Upload 5 files
Browse files- .gitattributes +4 -0
- README.md +194 -0
- paper_figure1_efficiency.png +3 -0
- paper_figure2_longrange.png +3 -0
- paper_figure3_interpretability.png +3 -0
- trained_pointer_heatmap_0.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
paper_figure1_efficiency.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
paper_figure2_longrange.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
paper_figure3_interpretability.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
trained_pointer_heatmap_0.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- pointer-networks
|
| 6 |
+
- efficient-transformers
|
| 7 |
+
- long-range-modeling
|
| 8 |
+
- linear-complexity
|
| 9 |
+
- sequence-modeling
|
| 10 |
+
- interpretability
|
| 11 |
+
library_name: pytorch
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Pointer: Linear-Complexity Long-Range Modeling without Pre-training
|
| 16 |
+
|
| 17 |
+
<div align="center">
|
| 18 |
+
<img src="paper_figure1_efficiency.png" alt="Efficiency Comparison" width="600"/>
|
| 19 |
+
<p><i>Pointer maintains linear scaling while Transformer shows quadratic growth</i></p>
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
## Model Description
|
| 23 |
+
|
| 24 |
+
**Pointer** is a novel neural architecture that achieves **linear O(NK) complexity** for long-range sequence modeling through explicit layer-wise pointer chaining, eliminating the quadratic bottleneck of standard attention mechanisms.
|
| 25 |
+
|
| 26 |
+
Unlike attention-based approaches that compute O(N²) pairwise interactions, Pointer creates structured long-distance connections via pointer chains where each layer's selection depends on previous layers' pointer positions.
|
| 27 |
+
|
| 28 |
+
### Key Features
|
| 29 |
+
|
| 30 |
+
- **Linear Complexity**: O(NK) operations where K ≪ N, providing **2-10× speedup** on sequences of length 2048+ compared to standard transformers
|
| 31 |
+
- **No Pre-training Required**: Learns structured patterns from scratch, eliminating reliance on large-scale pre-training
|
| 32 |
+
- **Interpretable Architecture**: Pointer heatmaps reveal hierarchical processing strategies with clear layer specialization
|
| 33 |
+
- **Exact Computation**: Unlike approximation methods, Pointer computes exact structured connections
|
| 34 |
+
|
| 35 |
+
## Architecture Innovation
|
| 36 |
+
|
| 37 |
+
### Layer-wise Pointer Chaining
|
| 38 |
+
|
| 39 |
+
Each position `i` selects exactly one target position `p_i^(ℓ)` per layer, with subsequent layers building upon these selections to form dependency paths:
|
| 40 |
+
|
| 41 |
+
```
|
| 42 |
+
p_i^(ℓ) = argmax_j Score(h_i^(ℓ), h_j^(ℓ), p_i^(ℓ-1))
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
This creates a dependency chain where each layer's pointer decisions influence subsequent layers, enabling the formation of structured long-range connections.
