NobodyExistsOnTheInternet commited on
Commit
859da2a
1 Parent(s): 317272e

Upload 22 files

Browse files
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Microsoft Open Source Code of Conduct
2
+
3
+ This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
4
+
5
+ Resources:
6
+
7
+ - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
8
+ - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
9
+ - Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
MLmodel ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ flavors:
2
+ hftransformersv2:
3
+ code: null
4
+ config_hf_load_kwargs:
5
+ trust_remote_code: true
6
+ hf_config_class: AutoConfig
7
+ hf_pretrained_class: AutoModelForCausalLM
8
+ hf_tokenizer_class: CodeGenTokenizerFast
9
+ model_data: data
10
+ model_hf_load_args:
11
+ trust_remote_code: true
12
+ pytorch_version: 2.1.0+cu118
13
+ task_type: text-generation
14
+ tokenizer_hf_load_kwargs:
15
+ trust_remote_code: true
16
+ transformers_version: 4.34.0
17
+ python_function:
18
+ data: data
19
+ env: conda.yaml
20
+ loader_module: azureml.evaluate.mlflow.hftransformers
21
+ python_version: 3.10.11
22
+ mlflow_version: 2.6.0
23
+ model_uuid: 6068cffa9b034ea28c997f4538233299
24
+ utc_time_created: '2023-11-06 18:18:55.524636'
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
amlignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
conda.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.10.11
5
+ - pip<=23.1.2
6
+ - pip:
7
+ - mlflow==2.6.0
8
+ - cloudpickle==2.2.1
9
+ - jsonpickle==3.0.1
10
+ - mlflow-skinny==2.6.0
11
+ - azureml-core==1.51.0.post1
12
+ - azureml-mlflow==1.51.0
13
+ - azureml-metrics[all]==0.0.32
14
+ - scikit-learn==1.2.2
15
+ - cryptography==41.0.1
16
+ - python-dateutil==2.8.2
17
+ - datasets==2.14.6
18
+ - soundfile==0.12.1
19
+ - librosa==0.10.1
20
+ - diffusers==0.21.4
21
+ - sentencepiece==0.1.99
22
+ - transformers==4.34.0
23
+ - torch==2.1.0
24
+ - accelerate==0.23.0
25
+ - Pillow==9.4.0
26
+ - einops
27
+ - azureml-evaluate-mlflow==0.0.32
28
+ name: mlflow-env
config (1).json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "phi-2-half",
3
+ "activation_function": "gelu_new",
4
+ "architecture": {
5
+ "block_cls": "parallel",
6
+ "mlp": {
7
+ "mlp_cls": "fused_mlp"
8
+ }
9
+ },
10
+ "architectures": [
11
+ "MixFormerSequentialForCausalLM"
12
+ ],
13
+ "attn_pdrop": 0.0,
14
+ "auto_map": {
15
+ "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
16
+ "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
17
+ },
18
+ "embd_pdrop": 0.0,
19
+ "flash_attn": false,
20
+ "flash_rotary": false,
21
+ "fused_dense": false,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_epsilon": 1e-05,
24
+ "model_type": "mixformer-sequential",
25
+ "n_embd": 2560,
26
+ "n_head": 32,
27
+ "n_head_kv": null,
28
+ "n_inner": null,
29
+ "n_layer": 32,
30
+ "n_positions": 2048,
31
+ "resid_pdrop": 0.0,
32
+ "rotary_dim": 32,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.32.1",
36
+ "vocab_size": 51200
37
+ }
38
+
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "phi-2-half",
3
+ "activation_function": "gelu_new",
4
+ "architecture": {
5
+ "block_cls": "parallel",
6
+ "mlp": {
7
+ "mlp_cls": "fused_mlp"
8
+ }
9
+ },
10
+ "architectures": [
11
+ "MixFormerSequentialForCausalLM"
12
+ ],
13
+ "attn_pdrop": 0.0,
14
+ "auto_map": {
15
+ "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
16
+ "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
17
+ },
18
+ "embd_pdrop": 0.0,
19
+ "flash_attn": false,
20
+ "flash_rotary": false,
21
+ "fused_dense": false,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_epsilon": 1e-05,
24
+ "model_type": "mixformer-sequential",
25
+ "n_embd": 2560,
26
+ "n_head": 32,
27
+ "n_head_kv": null,
28
+ "n_inner": null,
29
+ "n_layer": 32,
30
+ "n_positions": 2048,
31
+ "resid_pdrop": 0.0,
32
+ "rotary_dim": 32,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.32.1",
36
+ "vocab_size": 51200
37
+ }
38
+
configuration_mixformer_sequential (1).py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class MixFormerSequentialConfig(PretrainedConfig):
11
+ """MixFormer (sequential for DeepSpeed) configuration."""
