Delta-Vector commited on
Commit
20e4848
·
verified ·
1 Parent(s): 15966a4

Upload ./README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - princeton-nlp/gemma-2-9b-it-SimPO
4
+ - HODACHI/EZO-Common-9B-gemma-2-it
5
+ library_name: transformers
6
+ tags:
7
+ - mergekit
8
+ - merge
9
+ license: gemma
10
+ pipeline_tag: text-generation
11
+ ---
12
+ ### exl2 quant (measurement.json in main branch)
13
+ ---
14
+ ### check revisions for quants
15
+ ---
16
+
17
+ # Kitsunebi-v1-Gemma2-8k-9B
18
+
19
+ This repo contains a merge of pre-trained Gemma 2 9B Instruct language models created using [mergekit](https://github.com/cg123/mergekit).
20
+
21
+ None of the components of this merge were trained for roleplay nor intended for it. Despite this, the resulting model can be used effectively for that function. The virtue of this model lies in its coherence, as opposed to textual richness.
22
+
23
+ This project utilizes HODACHI/EZO-Common-9B-gemma-2-it, a model based on gemma-2 and fine-tuned by Axcxept co., ltd. Its primary goal was to perform well in Japanese language tasks. Model training leveraged context-based synthesized instruction pre-training data for supervised multitask pre-training [(abstract)](https://arxiv.org/abs/2406.14491).
24
+
25
+ We also used princeton-nlp/gemma-2-9b-it-SimPO, a demonstration of Simple Preference Optimization [(abstract)](https://arxiv.org/abs/2405.14734).
26
+
27
+ ## Merge Details
28
+ ### Merge Method
29
+
30
+ This model was merged using the SLERP merge method.
31
+
32
+ ### Models Merged
33
+
34
+ The following models were included in the merge:
35
+ * [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO)
36
+ * [HODACHI/EZO-Common-9B-gemma-2-it](https://huggingface.co/HODACHI/EZO-Common-9B-gemma-2-it)
37
+
38
+ ### Configuration
39
+
40
+ The following YAML configuration was used to produce this model:
41
+
42
+ ```yaml
43
+ slices:
44
+ - sources:
45
+ - model: princeton-nlp/gemma-2-9b-it-SimPO
46
+ layer_range: [0, 42]
47
+ - model: HODACHI/EZO-Common-9B-gemma-2-it
48
+ layer_range: [0, 42]
49
+ merge_method: slerp
50
+ base_model: HODACHI/EZO-Common-9B-gemma-2-it
51
+ parameters:
52
+ t:
53
+ - filter: self_attn
54
+ value: [0, 0.5, 0.3, 0.7, 1]
55
+ - filter: mlp
56
+ value: [1, 0.5, 0.7, 0.3, 0]
57
+ - value: 0.5
58
+ dtype: bfloat16
59
+
60
+ ```