|
| 46 |
+
|
| 47 |
+
### Complexity Analysis
|
| 48 |
+
|
| 49 |
+
- **Computational**: O(NK) vs O(N²d) for standard attention
|
| 50 |
+
- **Memory**: O(N) pointer indices vs O(N²) attention weights
|
| 51 |
+
- **Scaling**: For N=8192, d=512: ~4M operations vs ~34B for attention (**~10,000× reduction**)
|
| 52 |
+
|
| 53 |
+
<div align="center">
|
| 54 |
+
<img src="paper_figure2_longrange.png" alt="Long-range Performance" width="500"/>
|
| 55 |
+
<p><i>Consistent accuracy across increasing distances (512-2048 tokens)</i></p>
|
| 56 |
+
</div>
|
| 57 |
+
|
| 58 |
+
## Performance
|
| 59 |
+
|
| 60 |
+
### Efficiency Benchmarks
|
| 61 |
+
|
| 62 |
+
| Sequence Length | 256 | 512 | 1024 | 2048 |
|
| 63 |
+
|----------------|-----|-----|------|------|
|
| 64 |
+
| **Training Time (s)** |
|
| 65 |
+
| Pointer | 0.35 | 0.29 | 0.55 | 1.45 |
|
| 66 |
+
| Vanilla Transformer | 0.17 | 0.35 | 1.04 | 3.55 |
|
| 67 |
+
| **Speedup** | 0.48× | 0.83× | 1.89× | **2.45×** |
|
| 68 |
+
| **Throughput (tokens/s)** |
|
| 69 |
+
| Pointer | 14,446 | 34,914 | 37,189 | 28,268 |
|
| 70 |
+
| Vanilla Transformer | 30,320 | 29,427 | 19,703 | 11,549 |
|
| 71 |
+
|
| 72 |
+
### Long-Range Dependency Modeling
|
| 73 |
+
|
| 74 |
+
Copy task accuracy across variable-length gaps:
|
| 75 |
+
|
| 76 |
+
| Distance | 512 | 1024 | 1536 | 2048 |
|
| 77 |
+
|----------|-----|------|------|------|
|
| 78 |
+
| Pointer | 4.38% | 5.50% | 5.38% | 5.25% |
|
| 79 |
+
| Vanilla Transformer | 5.38% | 4.25% | 4.88% | 4.75% |
|
| 80 |
+
|
| 81 |
+
Training loss decreased from 3.13 to 2.99 across distances, demonstrating effective learning.
|
| 82 |
+
|
| 83 |
+
## Interpretability
|
| 84 |
+
|
| 85 |
+
<div align="center">
|
| 86 |
+
<img src="paper_figure3_interpretability.png" alt="Interpretability Analysis" width="500"/>
|
| 87 |
+
<p><i>Pointer patterns reveal hierarchical processing across layers</i></p>
|
| 88 |
+
</div>
|
| 89 |
+
|
| 90 |
+
### Layer Specialization
|
| 91 |
+
|
| 92 |
+
- **Early layers (0-2)**: Focus on local patterns (average hop distance ~47-58 tokens)
|
| 93 |
+
- **Later layers (3-5)**: Establish long-range connections (up to 483 tokens)
|
| 94 |
+
- **Emergent hierarchy**: Local → global processing arises through gradient-based learning
|
| 95 |
+
|
| 96 |
+
<div align="center">
|
| 97 |
+
<img src="trained_pointer_heatmap_0.png" alt="Pointer Heatmap" width="400"/>
|
| 98 |
+
<p><i>Detailed pointer heatmap showing learned attention patterns</i></p>
|
| 99 |
+
</div>
|
| 100 |
+
|
| 101 |
+
### Structured Patterns
|
| 102 |
+
|
| 103 |
+
- **Self-loops**: Information retention across layers
|
| 104 |
+
- **Local clusters**: Capturing phrasal structure
|
| 105 |
+
- **Long jumps**: Bridging distant contexts
|
| 106 |
+
|
| 107 |
+
## Use Cases
|
| 108 |
+
|
| 109 |
+
Pointer is particularly effective for:
|
| 110 |
+
|
| 111 |
+
- **Long-context processing**: Sequences beyond attention's practical limits (4K-8K tokens)
|
| 112 |
+
- **Edge deployment**: Reduced memory and compute requirements for on-device inference
|
| 113 |
+
- **Low-resource domains**: No pre-training dependency makes it accessible without massive corpora
|
| 114 |
+
- **Structured reasoning tasks**: Retrieval, copying, explicit dependency modeling
|
| 115 |
+
- **Interpretable AI**: Clear visualization of learned dependency patterns
|
| 116 |
+
|
| 117 |