12
+
13
+ model_type = "mixformer-sequential"
14
+
15
+ attribute_map = {
16
+ "max_position_embeddings": "n_positions",
17
+ "hidden_size": "n_embd",
18
+ "num_attention_heads": "n_head",
19
+ "num_hidden_layers": "n_layer",
20
+ }
21
+
22
+ def __init__(
23
+ self,
24
+ vocab_size: int = 50304,
25
+ n_positions: int = 2048,
26
+ n_embd: int = 1024,
27
+ n_layer: int = 20,
28
+ n_inner: Optional[int] = None,
29
+ n_head: int = 16,
30
+ n_head_kv: Optional[int] = None,
31
+ rotary_dim: Optional[int] = 32,
32
+ activation_function: Optional[str] = "gelu_new",
33
+ flash_attn: bool = False,
34
+ flash_rotary: bool = False,
35
+ fused_dense: bool = False,
36
+ attn_pdrop: float = 0.0,
37
+ embd_pdrop: float = 0.0,
38
+ resid_pdrop: float = 0.0,
39
+ layer_norm_epsilon: float = 1e-5,
40
+ initializer_range: float = 0.02,
41
+ tie_word_embeddings: bool = False,
42
+ pad_vocab_size_multiple: int = 64,
43
+ **kwargs
44
+ ) -> None:
45
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
46
+ self.n_positions = n_positions
47
+ self.n_embd = n_embd
48
+ self.n_layer = n_layer
49
+ self.n_inner = n_inner
50
+ self.n_head = n_head
51
+ self.n_head_kv = n_head_kv
52
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
53
+ self.activation_function = activation_function
54
+ self.flash_attn = flash_attn
55
+ self.flash_rotary = flash_rotary
56
+ self.fused_dense = fused_dense
57
+ self.attn_pdrop = attn_pdrop
58
+ self.embd_pdrop = embd_pdrop
59
+ self.resid_pdrop = resid_pdrop
60
+ self.layer_norm_epsilon = layer_norm_epsilon
61
+ self.initializer_range = initializer_range
62
+
63
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
configuration_mixformer_sequential.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class MixFormerSequentialConfig(PretrainedConfig):
11
+ """MixFormer (sequential for DeepSpeed) configuration."""
12
+
13
+ model_type = "mixformer-sequential"
14
+
15
+ attribute_map = {
16
+ "max_position_embeddings": "n_positions",
17
+ "hidden_size": "n_embd",
18
+ "num_attention_heads": "n_head",
19
+ "num_hidden_layers": "n_layer",
20
+ }
21
+
22
+ def __init__(
23
+ self,
24
+ vocab_size: int = 50304,
25
+ n_positions: int = 2048,
26
+ n_embd: int = 1024,
27
+ n_layer: int = 20,
28
+ n_inner: Optional[int] = None,
29
+ n_head: int = 16,
30
+ n_head_kv: Optional[int] = None,
31
+ rotary_dim: Optional[int] = 32,
32
+ activation_function: Optional[str] = "gelu_new",
33
+ flash_attn: bool = False,
34
+ flash_rotary: bool = False,
35
+ fused_dense: bool = False,
36
+ attn_pdrop: float = 0.0,
37
+ embd_pdrop: float = 0.0,
38
+ resid_pdrop: float = 0.0,
39
+ layer_norm_epsilon: float = 1e-5,
40
+ initializer_range: float = 0.02,
41
+ tie_word_embeddings: bool = False,
42
+ pad_vocab_size_multiple: int = 64,
43
+ **kwargs
44
+ ) -> None:
45
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
46
+ self.n_positions = n_positions
47
+ self.n_embd = n_embd
48
+ self.n_layer = n_layer
49
+ self.n_inner = n_inner
50
+ self.n_head = n_head
51
+ self.n_head_kv = n_head_kv
52
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
53
+ self.activation_function = activation_function
54
+ self.flash_attn = flash_attn
55
+ self.flash_rotary = flash_rotary
56
+ self.fused_dense = fused_dense
57
+ self.attn_pdrop = attn_pdrop
58
+ self.embd_pdrop = embd_pdrop
59
+ self.resid_pdrop = resid_pdrop
60
+ self.layer_norm_epsilon = layer_norm_epsilon
61
+ self.initializer_range = initializer_range
62
+
63
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
finetune_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "load_config_kwargs": {
3
+ "trust_remote_code": true
4
+ },
5
+ "load_tokenizer_kwargs": {
6
+ "pad_token": "<|endoftext|>",
7
+ "trust_remote_code": true
8
+ },
9
+ "finetune_args": {},
10
+ "mlflow_ft_conf": {
11
+ "mlflow_hftransformers_misc_conf": {
12
+ "config_hf_load_kwargs": {
13
+ "trust_remote_code": true
14
+ },
15
+ "tokenizer_hf_load_kwargs": {
16
+ "return_token_type_ids": false
17
+ },
18
+ "model_hf_load_kwargs": {
19
+ "trust_remote_code": true,
20
+ "ignore_mismatched_sizes": true
21
+ },
22
+ "hf_predict_module": "phi_predict"
23
+ },
24
+ "mlflow_save_model_kwargs": {
25
+ "extra_pip_requirements": [
26
+ "einops"
27
+ ]
28
+ }
29
+ }
30
+ }
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.34.0"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_mixformer_sequential.py ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+ #
4
+ # BSD 3-Clause License
5
+ #
6
+ # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
7
+ # All rights reserved.
