NekoMikoReimu commited on
Commit
6dc6619
1 Parent(s): fcf26cd

Delete checkpoint-59

Browse files
checkpoint-59/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "cyberagent/calm2-7b-chat",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "attention_bias": false,
7
- "bos_token_id": 0,
8
- "eos_token_id": 0,
9
- "hidden_act": "silu",
10
- "hidden_size": 4096,
11
- "initializer_range": 0.02,
12
- "intermediate_size": 11008,
13
- "max_position_embeddings": 32768,
14
- "model_type": "llama",
15
- "num_attention_heads": 32,
16
- "num_hidden_layers": 32,
17
- "num_key_value_heads": 32,
18
- "pad_token_id": 1,
19
- "pretraining_tp": 1,
20
- "rms_norm_eps": 1e-06,
21
- "rope_scaling": null,
22
- "rope_theta": 500000,
23
- "tie_word_embeddings": false,
24
- "torch_dtype": "bfloat16",
25
- "transformers_version": "4.34.1",
26
- "use_cache": false,
27
- "vocab_size": 65024
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-59/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 0,
4
- "eos_token_id": 0,
5
- "pad_token_id": 1,
6
- "transformers_version": "4.34.1"
7
- }
 
 
 
 
 
 
 
 
checkpoint-59/global_step59/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:106bdd16cd8f82425fb3053417c9fcf7f0fe4e56e548bfe62ccbeb4219ccd1b1
3
- size 28036079603
 
 
 
 
checkpoint-59/global_step59/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:77596b3e82e205d79189e7094109d54b6da18783f47eae3589f2b95c27dfcb18
3
- size 28036079603
 
 
 
 
checkpoint-59/global_step59/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:550e422fd5b16a81dfac00c33087e93372a43407bcd1b529fd6a16cd30db99c0
3
- size 28036079603
 
 
 
 
checkpoint-59/global_step59/zero_pp_rank_0_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8097a536be1e65d24250d2a432dbf67d9415af0b2e055e89c0299797803ea333
3
- size 138326
 
 
 
 
checkpoint-59/global_step59/zero_pp_rank_1_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d32ef62f6c3cd0af6c40d27aa812c069631fb030743521f6cb510b7de8835ad7
3
- size 138326
 
 
 
 
checkpoint-59/global_step59/zero_pp_rank_2_mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccc582b3aa3b761819dd3574da334aff13b9699d1aa7de6e61c32abe3259c443
3
- size 138326
 
 
 
 
checkpoint-59/latest DELETED
@@ -1 +0,0 @@
1
- global_step59
 
 
checkpoint-59/pytorch_model-00001-of-00002.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d1955a7f90cb97a91a0a801b19287f49e0d90c52286e1cf3c83a90356f1d54e
3
- size 9976594142
 
 
 
 
checkpoint-59/pytorch_model-00002-of-00002.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:90aac6bd4b26fc9f62af0bcf2375856406f447dea534ccdf5d3337ddde6817e2
3
- size 4041391035
 
 
 