+
## Model Configuration
|
| 118 |
+
|
| 119 |
+
```python
|
| 120 |
+
# Example configuration (3.2M parameters)
|
| 121 |
+
config = {
|
| 122 |
+
"num_layers": 6,
|
| 123 |
+
"num_heads": 8,
|
| 124 |
+
"hidden_dim": 256,
|
| 125 |
+
"vocab_size": 10000,
|
| 126 |
+
"max_seq_length": 2048,
|
| 127 |
+
"pointer_temperature": 1.0, # Gumbel-Softmax temperature
|
| 128 |
+
}
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
## Training
|
| 132 |
+
|
| 133 |
+
### Differentiable Pointer Selection
|
| 134 |
+
|
| 135 |
+
During training, Gumbel-Softmax enables differentiable pointer selection:
|
| 136 |
+
|
| 137 |
+
```python
|
| 138 |
+
# Gumbel-Softmax for training
|
| 139 |
+
s_tilde = (s + gumbel_noise) / temperature
|
| 140 |
+
alpha = softmax(s_tilde)
|
| 141 |
+
|
| 142 |
+
# Hard selection for inference
|
| 143 |
+
p = argmax(s)
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
### Training Tips
|
| 147 |
+
|
| 148 |
+
- Start with higher temperature (τ=1.0) and anneal during training
|
| 149 |
+
- Use teacher forcing for sequence generation tasks
|
| 150 |
+
- Monitor pointer hop distances to ensure long-range learning
|
| 151 |
+
- Visualize pointer heatmaps to verify structured pattern emergence
|
| 152 |
+
|
| 153 |
+
## Limitations
|
| 154 |
+
|
| 155 |
+
- **Task specificity**: Excels on tasks with clear dependency paths; may underperform on dense semantic composition
|
| 156 |
+
- **Evaluation scope**: Current results focus on controlled synthetic tasks (copy tasks)
|
| 157 |
+
- **Generation quality**: Metrics measure teacher-forcing accuracy rather than autoregressive generation quality
|
| 158 |
+
- **Single pointer per position**: Current implementation selects one target; multi-head variants could capture more complex patterns
|
| 159 |
+
|
| 160 |
+
## Citation
|
| 161 |
+
|
| 162 |
+
```bibtex
|
| 163 |
+
@article{li2025pointer,
|
| 164 |
+
title={Pointer: Linear-Complexity Long-Range Modeling without Pre-training},
|
| 165 |
+
author={Li, Zixi},
|
| 166 |
+
journal={arXiv preprint},
|
| 167 |
+
year={2025},
|
| 168 |
+
institution={Noesis Lab, Sun Yat-sen University}
|
| 169 |
+
}
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
## Related Work
|
| 173 |
+
|
| 174 |
+
This work is part of broader research on adjacency-structured parallel propagation (ASPP):
|
| 175 |
+
|
| 176 |
+
- **TreeGPT**: Bidirectional TreeFFN processing for visual reasoning
|
| 177 |
+
- **Asterisk Operator**: Formal ASPP framework with universality theorems
|
| 178 |
+
- **Pointer**: Dynamic graph construction through learned pointer chains
|
| 179 |
+
|
| 180 |
+
## License
|
| 181 |
+
|
| 182 |
+
MIT License
|
| 183 |
+
|
| 184 |
+
## Contact
|
| 185 |
+
|
| 186 |
+
- **Author**: Zixi Li
|
| 187 |
+
- **Institution**: Noesis Lab (Independent Research Group), Sun Yat-sen University
|
| 188 |
+
- **Email**: lizx93@mail2.sysu.edu.cn
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
<div align="center">
|
| 193 |
+
<p><b>Note</b>: Model weights are not currently available. This card documents the architecture and experimental results from the research paper.</p>
|
| 194 |
+
</div>
|
paper_figure1_efficiency.png
ADDED
|
Git LFS Details
|
paper_figure2_longrange.png
ADDED
|
Git LFS Details
|
paper_figure3_interpretability.png
ADDED
|
Git LFS Details
|
trained_pointer_heatmap_0.png
ADDED
|
Git LFS Details
|