|
--- |
|
license: creativeml-openrail-m |
|
language: |
|
- en |
|
thumbnail: "https://huggingface.co/Norod78/sd2-simpsons-blip/raw/main/example/sd2-simpsons-blip-sample_tile_resized.jpg" |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
datasets: |
|
- Norod78/simpsons-blip-captions |
|
inference: true |
|
--- |
|
|
|
# Simpsons diffusion v2.0 |
|
*Stable Diffusion v2.0 fine tuned on images related to "The Simpsons" |
|
|
|
If you want more details on how to generate your own blip cpationed dataset see this [colab](https://colab.research.google.com/gist/Norod/ee6ee3c4bf11c2d2be531d728ec30824/buildimagedatasetwithblipcaptionsanduploadtohf.ipynb) |
|
|
|
Training was done using a slightly modified version of Hugging-Face's text to image training [example script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) |
|
|
|
## About |
|
|
|
Put in a text prompt and generate cartoony/simpsony images |
|
|
|
## AUTOMATIC1111 webui checkpoint |
|
|
|
The [main](https://huggingface.co/Norod78/sd2-simpsons-blip/tree/main) folder contains a .ckpt and a .yaml file to be put in [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) "stable-diffusion-webui/models/Stable-diffusion" folder and used to generate images |
|
|
|
## Sample code |
|
|
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler |
|
import torch |
|
|
|
# this will substitute the default PNDM scheduler for K-LMS |
|
lms = LMSDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear" |
|
) |
|
|
|
guidance_scale=8.5 |
|
seed=777 |
|
steps=50 |
|
|
|
cartoon_model_path = "Norod78/sd2-simpsons-blip" |
|
cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) |
|
cartoon_pipe.to("cuda") |
|
|
|
def generate(prompt, file_prefix ,samples): |
|
torch.manual_seed(seed) |
|
prompt += ", Very detailed, clean, high quality, sharp image" |
|
cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] |
|
for idx, image in enumerate(cartoon_images): |
|
image.save(f"{file_prefix}-{idx}-{seed}-sd2-simpsons-blip.jpg") |
|
|
|
generate("An oil painting of Snoop Dogg as a simpsons character", "01_SnoopDog", 4) |
|
generate("Gal Gadot, cartoon", "02_GalGadot", 4) |
|
generate("A cartoony Simpsons town", "03_SimpsonsTown", 4) |
|
generate("Pikachu with the Simpsons, Eric Wallis", "04_PikachuSimpsons", 4) |
|
``` |
|
|
|
![Images generated by this sample code](https://huggingface.co/Norod78/sd2-simpsons-blip/resolve/main/example/sd2-simpsons-blip-sample_tile_resized.jpg) |
|
|
|
## Dataset and Training |
|
|
|
Finetuned for 10,000 iterations upon [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) on [BLIP captioned Simpsons images](https://huggingface.co/datasets/Norod78/simpsons-blip-captions) using 1xA5000 GPU on my home desktop computer |
|
|
|
Trained by [@Norod78](https://twitter.com/Norod78) |
|
|