metadata
license: creativeml-openrail-m
language:
- en
thumbnail: >-
https://huggingface.co/Norod78/sd15-arthur-blip-captions/resolve/main/examples/sd15-arthur-generate-samples_tile-0.jpg
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-diffusers
datasets:
- Norod78/sd15-arthur-blip-captions
inference: true
widget:
- text: A vibrant oil painting portrait of She-Ra
- text: The Minions movie poster
- text: Gal Gadot as wonderwoman
- text: Pikachu taking selfies at the beach
SDv1.5 sd15-arthur-blip-captions model trained by Norod78 with Huggingface Diffusers train_text_to_image script
Using the screenshot images from 讗专转讜专 诇诇讗 讛拽砖专 by @GadiAleks (Both are in Hebrew)
The sample images above and below were generated using this smaple script
The dataset was a "No context Arthur screenshots with Hebrew subtitles" account. The model got the Hebrew letters nice but the words are gibberish.
Sample code
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
#////////////////////////////////////////////////////////////////
guidance_scale=8.0
steps=40
width=512
height=512
prompt_suffix = ", Very detailed, clean, high quality, sharp image"
#////////////////////////////////////////////////////////////////
custom_model_id = "Norod78/sd15-arthur-blip-captions"
#////////////////////////////////////////////////////////////////
custom_model_id_str = custom_model_id.replace("/","_")
custom_model_pipe = None
def generate(prompt, file_prefix ,samples, seed):
global base_model_pipe, custom_model_pipe
torch.manual_seed(seed)
prompt += prompt_suffix
file_prefix += "Arthur"
custom_model_images = custom_model_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale, height=height, width=width)["images"]
for idx, image in enumerate(custom_model_images):
image.save(f"{file_prefix}-{idx}-{seed}--{width}x{height}-{custom_model_id_str}.jpg")
def load():
global base_model_pipe, custom_model_pipe
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
custom_model_pipe = StableDiffusionPipeline.from_pretrained(custom_model_id, scheduler=scheduler,torch_dtype=dtype).to(device)
def main():
load()
generate("A livingroom", "01_LivingRoom", 4, 555)
generate("Nicolas Cage, in \"The Minions\" movie", "02_NicolasCage", 2, 42)
generate("Gal Gadot as wonderwoman", "03_GalGadot", 2, 42)
generate("Gal Gadot in Avatar", "04_GalGadotAvatar", 2, 777)
generate("Family guy taking selfies at the beach", "05_FamilyGuy", 2, 555)
generate("Pikachu as Rick and morty, Eric Wallis", "06_PikachuRnM", 2, 777)
generate("Pikachu as Spongebob, Eric Wallis", "07_PikachuSpongeBob", 2, 42)
generate("An oil painting of Miss. Piggy from the muppets as the Mona Lisa", "08_MsPiggyMonaLisa", 2, 42)
generate("Rick Sanchez from the TV show \"Rick and Morty\"", "09_RickSanchez", 2, 42)
generate("An paiting of Southpark with rainbow", "10_Southpark", 2, 777)
generate("A psychedelic image of Bojack Horseman", "11_Bojack", 2, 777)
generate("A movie poster for Gravity Falls Cthulhu stories", "12_GravityFalls", 2, 777)
generate("A vibrant oil painting portrait of She-Ra", "13_Shira", 2, 512)
#
if __name__ == '__main__':
main()