8
+ #
9
+ # Redistribution and use in source and binary forms, with or without
10
+ # modification, are permitted provided that the following conditions are met:
11
+ #
12
+ # * Redistributions of source code must retain the above copyright notice, this
13
+ # list of conditions and the following disclaimer.
14
+ #
15
+ # * Redistributions in binary form must reproduce the above copyright notice,
16
+ # this list of conditions and the following disclaimer in the documentation
17
+ # and/or other materials provided with the distribution.
18
+ #
19
+ # * Neither the name of the copyright holder nor the names of its
20
+ # contributors may be used to endorse or promote products derived from
21
+ # this software without specific prior written permission.
22
+ #
23
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26
+ # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
27
+ # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28
+ # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29
+ # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31
+ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
+
34
+ from __future__ import annotations
35
+
36
+ import math
37
+ from typing import Any, Dict, Optional, Tuple, Union
38
+ from dataclasses import dataclass, field
39
+
40
+ import torch
41
+ import torch.nn as nn
42
+
43
+ from einops import rearrange, repeat
44
+ from transformers.activations import ACT2FN
45
+ from transformers import PretrainedConfig, PreTrainedModel
46
+ from transformers.modeling_outputs import CausalLMOutputWithPast
47
+
48
+ from .configuration_mixformer_sequential import MixFormerSequentialConfig
49
+
50
+
51
+ try:
52
+ from flash_attn.bert_padding import pad_input, unpad_input
53
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
54
+ from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
55
+ from flash_attn.ops.fused_dense import FusedDense
56
+ except:
57
+ pad_input, unpad_input = None, None
58
+ FlashRotaryEmbedding = None
59
+ FlashSelfAttention, FlashCrossAttention = None, None
60
+ FusedDense = None
61
+
62
+
63
+ @dataclass
64
+ class InferenceParams:
65
+ """Inference parameters passed to model to efficiently calculate
66
+ and store context during inference.
67
+
68
+ Reference:
69
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
70
+
71
+ Args:
72
+ max_seqlen: Maximum sequence length.
73
+ max_batch_size: Maximum batch size.
74
+ seqlen_offset: Sequence length offset.
75
+ batch_size_offset: Batch size offset.
76
+ key_value_memory_dict: Key value memory dictionary.
77
+ lengths_per_sample: Lengths per sample.
78
+
79
+ """
80
+
81
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
82
+
83
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
84
+
85
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
86
+
87
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
88
+
89
+ key_value_memory_dict: Dict[str, Any] = field(
90
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
91
+ )
92
+
93
+ lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
94
+
95
+
96
+ class Embedding(nn.Module):
97
+ """Token embedding with dropout."""
98
+
99
+ def __init__(self, config: PretrainedConfig) -> None:
100
+ super().__init__()
101
+
102
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
103
+ self.drop = nn.Dropout(config.embd_pdrop)
104
+
105
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
106
+ input_shape = input_ids.size()
107
+ input_ids = input_ids.view(-1, input_shape[-1])
108
+
109
+ hidden_states = self.wte(input_ids)
110
+ hidden_states = self.drop(hidden_states)
111
+
112
+ return hidden_states
113
+
114
+
115
+ def _apply_rotary_emb(
116
+ x: torch.FloatTensor,
117
+ cos: torch.FloatTensor,
118
+ sin: torch.FloatTensor,
119
+ ) -> torch.FloatTensor:
120
+ _, seqlen, _, head_dim = x.shape
121
+ rotary_seqlen, rotary_dim = cos.shape
122
+ rotary_dim *= 2
123
+
124
+ assert rotary_dim <= head_dim
125
+ assert seqlen <= rotary_seqlen
126
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
127
+
128
+ x_rot = x[:, :, :, :rotary_dim]
129
+ x_pass = x[:, :, :, rotary_dim:]
130
+
131
+ x1, x2 = x_rot.chunk(2, dim=-1)
132
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
133
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
134
+
135
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
136
+
137
+ return torch.cat([x_rot, x_pass], axis=-1)
138
+
139
+
140
+ def _apply_rotary_emb_kv(
141
+ kv: torch.FloatTensor,
142
+ cos: torch.FloatTensor,
143
+ sin: torch.FloatTensor,
144
+ cos_k: Optional[torch.FloatTensor] = None,
145
+ sin_k: Optional[torch.FloatTensor] = None,
146
+ ) -> torch.FloatTensor:
147
+ _, seqlen, two, _, head_dim = kv.shape
148
+ assert two == 2
149
+
150
+ rotary_seqlen, rotary_dim = cos.shape
151
+ rotary_dim *= 2
152
+ assert rotary_dim <= head_dim
153
+ assert seqlen <= rotary_seqlen
154
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
155
+
156
+ k_rot = kv[:, :, 0, :, :rotary_dim]
157
+ k_pass = kv[:, :, 0, :, rotary_dim:]
158
+
159
+ k1, k2 = k_rot.chunk(2, dim=-1)
160
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
161
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
162
+
163
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
164
+
165
+ return torch.cat(
166
+ [
167
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
168
+ kv[:, :, 1:2, :, :],
169
+ ],
170
+ axis=2,
171
+ )
172
+
173
+
174
+ def _apply_rotary_emb_qkv(
175
+ qkv: torch.FloatTensor,
176
+ cos: torch.FloatTensor,
177
+ sin: torch.FloatTensor,
178
+ cos_k: Optional[torch.FloatTensor] = None,
179
+ sin_k: Optional[torch.FloatTensor] = None,
180
+ ) -> torch.FloatTensor:
181
+ _, seqlen, three, _, head_dim = qkv.shape
182
+ assert three == 3
183
+
184
+ rotary_seqlen, rotary_dim = cos.shape
185
+ rotary_dim *= 2
186
+ assert rotary_dim <= head_dim
187
+ assert seqlen <= rotary_seqlen
188
+ assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
189
+
190
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
191
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
192
+
193
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
194
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
195
+
196
+ q1, q2 = q_rot.chunk(2, dim=-1)
197
+ k1, k2 = k_rot.chunk(2, dim=-1)
198
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
199
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
200
+
201
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
202
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
203
+
204
+ return torch.cat(
205
+ [
206
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
207
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
208
+ qkv[:, :, 2:3, :, :],
209
+ ],
210
+ axis=2,
211
+ )
212
+
213
+
214
+ class RotaryEmbedding(nn.Module):
215
+ """Rotary positional embedding (RoPE).
