|
|
|
""" |
|
RESON-LLAMA Chat con MEMORIA CONVERSAZIONALE - PULIZIA MINIMALE |
|
""" |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
import torch |
|
import warnings |
|
import re |
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
conversation_turns = [] |
|
MAX_MEMORY_TURNS = 4 |
|
|
|
def load_reson_model(model_path=r"C:\Users\dacan\OneDrive\Desktop\Meta\Reson4.5\Reson4.5"): |
|
print(f"๐ง Caricamento RESON-LLAMA da {model_path}...") |
|
|
|
base_model_name = "meta-llama/Llama-2-7b-chat-hf" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
base_model_name, |
|
quantization_config=bnb_config, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
use_cache=False, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
model = PeftModel.from_pretrained(base_model, model_path) |
|
|
|
print("โ
RESON-LLAMA V4 caricato con memoria!") |
|
return model, tokenizer |
|
|
|
def minimal_clean_response(response): |
|
"""Pulizia MINIMALE - rimuove tutto tra parentesi quadre""" |
|
|
|
|
|
cleaned = re.sub(r'\[.*?\]', '', response) |
|
|
|
|
|
cleaned = re.sub(r'[ \t]+', ' ', cleaned) |
|
cleaned = re.sub(r' *\n *', '\n', cleaned) |
|
cleaned = re.sub(r'\n{3,}', '\n\n', cleaned) |
|
cleaned = cleaned.strip() |
|
|
|
return cleaned |
|
|
|
def format_conversation_prompt(conversation_turns, current_question): |
|
prompt_parts = [] |
|
|
|
for turn in conversation_turns[-MAX_MEMORY_TURNS:]: |
|
prompt_parts.append(f"[INST] {turn['question']} [/INST] {turn['answer']}") |
|
|
|
prompt_parts.append(f"[INST] {current_question} [/INST]") |
|
|
|
full_prompt = " ".join(prompt_parts) |
|
return full_prompt |
|
|
|
def generate_response(model, tokenizer, prompt): |
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=2048 |
|
) |
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
input_length = inputs['input_ids'].shape[1] |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=300, |
|
temperature=0.60, |
|
do_sample=True, |
|
top_p=0.94, |
|
top_k=40, |
|
min_p=0.05, |
|
repetition_penalty=1.15, |
|
no_repeat_ngram_size=3, |
|
min_length=60, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
use_cache=True |
|
) |
|
|
|
new_tokens = outputs[0][input_length:] |
|
raw_response = tokenizer.decode(new_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False).strip() |
|
|
|
|
|
clean_response = minimal_clean_response(raw_response) |
|
|
|
return clean_response |
|
|
|
def chat_with_memory(model, tokenizer): |
|
global conversation_turns |
|
conversation_turns = [] |
|
|
|
print("\n๐ง RESON-LLAMA V4 CHAT CON MEMORIA") |
|
print("Comandi: 'quit' = esci, 'clear' = cancella memoria") |
|
|
|
while True: |
|
try: |
|
user_input = input(f"\n๐ง Tu: ").strip() |
|
|
|
if user_input.lower() == 'quit': |
|
print("๐ Arrivederci!") |
|
break |
|
|
|
elif user_input.lower() == 'clear': |
|
conversation_turns = [] |
|
print("๐ง Memoria cancellata!") |
|
continue |
|
|
|
if not user_input: |
|
continue |
|
|
|
print("๐ง RESON sta riflettendo...") |
|
|
|
prompt = format_conversation_prompt(conversation_turns, user_input) |
|
response = generate_response(model, tokenizer, prompt) |
|
|
|
print(f"\n๐ค RESON: {response}") |
|
|
|
conversation_turns.append({ |
|
'question': user_input, |
|
'answer': response |
|
}) |
|
|
|
if len(conversation_turns) > MAX_MEMORY_TURNS: |
|
conversation_turns = conversation_turns[-MAX_MEMORY_TURNS:] |
|
|
|
except KeyboardInterrupt: |
|
print("\n๐ Chat interrotta!") |
|
break |
|
except Exception as e: |
|
print(f"โ Errore: {e}") |
|
|
|
def main(): |
|
print("๐ง RESON-LLAMA V4 CON MEMORIA") |
|
|
|
model, tokenizer = load_reson_model() |
|
chat_with_memory(model, tokenizer) |
|
|
|
if __name__ == "__main__": |
|
main() |