 
checkpoint-59/pytorch_model.bin.index.json DELETED
@@ -1,266 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 14017896448
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
- "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
- "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
- "model.layers.0.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
10
- "model.layers.0.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
11
- "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
12
- "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
13
- "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
14
- "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
15
- "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
16
- "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
17
- "model.layers.1.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
18
- "model.layers.1.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
19
- "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
20
- "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
21
- "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
22
- "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
23
- "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
24
- "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
- "model.layers.10.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
26
- "model.layers.10.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
27
- "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
28
- "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
29
- "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
30
- "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
31
- "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
32
- "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
- "model.layers.11.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
34
- "model.layers.11.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
35
- "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
- "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
37
- "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
38
- "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
39
- "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
40
- "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
41
- "model.layers.12.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
42
- "model.layers.12.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
43
- "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
44
- "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
45
- "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
46
- "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
47
- "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
- "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
- "model.layers.13.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
50
- "model.layers.13.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
51
- "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
52
- "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
53
- "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
54
- "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
55
- "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
56
- "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
- "model.layers.14.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
58
- "model.layers.14.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
59
- "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
60
- "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
61
- "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
62
- "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
63
- "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
64
- "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
65
- "model.layers.15.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
66
- "model.layers.15.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
67
- "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
68
- "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
69
- "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
70
- "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
71
- "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
72
- "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
- "model.layers.16.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
74
- "model.layers.16.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
75
- "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
- "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
- "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
- "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
- "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
- "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
- "model.layers.17.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
82
- "model.layers.17.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
83
- "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
84
- "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
85
- "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
86
- "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
87
- "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
- "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
- "model.layers.18.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
90
- "model.layers.18.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
91
- "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
92
- "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
93
- "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
94
- "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
95
- "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
96
- "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
97
- "model.layers.19.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
98
- "model.layers.19.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
99
- "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
- "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
101
- "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
102
- "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
103
- "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
104
- "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
105
- "model.layers.2.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
106
- "model.layers.2.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
107
- "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
- "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
109
- "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
110
- "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
111
- "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
112
- "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
- "model.layers.20.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
114
- "model.layers.20.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
115
- "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
116
- "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
117
- "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
118
- "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
119
- "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
120
- "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
- "model.layers.21.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
122
- "model.layers.21.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
123
- "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
124
- "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
125
- "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
126
- "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
127
- "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
- "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
- "model.layers.22.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
130
- "model.layers.22.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
131
- "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
132
- "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
133
- "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
134
- "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
135
- "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
136
- "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
137
- "model.layers.23.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
138
- "model.layers.23.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
139
- "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
140
- "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
141
- "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
142
- "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
143
- "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
144
- "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
145
- "model.layers.24.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
146
- "model.layers.24.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
147
- "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
- "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
149
- "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
150
- "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
151
- "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
152
- "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
- "model.layers.25.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
154
- "model.layers.25.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
155
- "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
156
- "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
157
- "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
158
- "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
159
- "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
160
- "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
161
- "model.layers.26.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
162
- "model.layers.26.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
163
- "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
164
- "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
165
- "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
166
- "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
167
- "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
168
- "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
169
- "model.layers.27.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
170
- "model.layers.27.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
171
- "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
172
- "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
173
- "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
174
- "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
175
- "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
176
- "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
177
- "model.layers.28.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
178
- "model.layers.28.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
179
- "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
- "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
181
- "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
182
- "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
183
- "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
184
- "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
185
- "model.layers.29.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
186
- "model.layers.29.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
187
- "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
188
- "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
189
- "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
190
- "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
191
- "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
192
- "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
193
- "model.layers.3.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
194
- "model.layers.3.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
195
- "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
196
- "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
197
- "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
198
- "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
199
- "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
200
- "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
201
- "model.layers.30.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
202
- "model.layers.30.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
203
- "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
204
- "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
205
- "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
206
- "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
207
- "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
- "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
- "model.layers.31.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
210
- "model.layers.31.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
211
- "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
212
- "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
213
- "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
214
- "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
215
- "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
216
- "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
217
- "model.layers.4.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
218
- "model.layers.4.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
219
- "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
- "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
- "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
- "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
- "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
- "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
225
- "model.layers.5.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
226
- "model.layers.5.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
227
- "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
228
- "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
229
- "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
230
- "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
231
- "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
232
- "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
233
- "model.layers.6.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
234
- "model.layers.6.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
235
- "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
236
- "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
237
- "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
238
- "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
239
- "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
240
- "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
241
- "model.layers.7.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
242
- "model.layers.7.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
243
- "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
244
- "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
245
- "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
246
- "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
247
- "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
- "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
249
- "model.layers.8.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
250
- "model.layers.8.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
251
- "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
- "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
253
- "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
254
- "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
255
- "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
256
- "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
257
- "model.layers.9.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
258
- "model.layers.9.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
259
- "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
260
- "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
261
- "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
262
- "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
263
- "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
264
- "model.norm.weight": "pytorch_model-00002-of-00002.bin"
265
- }
266
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-59/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b1653d5b0e09c2d93759ad31b0bca034b949c5beacbcec854b9c133c18ff0f1
3
- size 16631
 
