NoteDance commited on
Commit
2df0877
1 Parent(s): 522bba1

Upload Llama2.py

Browse files
Files changed (1) hide show
  1. Llama2.py +282 -0
Llama2.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ from tensorflow.keras.layers import Dense,Dropout
3
+ from tensorflow.keras.initializers import RandomNormal
4
+ from tensorflow.keras.regularizers import L2
5
+ from tensorflow.keras import Model
6
+ import math
7
+ from dataclasses import dataclass
8
+ from typing import Optional
9
+
10
+
11
+ @dataclass
12
+ class ModelArgs:
13
+ # default hyperparameters for the Llama 7B model
14
+ dim: int = 4096
15
+ n_layers: int = 32
16
+ n_heads: int = 32
17
+ n_kv_heads: Optional[int] = None
18
+ vocab_size: int = 32000
19
+ hidden_dim: Optional[int] = None
20
+ multiple_of: int = 256 # MLP hidden layer size will be multiple of
21
+ norm_eps: float = 1e-5
22
+ max_seq_len: int = 2048
23
+ dropout: float = 0.0
24
+ weight_decay: float = 0.1
25
+
26
+
27
+ class RMSNorm:
28
+ def __init__(self, dim: int, eps: float):
29
+ self.eps = eps
30
+ self.weight = tf.Variable(tf.ones((dim,)))
31
+
32
+ def _norm(self, x):
33
+ return x * tf.math.rsqrt(tf.reduce_mean(tf.math.pow(x, 2), -1, keepdims=True) + self.eps)
34
+
35
+ def __call__(self, x):
36
+ output = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype)
37
+ return output * self.weight
38
+
39
+
40
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
41
+ freqs = 1.0 / (theta ** (tf.cast(tf.range(0, dim, 2)[: (dim // 2)], 'float32') / dim))
42
+ t = tf.range(end) # type: ignore
43
+ freqs = tf.cast(tf.experimental.numpy.outer(t, freqs), 'float32') # type: ignore
44
+ freqs_cos = tf.math.cos(freqs) # real part
45
+ freqs_sin = tf.math.sin(freqs) # imaginary part
46
+ return freqs_cos, freqs_sin
47
+
48
+ def reshape_for_broadcast(freqs_cis, x):
49
+ ndim = x.ndim
50
+ assert 0 <= 1 < ndim
51
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1])
52
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
53
+ return tf.reshape(freqs_cis, shape)
54
+
55
+ def apply_rotary_emb(
56
+ xq,
57
+ xk,
58
+ freqs_cos,
59
+ freqs_sin
60
+ ):
61
+
62
+ # reshape xq and xk to match the complex representation
63
+ xq_r, xq_i = tf.unstack(tf.reshape(tf.cast(xq, 'float32'), (xq.shape[:-1] + (xq.shape[-1] // 2, 2))), axis=-1)
64
+ xk_r, xk_i = tf.unstack(tf.reshape(tf.cast(xk, 'float32'), (xk.shape[:-1] + (xk.shape[-1] // 2, 2))), axis=-1)
65
+
66
+ # reshape freqs_cos and freqs_sin for broadcasting
67
+ freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
68
+ freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
69
+
70
+ # apply rotation using real numbers
71
+ xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
72
+ xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
73
+ xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
74
+ xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
75
+
76
+ # flatten last two dimensions
77
+ xq_out = tf.stack([xq_out_r, xq_out_i], axis=-1)
78
+ shape = xq_out.shape
79
+ xq_out = tf.reshape(xq_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
80
+ xk_out = tf.stack([xk_out_r, xk_out_i], axis=-1)
81
+ shape = xk_out.shape
82
+ xk_out = tf.reshape(xk_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
83
+
84
+ return tf.cast(xq_out, xq.dtype), tf.cast(xk_out, xk.dtype)
85
+
86
+ def repeat_kv(x, n_rep: int):
87
+ bs, slen, n_kv_heads, head_dim = x.shape
88
+ if n_rep == 1:
89
+ return x
90
+ return tf.reshape(tf.tile(x[:, :, :, None, :], [1, 1, 1, n_rep, 1]), (bs, slen, n_kv_heads * n_rep, head_dim))
91
+
92
+ class Attention:
93
+ def __init__(self, args: ModelArgs):
94
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
95
+ assert args.n_heads % self.n_kv_heads == 0
96
+ model_parallel_size = 1
97
+ self.n_local_heads = args.n_heads // model_parallel_size
98
+ self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
99
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
100
+ self.head_dim = args.dim // args.n_heads
101
