|
--- |
|
widget: |
|
- text: "Hold da op! Kan det virkelig passe?" |
|
|
|
language: |
|
- "da" |
|
|
|
tags: |
|
- sentiment |
|
- emotion |
|
- danish |
|
--- |
|
|
|
## BERT-model for danish multi-class classification of emotions |
|
|
|
Classifies a danish sentence into one of 6 different emotions: |
|
|
|
| Danish emotion | Ekman's emotion | |
|
| ----- | ----- | |
|
| π **Foragt** | Disgust | |
|
| π¨ **Frygt** | Fear | |
|
| π **GlΓ¦de** | Joy | |
|
| π± **Overraskelse** | Surprise | |
|
| π’ **Tristhed** | Sadness | |
|
| π **Vrede** | Anger | |
|
|
|
|
|
# How to use |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
model_path = "NikolajMunch/danish-emotion-classification" |
|
classifier = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) |
|
prediction = classifier("Jeg er godt nok ked af at mine SMS'er er slettet") |
|
|
|
print(prediction) |
|
# [{'label': 'Tristhed', 'score': 0.9725030660629272}] |
|
``` |
|
|
|
or |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("NikolajMunch/danish-emotion-classification") |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("NikolajMunch/danish-emotion-classification") |
|
``` |
|
|
|
# Model performance |
|
|
|
**Accuracy** : 81.48 |
|
|
|
|