 
 
 
checkpoint-59/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:718a356e2faee3d07e0416c137f3bcdc0c70d127268ae7202882018ffa03e320
3
- size 16631
 
 
 
 
checkpoint-59/rng_state_2.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5ab1200db9bd16e014659660734c61fe08517897cef6b3efe97c366790250f5
3
- size 16631
 
 
 
 
checkpoint-59/trainer_state.json DELETED
@@ -1,533 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 0.9957805907172996,
5
- "eval_steps": 3,
6
- "global_step": 59,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.02,
13
- "learning_rate": 0.0,
14
- "loss": 3.5879,
15
- "step": 1
16
- },
17
- {
18
- "epoch": 0.02,
19
- "eval_loss": 5.454614639282227,
20
- "eval_runtime": 38.769,
21
- "eval_samples_per_second": 8.718,
22
- "eval_steps_per_second": 2.915,
23
- "step": 1
24
- },
25
- {
26
- "epoch": 0.03,
27
- "learning_rate": 2.0000000000000003e-06,
28
- "loss": 5.5874,
29
- "step": 2
30
- },
31
- {
32
- "epoch": 0.05,
33
- "learning_rate": 4.000000000000001e-06,
34
- "loss": 5.5473,
35
- "step": 3
36
- },
37
- {
38
- "epoch": 0.05,
39
- "eval_loss": 5.365917682647705,
40
- "eval_runtime": 38.6587,
41
- "eval_samples_per_second": 8.743,
42
- "eval_steps_per_second": 2.923,
43
- "step": 3
44
- },
45
- {
46
- "epoch": 0.07,
47
- "learning_rate": 6e-06,
48
- "loss": 5.4992,
49
- "step": 4
50
- },
51
- {
52
- "epoch": 0.08,
53
- "learning_rate": 8.000000000000001e-06,
54
- "loss": 4.2092,
55
- "step": 5
56
- },
57
- {
58
- "epoch": 0.1,
59
- "learning_rate": 1e-05,
60
- "loss": 4.3209,
61
- "step": 6
62
- },
63
- {
64
- "epoch": 0.1,
65
- "eval_loss": 3.893451452255249,
66
- "eval_runtime": 38.6883,
67
- "eval_samples_per_second": 8.737,
68
- "eval_steps_per_second": 2.921,
69
- "step": 6
70
- },
71
- {
72
- "epoch": 0.12,
73
- "learning_rate": 1.2e-05,
74
- "loss": 4.052,
75
- "step": 7
76
- },
77
- {
78
- "epoch": 0.14,
79
- "learning_rate": 1.4000000000000001e-05,
80
- "loss": 3.8525,
81
- "step": 8
82
- },
83
- {
84
- "epoch": 0.15,
85
- "learning_rate": 1.6000000000000003e-05,
86
- "loss": 3.452,
87
- "step": 9
88
- },
89
- {
90
- "epoch": 0.15,
91
- "eval_loss": 3.324516534805298,
92
- "eval_runtime": 38.6537,
93
- "eval_samples_per_second": 8.744,
94
- "eval_steps_per_second": 2.923,
95
- "step": 9
96
- },
97
- {
98
- "epoch": 0.17,
99
- "learning_rate": 1.8e-05,
100
- "loss": 3.4402,
101
- "step": 10
102
- },
103
- {
104
- "epoch": 0.19,
105
- "learning_rate": 2e-05,
106
- "loss": 3.5562,
107
- "step": 11
108
- },
109
- {
110
- "epoch": 0.2,
111
- "learning_rate": 2.2000000000000003e-05,
112
- "loss": 3.3865,
113
- "step": 12
114
- },
115
- {
116
- "epoch": 0.2,
117
- "eval_loss": 3.2463653087615967,
118
- "eval_runtime": 38.6438,
119
- "eval_samples_per_second": 8.747,
120
- "eval_steps_per_second": 2.924,
121
- "step": 12
122
- },
123
- {
124
- "epoch": 0.22,
125
- "learning_rate": 2.4e-05,
126
- "loss": 3.3706,
127
- "step": 13
128
- },
129
- {
