metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Japanese_Fine_Tuned_Whisper_Model
results: []
datasets:
- mozilla-foundation/common_voice_11_0
language:
- ja
Japanese_Fine_Tuned_Whisper_Model
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.549100
- Wer: 225.233037
Model description
The tiny Whisper model is fine-tuned on Japanese speech samples from the Common Voice dataset, based on which users can perform Automatic Speech Recognition in real time in Japanese.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Step | Validation Loss | Wer |
---|---|---|---|
0.8097 | 200 | 0.801917 | 601.560806 |
0.7200 | 400 | 0.783436 | 327.335790 |
0.6810 | 600 | 0.759281 | 254.064600 |
0.7351 | 800 | 0.747759 | 241.426404 |
0.5491 | 1000 | 0.747127 | 225.233037 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2