216
+
217
+ Reference:
218
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
219
+ https://arxiv.org/pdf/2104.09864.pdf.
220
+
221
+ """
222
+
223
+ def __init__(
224
+ self,
225
+ dim: int,
226
+ base: int = 10000,
227
+ scale_base: Optional[float] = None,
228
+ pos_idx_in_fp32: bool = True,
229
+ device: Optional[str] = None,
230
+ **kwargs,
231
+ ) -> None:
232
+ super().__init__()
233
+
234
+ if scale_base is not None:
235
+ raise NotImplementedError
236
+
237
+ self.dim = dim
238
+ self.base = float(base)
239
+ self.scale_base = scale_base
240
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
241
+ self.device = device
242
+
243
+ # Generate and save the inverse frequency buffer (non-trainable)
244
+ inv_freq = self._compute_inv_freq(device)
245
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
246
+
247
+ # Generate and save the scale buffer (non-trainable)
248
+ scale = (
249
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
250
+ if scale_base is not None
251
+ else None
252
+ )
253
+ self.register_buffer("scale", scale, persistent=False)
254
+
255
+ self._seq_len_cached = 0
256
+ self._cos_cached = None
257
+ self._sin_cached = None
258
+ self._cos_k_cached = None
259
+ self._sin_k_cached = None
260
+
261
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
262
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
263
+
264
+ def _update_cos_sin_cache(
265
+ self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None
266
+ ) -> None:
267
+ # Reset the tables if sequence length has been chaned, if we are on a
268
+ # new device or if we are switching from inference mode to training
269
+ if (
270
+ seqlen > self._seq_len_cached
271
+ or self._cos_cached is None
272
+ or self._cos_cached.device != device
273
+ or self._cos_cached.dtype != dtype
274
+ or (self.training and self._cos_cached.is_inference())
275
+ ):
276
+ self._seq_len_cached = seqlen
277
+
278
+ # fp32 is preferred since the output of `torch.arange` can be quite large
279
+ # and bf16 would lose a lot of precision
280
+ if self.pos_idx_in_fp32:
281
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
282
+ if self.inv_freq.dtype != torch.float32:
283
+ inv_freq = self._compute_inv_freq(device=device)
284
+ else:
285
+ inv_freq = self.inv_freq
286
+ else:
287
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
288
+ inv_freq = self.inv_freq
289
+
290
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
291
+ freqs = torch.outer(t, inv_freq)
292
+ if self.scale is None:
293
+ self._cos_cached = torch.cos(freqs).to(dtype)
294
+ self._sin_cached = torch.sin(freqs).to(dtype)
295
+ else:
296
+ power = (
297
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
298
+ ) / self.scale_base
299
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
300
+
301
+ # Force the scale multiplication to happen in fp32
302
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
303
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
304
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
305
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
306
+
307
+ def forward(
308
+ self,
309
+ qkv: torch.Tensor,
310
+ kv: Optional[torch.Tensor] = None,
311
+ seqlen_offset: int = 0,
312
+ max_seqlen: Optional[int] = None,
313
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
314
+ seqlen = qkv.shape[1]
315
+
316
+ if max_seqlen is not None:
317
+ self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
318
+ else:
319
+ self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
320
+
321
+ if kv is None:
322
+ return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
323
+ else:
324
+ q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
325
+ kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
326
+
327
+ return q, kv
328
+
329
+
330
+ class MLP(nn.Module):
331
+ """Multi-Layer Perceptron.
332
+
333
+ Reference:
334
+ Attention Is All You Need.
335
+ https://arxiv.org/pdf/1706.03762.pdf.