+ self.wq = Dense(args.n_heads * self.head_dim, kernel_initializer=RandomNormal(stddev=0.02),
102
+ kernel_regularizer=L2(args.weight_decay), use_bias=False)
103
+ self.wk = Dense(self.n_kv_heads * self.head_dim, kernel_initializer=RandomNormal(stddev=0.02),
104
+ kernel_regularizer=L2(args.weight_decay), use_bias=False)
105
+ self.wv = Dense(self.n_kv_heads * self.head_dim, kernel_initializer=RandomNormal(stddev=0.02),
106
+ kernel_regularizer=L2(args.weight_decay), use_bias=False)
107
+ self.wo = Dense(args.dim, kernel_initializer=RandomNormal(stddev=0.02/math.sqrt(2 * args.n_layers)),
108
+ kernel_regularizer=L2(args.weight_decay), use_bias=False)
109
+ self.attn_dropout = Dropout(args.dropout)
110
+ self.resid_dropout = Dropout(args.dropout)
111
+ self.mask = tf.fill((args.max_seq_len, args.max_seq_len), float("-inf"))
112
+ self.mask = tf.linalg.band_part(self.mask, 0, -1)
113
+ self.mask = tf.linalg.set_diag(self.mask, tf.zeros(args.max_seq_len))
114
+ self.mask = tf.reshape(self.mask, (1, 1, *self.mask.shape))
115
+
116
+ def __call__(
117
+ self,
118
+ x,
119
+ freqs_cos,
120
+ freqs_sin,
121
+ ):
122
+ bsz, seqlen, _ = x.shape
123
+
124
+ # QKV
125
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
126
+ xq = tf.reshape(xq, (bsz, seqlen, self.n_local_heads, self.head_dim))
127
+ xk = tf.reshape(xk, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
128
+ xv = tf.reshape(xv, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
129
+
130
+ # RoPE relative positional embeddings
131
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
132
+
133
+ # grouped multiquery attention: expand out keys and values
134
+ xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
135
+ xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
136
+
137
+ # make heads into a batch dimension
138
+ xq = tf.transpose(xq, (0, 2, 1, 3)) # (bs, n_local_heads, seqlen, head_dim)
139
+ xk = tf.transpose(xk, (0, 2, 1, 3))
140
+ xv = tf.transpose(xv, (0, 2, 1, 3))
141
+
142
+ scores = tf.matmul(xq, tf.transpose(xk, (0, 1, 3, 2))) / math.sqrt(self.head_dim)
143
+ assert hasattr(self, 'mask')
144
+ scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
145
+ scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32'), axis=-1), xq.dtype)
146
+ scores = self.attn_dropout(scores)
147
+ output = tf.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
148
+
149
+ # restore time as batch dimension and concat heads
150
+ output = tf.reshape(tf.transpose(output, (0, 2, 1, 3)), (bsz, seqlen, -1))
151
+
152
+ # final projection into the residual stream
153
+ output = self.wo(output)
154
+ output = self.resid_dropout(output)
155
+ return output
156
+
157
+
158
+ class FeedForward:
159
+ def __init__(self, dim: int, hidden_dim: int, multiple_of: int, drop_rate: float):
160
+ if hidden_dim is None:
161
+ hidden_dim = 4 * dim
162
+ hidden_dim = int(2 * hidden_dim / 3)
163
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
164
+ self.w1 = Dense(hidden_dim, kernel_initializer=RandomNormal(stddev=0.02),
165
+ kernel_regularizer=L2(ModelArgs.weight_decay), use_bias=False)
166
+ self.w2 = Dense(dim, kernel_initializer=RandomNormal(stddev=0.02),
167
+ kernel_regularizer=L2(ModelArgs.weight_decay), use_bias=False)
168
+ self.w3 = Dense(hidden_dim, kernel_initializer=RandomNormal(stddev=0.02/math.sqrt(2 * ModelArgs.n_layers)),
169
+ kernel_regularizer=L2(ModelArgs.weight_decay), use_bias=False)
170
+ self.dropout = Dropout(drop_rate)
171
+
172
+ def __call__(self, x):
173
+ return self.dropout(self.w2(tf.nn.silu(self.w1(x)) * self.w3(x)))
174
+
175
+
176
+ class TransformerBlock:
177
+ def __init__(self, layer_id: int, args: ModelArgs):
178
+ self.n_heads = args.n_heads
179
+ self.dim = args.dim
180
+ self.head_dim = args.dim // args.n_heads
181
+ self.attention = Attention(args)
182
+ self.feed_forward = FeedForward(
183
+ dim=args.dim,
184
+ hidden_dim=args.hidden_dim,
185
+ multiple_of=args.multiple_of,
186
+ drop_rate=args.dropout,
187
+ )
188
+ self.layer_id = layer_id
189
+ self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