130
- "epoch": 0.24,
131
- "learning_rate": 2.6000000000000002e-05,
132
- "loss": 3.3094,
133
- "step": 14
134
- },
135
- {
136
- "epoch": 0.25,
137
- "learning_rate": 2.8000000000000003e-05,
138
- "loss": 3.4042,
139
- "step": 15
140
- },
141
- {
142
- "epoch": 0.25,
143
- "eval_loss": 3.2070071697235107,
144
- "eval_runtime": 38.664,
145
- "eval_samples_per_second": 8.742,
146
- "eval_steps_per_second": 2.923,
147
- "step": 15
148
- },
149
- {
150
- "epoch": 0.27,
151
- "learning_rate": 3e-05,
152
- "loss": 3.2641,
153
- "step": 16
154
- },
155
- {
156
- "epoch": 0.29,
157
- "learning_rate": 3.2000000000000005e-05,
158
- "loss": 3.2077,
159
- "step": 17
160
- },
161
- {
162
- "epoch": 0.3,
163
- "learning_rate": 3.4000000000000007e-05,
164
- "loss": 3.1833,
165
- "step": 18
166
- },
167
- {
168
- "epoch": 0.3,
169
- "eval_loss": 3.172358274459839,
170
- "eval_runtime": 38.6613,
171
- "eval_samples_per_second": 8.743,
172
- "eval_steps_per_second": 2.923,
173
- "step": 18
174
- },
175
- {
176
- "epoch": 0.32,
177
- "learning_rate": 3.6e-05,
178
- "loss": 3.2509,
179
- "step": 19
180
- },
181
- {
182
- "epoch": 0.34,
183
- "learning_rate": 3.8e-05,
184
- "loss": 3.2675,
185
- "step": 20
186
- },
187
- {
188
- "epoch": 0.35,
189
- "learning_rate": 4e-05,
190
- "loss": 3.2255,
191
- "step": 21
192
- },
193
- {
194
- "epoch": 0.35,
195
- "eval_loss": 3.1417272090911865,
196
- "eval_runtime": 38.6879,
197
- "eval_samples_per_second": 8.737,
198
- "eval_steps_per_second": 2.921,
199
- "step": 21
200
- },
201
- {
202
- "epoch": 0.37,
203
- "learning_rate": 4.2e-05,
204
- "loss": 3.1394,
205
- "step": 22
206
- },
207
- {
208
- "epoch": 0.39,
209
- "learning_rate": 4.4000000000000006e-05,
210
- "loss": 3.1616,
211
- "step": 23
212
- },
213
- {
214
- "epoch": 0.41,
215
- "learning_rate": 4.600000000000001e-05,
216
- "loss": 3.1794,
217
- "step": 24
218
- },
219
- {
220
- "epoch": 0.41,
221
- "eval_loss": 3.105272054672241,
222
- "eval_runtime": 38.6846,
223
- "eval_samples_per_second": 8.737,
224
- "eval_steps_per_second": 2.921,
225
- "step": 24
226
- },
227
- {
228
- "epoch": 0.42,
229
- "learning_rate": 4.8e-05,
230
- "loss": 3.0956,
231
- "step": 25
232
- },
233
- {
234
- "epoch": 0.44,
235
- "learning_rate": 5e-05,
236
- "loss": 3.1482,
237
- "step": 26
238
- },
239
- {
240
- "epoch": 0.46,
241
- "learning_rate": 5.2000000000000004e-05,
242
- "loss": 3.1397,
243
- "step": 27
244
- },
245
- {
246
- "epoch": 0.46,
247
- "eval_loss": 3.0812368392944336,
248
- "eval_runtime": 38.7031,
249
- "eval_samples_per_second": 8.733,
250
- "eval_steps_per_second": 2.92,
251
- "step": 27
252
- },
253
- {
254
- "epoch": 0.47,
255
- "learning_rate": 5.4000000000000005e-05,
256
- "loss": 3.1913,
257
- "step": 28
258
- },
259
- {
260
- "epoch": 0.49,
261
- "learning_rate": 5.6000000000000006e-05,
262
- "loss": 3.0505,
263
- "step": 29
264
- },
265
- {
266
- "epoch": 0.51,
267
- "learning_rate": 5.8e-05,