336
+
337
+ """
338
+
339
+ def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
340
+ super().__init__()
341
+
342
+ act_fn = config.activation_function if act_fn is None else act_fn
343
+ assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
344
+
345
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
346
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
347
+
348
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
349
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
350
+ self.act = ACT2FN[act_fn]
351
+
352
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
353
+ hidden_states = self.fc1(hidden_states)
354
+ hidden_states = self.act(hidden_states)
355
+ hidden_states = self.fc2(hidden_states)
356
+
357
+ return hidden_states
358
+
359
+
360
+ class SelfAttention(nn.Module):
361
+ """Self-attention layer (compatible with PyTorch).
362
+ Reference:
363
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
364
+ """
365
+
366
+ def __init__(
367
+ self,
368
+ causal: bool = True,
369
+ softmax_scale: Optional[float] = None,
370
+ attention_dropout: float = 0.0,
371
+ ) -> None:
372
+ super().__init__()
373
+
374
+ self.causal = causal
375
+ self.softmax_scale = softmax_scale
376
+ self.drop = nn.Dropout(attention_dropout)
377
+
378
+ def forward(
379
+ self,
380
+ qkv: torch.FloatTensor,
381
+ causal: bool = None,
382
+ key_padding_mask: Optional[torch.BoolTensor] = None,
383
+ **kwargs,
384
+ ) -> torch.FloatTensor:
385
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
386
+ q, k, v = qkv.unbind(dim=2)
387
+
388
+ causal = self.causal if causal is None else causal
389
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
390
+
391
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
392
+
393
+ if key_padding_mask is not None:
394
+ padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
395
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
396
+
397
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
398
+
399
+ if causal:
400
+ causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
401
+ scores = scores + causal_mask.to(dtype=scores.dtype)
402
+
403
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
404
+ attention = self.drop(attention)
405
+
406
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
407
+
408
+ return output
409
+
410
+
411
+ class CrossAttention(nn.Module):
412
+ """Cross-attention layer (compatible with PyTorch).
413
+ Reference:
414
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
415
+ """
416
+
417
+ def __init__(
418
+ self,
419
+ causal: bool = True,
420
+ softmax_scale: Optional[float] = None,
421
+ attention_dropout: float = 0.0,
422
+ ) -> None:
423
+ super().__init__()
424
+
425
+ self.causal = causal
426
+ self.softmax_scale = softmax_scale
427
+ self.drop = nn.Dropout(attention_dropout)
428
+
429
+ def forward(
430
+ self,
431
+ q: torch.FloatTensor,
432
+ kv: torch.FloatTensor,
433
+ causal: bool = None,
434
+ key_padding_mask: Optional[torch.BoolTensor] = None,
435
+ **kwargs,
436
+ ) -> torch.FloatTensor:
437
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
438
+ seqlen_k = kv.shape[1]
439
+
440
+ if kv.shape[3] != q.shape[2]:
441
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
442
+ k, v = kv.unbind(dim=2)
443
+
444
+ causal = self.causal if causal is None else causal
445
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
446
+
447
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
448
+
449
+ if key_padding_mask is not None:
450
+ padding_mask = torch.full(
451
+ (batch_size, seqlen_k),
452
+ -10000.0,
453
+ dtype=scores.dtype,
454
+ device=scores.device,
455
+ )
456
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
457
+
458
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
459
+
460
+ if causal:
461
+ rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
462
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
463
+ causal_mask = cols > rows + seqlen_k - seqlen_q
464
+
465
+ scores = scores.masked_fill(causal_mask, -10000.0)
466
+
467
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
468
+ attention = self.drop(attention)
469
+
470
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
471
+
472
+ return output
473
+
474
+
475
+ def _find_mha_dims(
476
+ config: PretrainedConfig,
477
+ n_head: Optional[int] = None,
478
+ n_head_kv: Optional[int] = None,
479
+ head_dim: Optional[int] = None,
480
+ ) -> Tuple[int, int]:
481
+ assert all(
482
+ hasattr(config, attr) for attr in ["n_embd", "n_head"]
483
+ ), "`config` must have `n_embd` and `n_head` attributes."
484
+
485
+ if head_dim is None:
486
+ assert (
487
+ config.n_embd % config.n_head == 0
488
+ ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
489
+
490
+ if n_head is None and head_dim is None:
491
+ head_dim = config.n_embd // config.n_head
492
+ n_head = config.n_head
493
+ elif n_head is None or head_dim is None:
494
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
495
+
496
+ if n_head_kv is None:
497
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
498
+ assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`."
499
+
500
+ return n_head, n_head_kv, head_dim
501
+
502
+
503
+ def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
504
+ num_heads, head_dim = kv.shape[-2:]
505
+
506
+ if layer_idx not in inference_params.key_value_memory_dict:
507
+ kv_cache = torch.empty(
508
+ inference_params.max_batch_size,
509
+ inference_params.max_seqlen,
510
+ 2,
511
+ num_heads,
512
+ head_dim,
513
+ dtype=kv.dtype,
514
+ device=kv.device,
515
+ )
516
+ inference_params.key_value_memory_dict[layer_idx] = kv_cache
517
+ else:
518
+ kv_cache = inference_params.key_value_memory_dict[layer_idx]
519
+
520
+ batch_start = inference_params.batch_size_offset
521
+ batch_end = batch_start + kv.shape[0]
522
+ assert batch_end <= kv_cache.shape[0]
523
+
524
+ sequence_start = inference_params.seqlen_offset
525
+ sequence_end = sequence_start + kv.shape[1]
526
+ assert sequence_end <= kv_cache.shape[1]
527
+
528
+ assert kv_cache is not None
529
+ kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
530
+ kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
531
+
532
+ return kv
533
+
534
+
535
+ class MHA(nn.Module):
536
+ """Multi-head attention layer."""