190
+ self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
191
+
192
+ def __call__(self, x, freqs_cos, freqs_sin):
193
+ h = x + self.attention(self.attention_norm(x), freqs_cos, freqs_sin)
194
+ out = h + self.feed_forward(self.ffn_norm(h))
195
+ return out
196
+
197
+
198
+ class Llama2(Model):
199
+ def __init__(self, params: ModelArgs):
200
+ super(Llama2, self).__init__()
201
+ self.params = params
202
+ self.vocab_size = params.vocab_size
203
+ self.n_layers = params.n_layers
204
+
205
+ self.dropout = Dropout(params.dropout)
206
+ self.layers = []
207
+ for layer_id in range(params.n_layers):
208
+ self.layers.append(TransformerBlock(layer_id, params))
209
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
210
+ self.output = Dense(params.vocab_size, kernel_initializer=RandomNormal(stddev=0.02),
211
+ kernel_regularizer=L2(params.weight_decay), use_bias=False)
212
+
213
+ # some useful precompute for the RoPE relative positional embeddings
214
+ self.freqs_cos, self.freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
215
+
216
+ def __call__(self, tokens):
217
+ _bsz, seqlen = tokens.shape
218
+ h = tf.gather(tf.transpose(self.output.weight), tokens)
219
+ h = self.dropout(h)
220
+ freqs_cos = self.freqs_cos[:seqlen]
221
+ freqs_sin = self.freqs_sin[:seqlen]
222
+
223
+ for layer in self.layers:
224
+ h = layer(h, freqs_cos, freqs_sin)
225
+ h = self.norm(h)
226
+
227
+ if self.training:
228
+ # if we are given some desired targets also calculate the loss
229
+ logits = self.output(h)
230
+ else:
231
+ # inference-time mini-optimization: only forward the output on the very last position
232
+ logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
233
+
234
+ return logits
235
+
236
+ def estimate_mfu(self, fwdbwd_per_iter, dt):
237
+ """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
238
+ # first estimate the number of flops we do per iteration.
239
+ # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
240
+ N = sum(p.numel() for p in self.parameters())
241
+ cfg = self.params
242
+ L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
243
+ flops_per_token = 6*N + 12*L*H*Q*T
244
+ flops_per_fwdbwd = flops_per_token * T
245
+ flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
246
+ # express our flops throughput as ratio of A100 bfloat16 peak flops
247
+ flops_achieved = flops_per_iter * (1.0/dt) # per second
248
+ flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
249
+ mfu = flops_achieved / flops_promised
250
+ return mfu
251
+
252
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
253
+ """
254
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
255
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
256
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
257
+ Also note this is a super inefficient version of sampling with no key/value cache.
258
+ """
259
+ for _ in range(max_new_tokens):
260
+ # if the sequence context is growing too long we must crop it at block_size
261
+ idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
262
+ # forward the model to get the logits for the index in the sequence
263
+ logits = self(idx_cond)
264
+ logits = logits[:, -1, :] # crop to just the final time step
265
+ if temperature == 0.0:
266
+ # "sample" the single most likely index
267
+ idx_next = tf.math.argmax(logits, axis=-1)
268
+ else:
269
+ # pluck the logits at the final step and scale by desired temperature
270
+ logits = logits / temperature
271
+ # optionally crop the logits to only the top k options
272
+ if top_k is not None:
273
+ k = tf.minimum(top_k, logits.shape[-1])
274
+ v, _ = tf.math.top_k(logits, k=k, sorted=True)
275
+ logits[logits < v[:, [-1]]] = -float('Inf')
276
+ # apply softmax to convert logits to (normalized) probabilities
277
+ probs = tf.nn.softmax(logits, dim=-1)
278
+ idx_next = tf.random.categorical(tf.math.log(probs), num_samples=1)
279
+ # append sampled index to the running sequence and continue
280
+ idx = tf.concat((idx, idx_next), axis=1)
281
+
282
+ return idx