Valor-7B-v0.1 / README.md
NeuralNovel's picture
Update README.md
71e9007 verified
|
raw
history blame
4.63 kB
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- NeuralNovel/Neural-Story-v1
base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4
model-index:
- name: qlora-out
results: []
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/CATNxzDDJL6xHR4tc4IMf.jpeg)
# NeuralNovel/Valor-7B-v0.1
Valor speaks louder than words.
This is a qlora finetune of blockchainlabs_7B_merged_test2_4 using the **Neural-Story-v0.1** dataset, with the intention of increasing creativity and writing ability.
<a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='38' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
<a href='https://discord.gg/KFS229xD' target='_blank'><img width='140' height='500' style='border:0px;height:36px;' src='https://i.ibb.co/tqwznYM/Discord-button.png' border='0' alt='Join Our Discord!' /></a>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/uW7SQrWBXv-CURsEKJerW.png)
# Training Details
```yaml
base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: NeuralNovel/Neural-Story-v1
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# qlora-out
This model is a fine-tuned version of [alnrg2arg/blockchainlabs_7B_merged_test2_4](https://huggingface.co/alnrg2arg/blockchainlabs_7B_merged_test2_4) on the Neural-Story-v1.
It achieves the following results on the evaluation set:
- Loss: 2.1411
axolotl version: `0.3.0`
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3251 | 0.06 | 1 | 2.8409 |
| 2.5318 | 0.25 | 4 | 2.7634 |
| 1.7316 | 0.51 | 8 | 2.3662 |
| 1.5196 | 0.76 | 12 | 2.1411 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Valor-7B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.21|
|AI2 Reasoning Challenge (25-Shot)|72.27|
|HellaSwag (10-Shot) |86.59|
|MMLU (5-Shot) |64.09|
|TruthfulQA (0-shot) |69.84|
|Winogrande (5-shot) |83.35|
|GSM8k (5-shot) |69.14|