NataliiaM15 commited on
Commit
81295dc
·
verified ·
1 Parent(s): f0aae4d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets: karpathy/tiny_shakespeare
4
+ library_name: pytorch
5
+ tags:
6
+ - transformer
7
+ - decoder-only
8
+ - character-level
9
+ - text-generation
10
+ - shakespeare
11
+ license: mit
12
+ model_name: decoder-shakespeare-gpt
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ # Decoder-Only Shakespeare GPT
17
+
18
+ This is a lightweight GPT-style decoder-only transformer model trained on the Tiny Shakespeare dataset (`karpathy/tiny_shakespeare`). It uses a custom implementation in PyTorch and supports character-level text generation.
19
+
20
+ ## Model Details
21
+
22
+ - **Architecture**: Decoder-only Transformer
23
+ - **Layers**: 2
24
+ - **Embedding Size**: 128
25
+ - **Heads**: 4
26
+ - **Sequence Length**: 64
27
+ - **Training Epochs**: 4
28
+ - **Tokenizer**: GPT-2 tokenizer (character-level)
29
+
30
+ ## Training
31
+
32
+ Trained on the full Tiny Shakespeare dataset for 4 epochs using Adam optimizer and cross-entropy loss. Validation loss is tracked and logged using Weights & Biases (wandb).
33
+
34
+ ## Usage
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer
38
+ import torch
39
+ from model import DecoderOnlyTransformer # custom model class
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained("NataliiaM15/decoder-shakespeare-gpt")
42
+ model = DecoderOnlyTransformer(
43
+ vocab_size=tokenizer.vocab_size,
44
+ embed_dim=128,
45
+ num_heads=4,
46
+ num_layers=2,
47
+ seq_len=64
48
+ )
49
+ model.load_state_dict(torch.load("pytorch_model.bin"))
50
+ model.eval()
51
+
52
+ # Generate text
53
+ prompt = "ROMEO:"
54
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
55
+ # generation loop would go here...