|
# T5-EN-VI-SMALL:Pretraining Text-To-Text Transfer Transformer for English Vietnamese Translation |
|
|
|
# Dataset |
|
|
|
The *IWSLT'15 English-Vietnamese* data is used from [Stanford NLP group](https://nlp.stanford.edu/projects/nmt/). |
|
https://huggingface.co/NlpHUST/t5-en-vi-small/edit/main/README.md |
|
For all experiments the corpus was split into training, development and test set: |
|
|
|
| Data set | Sentences | Download |
|
| ----------- | --------- | --------------------------------------------------------------------------------------------------------------------------------- |
|
| Training | 133,317 | via [GitHub](https://github.com/stefan-it/nmt-en-vi/raw/master/data/train-en-vi.tgz) or located in `data/train-en-vi.tgz` |
|
| Development | 1,553 | via [GitHub](https://github.com/stefan-it/nmt-en-vi/raw/master/data/dev-2012-en-vi.tgz) or located in `data/dev-2012-en-vi.tgz` |
|
| Test | 1,268 | via [GitHub](https://github.com/stefan-it/nmt-en-vi/raw/master/data/test-2013-en-vi.tgz) or located in `data/test-2013-en-vi.tgz` |
|
|
|
|
|
## Results |
|
|
|
The results on test set. |
|
|
|
| Model | BLEU (Beam Search) |
|
| ----------------------------------------------------------------------------------------------------- | ------------------ |
|
| [Luong & Manning (2015)](https://nlp.stanford.edu/pubs/luong-manning-iwslt15.pdf) | 23.30 |
|
| Sequence-to-sequence model with attention | 26.10 |
|
| Neural Phrase-based Machine Translation [Huang et. al. (2017)](https://arxiv.org/abs/1706.05565) | 27.69 |
|
| Neural Phrase-based Machine Translation + LM [Huang et. al. (2017)](https://arxiv.org/abs/1706.05565) | 28.07 |
|
| t5-en-vi-small (pretraining, without training data) | **28.46** (cased) / **29.23** (uncased) |
|
|t5-en-vi-small (fineturning with training data) | **32.38** (cased) / **33.19** (uncased) |
|
|
|
#### Example Using |
|
|
|
``` bash |
|
import torch |
|
|
|
from transformers import MT5ForConditionalGeneration, T5Tokenizer |
|
import torch |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
|
|
print('There are %d GPU(s) available.' % torch.cuda.device_count()) |
|
|
|
print('We will use the GPU:', torch.cuda.get_device_name(0)) |
|
else: |
|
print('No GPU available, using the CPU instead.') |
|
device = torch.device("cpu") |
|
|
|
model = MT5ForConditionalGeneration.from_pretrained("NlpHUST/t5-en-vi-small") |
|
tokenizer = T5Tokenizer.from_pretrained("NlpHUST/t5-en-vi-small") |
|
model.to(device) |
|
|
|
src = "In school , we spent a lot of time studying the history of Kim Il-Sung , but we never learned much about the outside world , except that America , South Korea , Japan are the enemies ." |
|
tokenized_text = tokenizer.encode(src, return_tensors="pt").to(device) |
|
model.eval() |
|
summary_ids = model.generate( |
|
tokenized_text, |
|
max_length=128, |
|
num_beams=5, |
|
repetition_penalty=2.5, |
|
length_penalty=1.0, |
|
early_stopping=True |
|
) |
|
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
print(output) |
|
``` |
|
#### Output |
|
|
|
``` bash |
|
|
|
Ở trường, chúng tôi dành nhiều thời gian để nghiên cứu về lịch sử Kim Il-Sung, nhưng chúng tôi chưa bao giờ học được nhiều về thế giới bên ngoài, ngoại trừ Mỹ, Hàn Quốc, Nhật Bản là kẻ thù. |
|
|
|
``` |
|
### Contact information |
|
For personal communication related to this project, please contact Nha Nguyen Van (nha282@gmail.com). |