268
- "loss": 3.2152,
269
- "step": 30
270
- },
271
- {
272
- "epoch": 0.51,
273
- "eval_loss": 3.0692708492279053,
274
- "eval_runtime": 38.6647,
275
- "eval_samples_per_second": 8.742,
276
- "eval_steps_per_second": 2.923,
277
- "step": 30
278
- },
279
- {
280
- "epoch": 0.52,
281
- "learning_rate": 6e-05,
282
- "loss": 3.062,
283
- "step": 31
284
- },
285
- {
286
- "epoch": 0.54,
287
- "learning_rate": 6.2e-05,
288
- "loss": 3.0408,
289
- "step": 32
290
- },
291
- {
292
- "epoch": 0.56,
293
- "learning_rate": 6.400000000000001e-05,
294
- "loss": 3.1555,
295
- "step": 33
296
- },
297
- {
298
- "epoch": 0.56,
299
- "eval_loss": 3.062750816345215,
300
- "eval_runtime": 38.6431,
301
- "eval_samples_per_second": 8.747,
302
- "eval_steps_per_second": 2.924,
303
- "step": 33
304
- },
305
- {
306
- "epoch": 0.57,
307
- "learning_rate": 6.6e-05,
308
- "loss": 3.0227,
309
- "step": 34
310
- },
311
- {
312
- "epoch": 0.59,
313
- "learning_rate": 6.800000000000001e-05,
314
- "loss": 2.959,
315
- "step": 35
316
- },
317
- {
318
- "epoch": 0.61,
319
- "learning_rate": 7e-05,
320
- "loss": 3.0286,
321
- "step": 36
322
- },
323
- {
324
- "epoch": 0.61,
325
- "eval_loss": 3.050220012664795,
326
- "eval_runtime": 38.6284,
327
- "eval_samples_per_second": 8.75,
328
- "eval_steps_per_second": 2.925,
329
- "step": 36
330
- },
331
- {
332
- "epoch": 0.62,
333
- "learning_rate": 7.2e-05,
334
- "loss": 3.0433,
335
- "step": 37
336
- },
337
- {
338
- "epoch": 0.64,
339
- "learning_rate": 7.4e-05,
340
- "loss": 2.9642,
341
- "step": 38
342
- },
343
- {
344
- "epoch": 0.66,
345
- "learning_rate": 7.6e-05,
346
- "loss": 2.998,
347
- "step": 39
348
- },
349
- {
350
- "epoch": 0.66,
351
- "eval_loss": 3.0451812744140625,
352
- "eval_runtime": 38.6036,
353
- "eval_samples_per_second": 8.756,
354
- "eval_steps_per_second": 2.927,
355
- "step": 39
356
- },
357
- {
358
- "epoch": 0.68,
359
- "learning_rate": 7.800000000000001e-05,
360
- "loss": 3.0317,
361
- "step": 40
362
- },
363
- {
364
- "epoch": 0.69,
365
- "learning_rate": 8e-05,
366
- "loss": 3.0231,
367
- "step": 41
368
- },
369
- {
370
- "epoch": 0.71,
371
- "learning_rate": 8.2e-05,
372
- "loss": 3.0289,
373
- "step": 42
374
- },
375
- {
376
- "epoch": 0.71,
377
- "eval_loss": 3.0393357276916504,
378
- "eval_runtime": 38.7085,
379
- "eval_samples_per_second": 8.732,
380
- "eval_steps_per_second": 2.919,
381
- "step": 42
382
- },
383
- {
384
- "epoch": 0.73,
385
- "learning_rate": 8.4e-05,
386
- "loss": 2.9359,
387
- "step": 43
388
- },
389
- {
390
- "epoch": 0.74,
391
- "learning_rate": 8.6e-05,
392
- "loss": 3.0932,
393
- "step": 44
394
- },
395
- {
396
- "epoch": 0.76,
397
- "learning_rate": 8.800000000000001e-05,
398
- "loss": 3.0782,
399
- "step": 45
400
- },
401
- {
402
- "epoch": 0.76,
403
- "eval_loss": 3.0284407138824463,
404
- "eval_runtime": 38.6437,
405
- "eval_samples_per_second": 8.747,
406
- "eval_steps_per_second": 2.924,
407
- "step": 45
