Noodle-bg's picture
Model save
c0d69da verified
|
raw
history blame
2.6 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: BERT_Text_classification_clean
    results: []

BERT_Text_classification_clean

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5208
  • Accuracy: 0.9028
  • F1: 0.8924
  • Precision: 0.8990
  • Recall: 0.8925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6803 0.24 50 1.2419 0.7613 0.7374 0.7493 0.7460
0.6367 0.48 100 0.4523 0.8437 0.8358 0.8377 0.8357
0.2756 0.71 150 0.4543 0.8625 0.8550 0.8576 0.8544
0.2569 0.95 200 0.4377 0.8845 0.8715 0.8791 0.8727
0.1044 1.19 250 0.5032 0.8903 0.8793 0.8828 0.8795
0.0745 1.43 300 0.5342 0.8912 0.8791 0.8881 0.8798
0.0906 1.67 350 0.5484 0.8992 0.8880 0.8956 0.8886
0.0839 1.9 400 0.5337 0.8939 0.8827 0.8858 0.8830
0.0474 2.14 450 0.5237 0.8983 0.8876 0.8938 0.8879
0.0346 2.38 500 0.4822 0.9037 0.8939 0.9005 0.8939
0.0243 2.62 550 0.5014 0.9019 0.8916 0.8964 0.8917
0.0181 2.86 600 0.5208 0.9028 0.8924 0.8990 0.8925

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2