nb-linguistic-quality-evaluator / train_regressor_bert.py
pere's picture
run regressor
691f1cb
raw
history blame
4 kB
from transformers import (
AutoTokenizer,
DataCollatorWithPadding,
TrainingArguments,
Trainer,
AutoModelForSequenceClassification,
)
from datasets import load_dataset, ClassLabel
import numpy as np
import evaluate
import argparse
import os
from sklearn.metrics import classification_report, confusion_matrix
def compute_metrics(eval_pred):
precision_metric = evaluate.load("precision")
recall_metric = evaluate.load("recall")
f1_metric = evaluate.load("f1")
accuracy_metric = evaluate.load("accuracy")
logits, labels = eval_pred
preds = np.round(logits.squeeze()).clip(0, 5).astype(int)
labels = np.round(labels.squeeze()).astype(int)
precision = precision_metric.compute(
predictions=preds, references=labels, average="macro"
)["precision"]
recall = recall_metric.compute(
predictions=preds, references=labels, average="macro"
)["recall"]
f1 = f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"]
accuracy = accuracy_metric.compute(predictions=preds, references=labels)["accuracy"]
report = classification_report(labels, preds)
cm = confusion_matrix(labels, preds)
print("Validation Report:\n" + report)
print("Confusion Matrix:\n" + str(cm))
return {
"precision": precision,
"recall": recall,
"f1_macro": f1,
"accuracy": accuracy,
}
def main(args):
dataset = load_dataset(
args.dataset_name, split="train", cache_dir="/home/perk/.cache/", num_proc=8
)
dataset = dataset.map(
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, num_proc=8
)
dataset = dataset.cast_column(
args.target_column, ClassLabel(names=[str(i) for i in range(6)])
)
dataset = dataset.train_test_split(
train_size=0.9, seed=42, stratify_by_column=args.target_column
)
tokenizer = AutoTokenizer.from_pretrained(args.base_model_name)
def preprocess(examples):
batch = tokenizer(examples["text"], truncation=True, max_length=512)
batch["labels"] = np.float32(examples[args.target_column])
return batch
dataset = dataset.map(preprocess, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
model = AutoModelForSequenceClassification.from_pretrained(args.base_model_name, num_labels=1, classifier_dropout=0.0, hidden_dropout_prob=0.0)
for param in model.bert.embeddings.parameters():
param.requires_grad = False
for param in model.bert.encoder.parameters():
param.requires_grad = False
training_args = TrainingArguments(
output_dir=args.checkpoint_dir,
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=1000,
save_steps=1000,
logging_steps=100,
learning_rate=3e-4,
num_train_epochs=20,
seed=0,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
load_best_model_at_end=True,
metric_for_best_model="f1_macro",
greater_is_better=True,
bf16=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model(os.path.join(args.checkpoint_dir, "final"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_name", type=str, default="Snowflake/snowflake-arctic-embed-m")
parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb-edu-llama3-annotations")
parser.add_argument("--target_column", type=str, default="score")
parser.add_argument("--checkpoint_dir", type=str, default="/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression")
args = parser.parse_args()
main(args)