metadata
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- NbAiLab/NCC_S
metrics:
- wer
model-index:
- name: Whisper Base Norwegian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NbAiLab/NCC_S
type: NbAiLab/NCC_S
config: 'no'
split: validation
args: 'no'
metrics:
- name: Wer
type: wer
value: 16.017052375152254
Whisper Base Norwegian
This model is a fine-tuned version of openai/whisper-small on the NbAiLab/NCC_S dataset. It achieves the following results on the evaluation set:
- Loss: 0.3290
- Wer: 16.0171
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8528 | 0.2 | 1000 | 0.4402 | 22.5639 |
0.7558 | 0.4 | 2000 | 0.3861 | 19.7016 |
0.721 | 0.6 | 3000 | 0.3545 | 17.8441 |
0.6803 | 0.8 | 4000 | 0.3364 | 16.5652 |
0.6557 | 1.0 | 5000 | 0.3290 | 16.0171 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2