408
- },
409
- {
410
- "epoch": 0.78,
411
- "learning_rate": 9e-05,
412
- "loss": 2.984,
413
- "step": 46
414
- },
415
- {
416
- "epoch": 0.79,
417
- "learning_rate": 9.200000000000001e-05,
418
- "loss": 2.8464,
419
- "step": 47
420
- },
421
- {
422
- "epoch": 0.81,
423
- "learning_rate": 9.4e-05,
424
- "loss": 2.9876,
425
- "step": 48
426
- },
427
- {
428
- "epoch": 0.81,
429
- "eval_loss": 3.0273585319519043,
430
- "eval_runtime": 38.6372,
431
- "eval_samples_per_second": 8.748,
432
- "eval_steps_per_second": 2.925,
433
- "step": 48
434
- },
435
- {
436
- "epoch": 0.83,
437
- "learning_rate": 9.6e-05,
438
- "loss": 3.1017,
439
- "step": 49
440
- },
441
- {
442
- "epoch": 0.84,
443
- "learning_rate": 9.8e-05,
444
- "loss": 3.0528,
445
- "step": 50
446
- },
447
- {
448
- "epoch": 0.86,
449
- "learning_rate": 0.0001,
450
- "loss": 3.0262,
451
- "step": 51
452
- },
453
- {
454
- "epoch": 0.86,
455
- "eval_loss": 3.0559024810791016,
456
- "eval_runtime": 38.6899,
457
- "eval_samples_per_second": 8.736,
458
- "eval_steps_per_second": 2.921,
459
- "step": 51
460
- },
461
- {
462
- "epoch": 0.88,
463
- "learning_rate": 0.00010200000000000001,
464
- "loss": 2.9996,
465
- "step": 52
466
- },
467
- {
468
- "epoch": 0.89,
469
- "learning_rate": 0.00010400000000000001,
470
- "loss": 2.9649,
471
- "step": 53
472
- },
473
- {
474
- "epoch": 0.91,
475
- "learning_rate": 0.00010600000000000002,
476
- "loss": 3.0604,
477
- "step": 54
478
- },
479
- {
480
- "epoch": 0.91,
481
- "eval_loss": 3.0412142276763916,
482
- "eval_runtime": 38.6646,
483
- "eval_samples_per_second": 8.742,
484
- "eval_steps_per_second": 2.923,
485
- "step": 54
486
- },
487
- {
488
- "epoch": 0.93,
489
- "learning_rate": 0.00010800000000000001,
490
- "loss": 2.9577,
491
- "step": 55
492
- },
493
- {
494
- "epoch": 0.95,
495
- "learning_rate": 0.00011000000000000002,
496
- "loss": 3.0167,
497
- "step": 56
498
- },
499
- {
500
- "epoch": 0.96,
501
- "learning_rate": 0.00011200000000000001,
502
- "loss": 2.9368,
503
- "step": 57
504
- },
505
- {
506
- "epoch": 0.96,
507
- "eval_loss": 3.0456135272979736,
508
- "eval_runtime": 38.6549,
509
- "eval_samples_per_second": 8.744,
510
- "eval_steps_per_second": 2.923,
511
- "step": 57
512
- },
513
- {
514
- "epoch": 0.98,
515
- "learning_rate": 0.00011399999999999999,
516
- "loss": 3.0352,
517
- "step": 58
518
- },
519
- {
520
- "epoch": 1.0,
521
- "learning_rate": 0.000116,
522
- "loss": 2.8919,
523
- "step": 59
524
- }
525
- ],
526
- "logging_steps": 1,
527
- "max_steps": 59,
528
- "num_train_epochs": 1,
529
- "save_steps": 500,
530
- "total_flos": 4612895539200.0,
531
- "trial_name": null,
532
- "trial_params": null
533
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-59/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee9ec53a82ab7ccd0b56a0e210031dd5230906ab55f7bbb5351d53946650df69
3
- size 6587
 
 
 
 
checkpoint-59/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)