537
+
538
+ def __init__(
539
+ self,
540
+ config: PretrainedConfig,
541
+ dtype: Optional[torch.dtype] = None,
542
+ device: Optional[str] = None,
543
+ rotary_dim: Optional[int] = None,
544
+ rotary_scale_base: Optional[float] = None,
545
+ n_head: Optional[int] = None,
546
+ n_head_kv: Optional[int] = None,
547
+ head_dim: Optional[int] = None,
548
+ bias: bool = True,
549
+ causal: bool = True,
550
+ softmax_scale: Optional[float] = None,
551
+ layer_idx: Optional[int] = None,
552
+ return_residual: bool = False,
553
+ checkpointing: bool = False,
554
+ ) -> None:
555
+ super().__init__()
556
+
557
+ # Rotary embedding
558
+ self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
559
+ if self.rotary_dim > 0:
560
+ rotary_kwargs = {"device": device}
561
+ if rotary_scale_base is not None and rotary_scale_base > 0.0:
562
+ rotary_kwargs["scale_base"] = rotary_scale_base
563
+
564
+ rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
565
+ if rotary_cls is None:
566
+ rotary_cls = RotaryEmbedding
567
+ self.rotary_emb = rotary_cls(self.rotary_dim, **rotary_kwargs)
568
+
569
+ # MLP
570
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim)
571
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
572
+ hidden_size = config.n_embd
573
+
574
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
575
+ if linear_cls is None:
576
+ linear_cls = nn.Linear
577
+
578
+ self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
579
+ self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
580
+
581
+ # Attention
582
+ attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
583
+ if attn_cls is None:
584
+ attn_cls = SelfAttention
585
+
586
+ cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
587
+ if cross_attn_cls is None:
588
+ cross_attn_cls = CrossAttention
589
+
590
+ self.inner_attn = attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop)
591
+ self.inner_cross_attn = cross_attn_cls(
592
+ causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop
593
+ )
594
+
595
+ self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
596
+ self.layer_idx = layer_idx
597
+ self.return_residual = return_residual
598
+ self.checkpointing = checkpointing
599
+
600
+ def _forward_self_attn(
601
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
602
+ ) -> torch.FloatTensor:
603
+ qkv = self.Wqkv(x)
604
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
605
+
606
+ if self.rotary_dim > 0:
607
+ qkv = self.rotary_emb(qkv)
608
+
609
+ if self.flash_attn:
610
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
611
+
612
+ cu_seqlens, max_seqlen = None, None
613
+ if key_padding_mask is not None:
614
+ # If `key_padding_mask` is supplied, we need to unpad the input and retrieve
615
+ # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
616
+ qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
617
+
618
+ if self.checkpointing:
619
+ attn_output = torch.utils.checkpoint.checkpoint(
620
+ self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
621
+ )
622
+ else:
623
+ attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
624
+
625
+ # If `key_padding_mask` is supplied, we need to pad the output back to the original shape
626
+ return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
627
+
628
+ if self.checkpointing:
629
+ return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
630
+
631
+ return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
632
+
633
+ def _forward_cross_attn(
634
+ self,
635
+ x: torch.FloatTensor,
636
+ past_key_values: Optional[InferenceParams],
637
+ key_padding_mask: Optional[torch.BoolTensor],
638
+ ) -> torch.FloatTensor:
639
+ batch_size = x.shape[0]
640
+
641
+ qkv = self.Wqkv(x)
642
+
643
+ q = qkv[..., : self.n_head * self.head_dim]
644
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
645
+
646
+ kv = qkv[..., self.n_head * self.head_dim :]
647
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
648
+
649
+ seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
650
+ causal = None if seqlen_offset == 0 else False
651
+ if self.rotary_dim > 0:
652
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
653
+
654
+ if past_key_values is not None:
655
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
656
+
657
+ if self.flash_attn:
658
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
659
+ seqlen_k = kv.shape[1]
660
+
661
+ cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = None, None, None, None
662
+ if key_padding_mask is not None:
663
+ kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
664
+
665
+ if seqlen_q == 1:
666
+ key_padding_mask = torch.ones(batch_size, 1, device=q.device)
667
+ elif seqlen_q != seqlen_k:
668
+ key_padding_mask = key_padding_mask[:, -seqlen_q:]
669
+
670
+ q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
671
+
672
+ if self.checkpointing:
673
+ attn_output = torch.utils.checkpoint.checkpoint(
