![Model Visualization](https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/tqI2XfovbkA_0ss6IKlPq.png)
๐ Overview
This is the second in a line of models dedicated to creating Stable-Diffusion prompts when given a character appearance. Made for the CharGen Project, This has been finetuned ontop of Delta-Vector/Holland-4B-V1
โ๏ธ Quants
Available quantization formats:
- GGUF: https://huggingface.co/mradermacher/SDPrompter4b-GGUF
- EXL2: https://huggingface.co/
๐ฌ Prompting
Recommended format: ChatML, Use the following system prompt for the model. I'd advise against setting a high amount of output tokens as the model loops, use 0.1 min-p and temp-1 to keep it coherent.
Create a prompt for Stable Diffusion based on the information below.
๐ Credits
Finetuned on 1xRTX6000 provided by Kubernetes_bad, All credits goes to Kubernetes_bad, LucyKnada and the rest of Anthracite.
๐ ๏ธ Axolotl Config)
base_model: Delta-Vector/Holland-4B-V1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/CivitAI-SD-Prompts datasets: - path: NewEden/CivitAI-Prompts-Sharegpt type: chat_template chat_template: chatml roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn dataset_prepared_path: val_set_size: 0.02 output_dir: ./outputs/out2 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: SDprompter-final wandb_entity: wandb_watch: wandb_name: SDprompter-final wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 4 saves_per_epoch: 1 debug: weight_decay: 0.01 special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> auto_resume_from_checkpoints: true