pere commited on
Commit
691f1cb
1 Parent(s): 11e7ab7

run regressor

Browse files
Files changed (1) hide show
  1. train_regressor_bert.py +118 -0
train_regressor_bert.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import (
2
+ AutoTokenizer,
3
+ DataCollatorWithPadding,
4
+ TrainingArguments,
5
+ Trainer,
6
+ AutoModelForSequenceClassification,
7
+ )
8
+ from datasets import load_dataset, ClassLabel
9
+ import numpy as np
10
+ import evaluate
11
+ import argparse
12
+ import os
13
+ from sklearn.metrics import classification_report, confusion_matrix
14
+
15
+
16
+ def compute_metrics(eval_pred):
17
+ precision_metric = evaluate.load("precision")
18
+ recall_metric = evaluate.load("recall")
19
+ f1_metric = evaluate.load("f1")
20
+ accuracy_metric = evaluate.load("accuracy")
21
+
22
+ logits, labels = eval_pred
23
+ preds = np.round(logits.squeeze()).clip(0, 5).astype(int)
24
+ labels = np.round(labels.squeeze()).astype(int)
25
+ precision = precision_metric.compute(
26
+ predictions=preds, references=labels, average="macro"
27
+ )["precision"]
28
+ recall = recall_metric.compute(
29
+ predictions=preds, references=labels, average="macro"
30
+ )["recall"]
31
+ f1 = f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"]
32
+ accuracy = accuracy_metric.compute(predictions=preds, references=labels)["accuracy"]
33
+
34
+ report = classification_report(labels, preds)
35
+ cm = confusion_matrix(labels, preds)
36
+ print("Validation Report:\n" + report)
37
+ print("Confusion Matrix:\n" + str(cm))
38
+
39
+ return {
40
+ "precision": precision,
41
+ "recall": recall,
42
+ "f1_macro": f1,
43
+ "accuracy": accuracy,
44
+ }
45
+
46
+
47
+ def main(args):
48
+ dataset = load_dataset(
49
+ args.dataset_name, split="train", cache_dir="/home/perk/.cache/", num_proc=8
50
+ )
51
+ dataset = dataset.map(
52
+ lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, num_proc=8
53
+ )
54
+
55
+ dataset = dataset.cast_column(
56
+ args.target_column, ClassLabel(names=[str(i) for i in range(6)])
57
+ )
58
+ dataset = dataset.train_test_split(
59
+ train_size=0.9, seed=42, stratify_by_column=args.target_column
60
+ )
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(args.base_model_name)
63
+
64
+ def preprocess(examples):
65
+ batch = tokenizer(examples["text"], truncation=True, max_length=512)
66
+ batch["labels"] = np.float32(examples[args.target_column])
67
+ return batch
68
+
69
+ dataset = dataset.map(preprocess, batched=True)
70
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
71
+ model = AutoModelForSequenceClassification.from_pretrained(args.base_model_name, num_labels=1, classifier_dropout=0.0, hidden_dropout_prob=0.0)
72
+
73
+ for param in model.bert.embeddings.parameters():
74
+ param.requires_grad = False
75
+ for param in model.bert.encoder.parameters():
76
+ param.requires_grad = False
77
+
78
+ training_args = TrainingArguments(
79
+ output_dir=args.checkpoint_dir,
80
+ evaluation_strategy="steps",
81
+ save_strategy="steps",
82
+ eval_steps=1000,
83
+ save_steps=1000,
84
+ logging_steps=100,
85
+ learning_rate=3e-4,
86
+ num_train_epochs=20,
87
+ seed=0,
88
+ per_device_train_batch_size=32,
89
+ per_device_eval_batch_size=32,
90
+ load_best_model_at_end=True,
91
+ metric_for_best_model="f1_macro",
92
+ greater_is_better=True,
93
+ bf16=True,
94
+ )
95
+
96
+ trainer = Trainer(
97
+ model=model,
98
+ args=training_args,
99
+ train_dataset=dataset["train"],
100
+ eval_dataset=dataset["test"],
101
+ tokenizer=tokenizer,
102
+ data_collator=data_collator,
103
+ compute_metrics=compute_metrics,
104
+ )
105
+
106
+ trainer.train()
107
+ trainer.save_model(os.path.join(args.checkpoint_dir, "final"))
108
+
109
+
110
+ if __name__ == "__main__":
111
+ parser = argparse.ArgumentParser()
112
+ parser.add_argument("--base_model_name", type=str, default="Snowflake/snowflake-arctic-embed-m")
113
+ parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb-edu-llama3-annotations")
114
+ parser.add_argument("--target_column", type=str, default="score")
115
+ parser.add_argument("--checkpoint_dir", type=str, default="/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression")
116
+ args = parser.parse_args()
117
+
118
+ main(args)