlp_head = Dense(num_classes)
|
114 |
+
|
115 |
+
|
116 |
+
def __call__(self, data):
|
117 |
+
b = data.shape[0]
|
118 |
+
h = data.shape[1] // self.p1
|
119 |
+
w = data.shape[2] // self.p2
|
120 |
+
c = data.shape[3]
|
121 |
+
data = tf.reshape(data, (b, h * w, self.p1 * self.p2 * c))
|
122 |
+
x = self.to_patch_embedding(data)
|
123 |
+
b, n, _ = x.shape
|
124 |
+
|
125 |
+
cls_tokens = tf.tile(self.cls_token, multiples=[b, 1, 1])
|
126 |
+
x = tf.concat([cls_tokens, x], axis=1)
|
127 |
+
x += self.pos_embedding[:, :(n + 1)]
|
128 |
+
x = self.dropout(x)
|
129 |
+
|
130 |
+
x = self.transformer(x)
|
131 |
+
|
132 |
+
x = tf.reduce_mean(x, axis = 1) if self.pool == 'mean' else x[:, 0]
|
133 |
+
|
134 |
+
x = self.to_latent(x)
|
135 |
+
return tf.nn.softmax(self.mlp_head(x))
|