674
+ self.inner_cross_attn,
675
+ q,
676
+ kv,
677
+ causal=causal,
678
+ cu_seqlens=cu_seqlens_q,
679
+ max_seqlen=max_seqlen_q,
680
+ cu_seqlens_k=cu_seqlens_k,
681
+ max_seqlen_k=max_seqlen_k,
682
+ )
683
+ else:
684
+ attn_output = self.inner_cross_attn(
685
+ q,
686
+ kv,
687
+ causal=causal,
688
+ cu_seqlens=cu_seqlens_q,
689
+ max_seqlen=max_seqlen_q,
690
+ cu_seqlens_k=cu_seqlens_k,
691
+ max_seqlen_k=max_seqlen_k,
692
+ )
693
+
694
+ return (
695
+ pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
696
+ if key_padding_mask is not None
697
+ else attn_output
698
+ )
699
+
700
+ if self.checkpointing:
701
+ return torch.utils.checkpoint.checkpoint(
702
+ self.inner_cross_attn, q, kv, key_padding_mask=key_padding_mask, causal=causal
703
+ )
704
+
705
+ return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
706
+
707
+ def forward(
708
+ self,
709
+ x: torch.FloatTensor,
710
+ past_key_values: Optional[InferenceParams] = None,
711
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
712
+ **kwargs,
713
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
714
+ # TODO: Need an alternative way for dynamic control flow: torch.any(~attention_mask.bool())
715
+ if attention_mask is not None:
716
+ attention_mask = attention_mask.bool()
717
+ else:
718
+ attention_mask = None
719
+
720
+ # MHA
721
+ if self.n_head == self.n_head_kv:
722
+ if past_key_values is None:
723
+ # If `past_key_values` are not supplied, we run self-attention
724
+ attn_output = self._forward_self_attn(x, attention_mask)
725
+ else:
726
+ # If `past_key_values` are supplied, it means that we might have cached values and
727
+ # could take advantage of cross-attention
728
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
729
+ # MQA / GQA
730
+ else:
731
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
732
+ # because `q` and `kv` lengths might be different
733
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
734
+
735
+ output = rearrange(attn_output, "... h d -> ... (h d)")
736
+ output = self.out_proj(output)
737
+
738
+ return output if not self.return_residual else (output, x)
739
+
740
+
741
+ class ParallelBlock(nn.Module):
742
+ """Parallel block.
743
+
744
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
745
+
746
+ """
747
+
748
+ def __init__(
749
+ self,
750
+ config: PretrainedConfig,
751
+ block_idx: Optional[int] = None,
752
+ ) -> None:
753
+ super().__init__()
754
+
755
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
756
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
757
+ self.block_idx = block_idx
758
+
759
+ self.mixer = MHA(config, layer_idx=block_idx)
760
+ self.mlp = MLP(config)
761
+
762
+ def forward(
763
+ self,
764
+ hidden_states: torch.FloatTensor,
765
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
766
+ attention_mask: Optional[torch.BoolTensor] = None,
767
+ **kwargs,
768
+ ) -> torch.FloatTensor:
769
+ residual = hidden_states
770
+ hidden_states = self.ln(hidden_states)
771
+
772
+ attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
773
+ if isinstance(attn_outputs, tuple):
774
+ attn_outputs = attn_outputs[0]
775
+
776
+ attn_outputs = self.resid_dropout(attn_outputs)
777
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
778
+
779
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
780
+
781
+ return hidden_states
782
+
783
+
784
+ class CausalLMHead(nn.Module):
785
+ """Causal Language Modeling head.
786
+
787
+ Reference:
788
+ Improving Language Understanding by Generative Pre-Training.
789
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
790
+
791
+ """
792
+
793
+ def __init__(self, config: PretrainedConfig) -> None:
794
+ super().__init__()
795
+
796
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
797
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
798
+
799
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
800
+ hidden_states = self.ln(hidden_states)
801
+ logits = self.linear(hidden_states).to(torch.float32)
802
+
803
+ return logits
804
+
805
+
806
+ class CausalLMLoss(nn.Module):
807
+ """Causal Language Modeling loss.
808
+
809
+ Reference:
810
+ Improving Language Understanding by Generative Pre-Training.
811
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
812
+
813
+ """
814
+
815
+ def __init__(self, shift_labels: bool = True) -> None:
816
+ super().__init__()
817
+
818
+ self.shift_labels = shift_labels
819
+ self.loss_fct = nn.CrossEntropyLoss()
820
+
821
+ def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
822
+ if self.shift_labels:
823
+ logits = logits[..., :-1, :].contiguous()
824
+ labels = labels[..., 1:].contiguous()
825
+
826
+ loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
827
+
828
+ return loss
829
+
830
+
831
+ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
832
+ """MixFormer (sequential for DeepSpeed) pre-trained model."""
