metadata
library_name: transformers
license: apache-2.0
base_model: facebook/data2vec-audio-base-960h
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- wer
model-index:
- name: my_awesome_asr_mind_model3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: minds14
type: minds14
config: en-US
split: train[:100]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.6055776892430279
my_awesome_asr_mind_model3
This model is a fine-tuned version of facebook/data2vec-audio-base-960h on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 1780.6462
- Wer: 0.6056
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 5 | 1753.7185 | 0.6016 |
No log | 2.0 | 10 | 1780.6462 | 0.6056 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.4.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3