833
+
834
+ config_class = MixFormerSequentialConfig
835
+ base_model_prefix = "transformer"
836
+ supports_gradient_checkpointing = True
837
+
838
+ def __init__(self, *inputs, **kwargs) -> None:
839
+ super().__init__(*inputs, **kwargs)
840
+
841
+ def _init_weights(self, module: nn.Module) -> None:
842
+ if isinstance(module, (nn.Linear,)):
843
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
844
+ if module.bias is not None:
845
+ module.bias.data.zero_()
846
+ elif isinstance(module, nn.Embedding):
847
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
848
+ if module.padding_idx is not None:
849
+ module.weight.data[module.padding_idx].zero_()
850
+ elif isinstance(module, nn.LayerNorm):
851
+ if module.bias is not None:
852
+ module.bias.data.zero_()
853
+ module.weight.data.fill_(1.0)
854
+
855
+ def prepare_inputs_for_generation(
856
+ self,
857
+ input_ids: torch.LongTensor,
858
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
859
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
860
+ **kwargs,
861
+ ) -> Dict[str, Any]:
862
+ if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
863
+ past_key_values = InferenceParams(
864
+ max_seqlen=self.config.n_positions,
865
+ max_batch_size=input_ids.shape[0],
866
+ seqlen_offset=0,
867
+ batch_size_offset=0,
868
+ key_value_memory_dict={},
869
+ lengths_per_sample=None,
870
+ )
871
+ else:
872
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
873
+ past_key_values.seqlen_offset = len(input_ids[0]) - 1
874
+ input_ids = input_ids[:, -1].unsqueeze(-1)
875
+
876
+ return {
877
+ "input_ids": input_ids,
878
+ "past_key_values": past_key_values,
879
+ "attention_mask": attention_mask,
880
+ }
881
+
882
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None:
883
+ if isinstance(module, MixFormerSequentialPreTrainedModel):
884
+ module.gradient_checkpointing = value
885
+
886
+
887
+ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
888
+ """MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
889
+
890
+ _keys_to_ignore_on_load_missing = [""]
891
+ _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
892
+ _no_split_modules = ["ParallelBlock"]
893
+
894
+ def __init__(self, config: MixFormerSequentialConfig) -> None:
895
+ super().__init__(config)
896
+
897
+ modules = [Embedding(config)]
898
+ modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
899
+ modules.append(CausalLMHead(config))
900
+
901
+ self.layers = nn.Sequential(*modules)
902
+ self.loss = CausalLMLoss()
903
+
904
+ self.post_init()
905
+
906
+ def get_input_embeddings(self) -> nn.Embedding:
907
+ return self.layers[0].wte
908
+
909
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
910
+ self.layers[0].wte = new_embeddings
911
+
912
+ def get_output_embeddings(self) -> nn.Linear:
913
+ return self.layers[-1].linear
914
+
915
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
916
+ self.layers[-1].linear = new_embeddings
917
+
918
+ def forward(
919
+ self,
920
+ input_ids: torch.LongTensor,
921
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
922
+ attention_mask: Optional[torch.BoolTensor] = None,
923
+ labels: Optional[torch.LongTensor] = None,
924
+ **kwargs,
925
+ ) -> CausalLMOutputWithPast:
926
+ hidden_layer = self.layers[0](input_ids)
927
+ for module in self.layers[1:-1]:
928
+ hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
929
+ lm_logits = self.layers[-1](hidden_layer)
930
+
931
+ loss = None
932
+ if labels is not None:
933
+ loss = self.loss(lm_logits, labels)
934
+
935
+ return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
phi_predict.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ def predict(data, task, model, tokenizer, config, **kwargs):
4
+ if isinstance(data, pd.DataFrame):
5
+ data = data[data.columns[0]].tolist()
6
+ is_df = True
7
+ results = []
8
+ addn_args = kwargs.get("addn_args", {})
9
+ for d in data:
10
+ inputs = tokenizer(d, return_tensors="pt", return_attention_mask=False)
11
+ outputs = model.generate(**inputs, **addn_args, max_length=50)
12
+ text = tokenizer.batch_decode(outputs)[0]
13
+ results.append(text)
14
+ if is_df:
15
+ return pd.DataFrame(results,columns =['output'])
16
+ return {"output": results}
python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.10.11
2
+ build_dependencies:
3
+ - pip==23.1.2
4
+ - setuptools==67.8.0
5
+ - wheel==0.38.4
6
+ dependencies:
7
+ - -r requirements.txt
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9788115563352d0e0900cb0fa0fda95895f0971fae2bc93b9a08822275314f2
3
+ size 11118841633
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.6.0
2
+ cloudpickle==2.2.1
3
+ jsonpickle==3.0.1
4
+ mlflow-skinny==2.6.0
5
+ azureml-core==1.51.0.post1
6
+ azureml-mlflow==1.51.0
7
+ azureml-metrics[all]==0.0.32
8
+ scikit-learn==1.2.2
9
+ cryptography==41.0.1
10
+ python-dateutil==2.8.2
11
+ datasets==2.14.6
12
+ soundfile==0.12.1
13
+ librosa==0.10.1
14
+ diffusers==0.21.4
15
+ sentencepiece==0.1.99
16
+ transformers==4.34.0
17
+ torch==2.1.0
18
+ accelerate==0.23.0
19
+ Pillow==9.4.0
20
+ einops
21
+ azureml-evaluate-mlflow==0.0.32
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config (1).json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 2048,
7
+ "tokenizer_class": "CodeGenTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff