bert-concat / README.md
NasimB's picture
update model card README.md
cc50762
metadata
tags:
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: bert-concat
    results: []

bert-concat

This model is a fine-tuned version of on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 5.9507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.3397 0.25 500 6.6405
6.5835 0.51 1000 6.5183
6.4967 0.76 1500 6.4926
6.451 1.01 2000 6.4507
6.4104 1.26 2500 6.4097
6.3868 1.52 3000 6.4019
6.3717 1.77 3500 6.3789
6.3361 2.02 4000 6.3596
6.3099 2.28 4500 6.3345
6.2807 2.53 5000 6.3050
6.2578 2.78 5500 6.2843
6.2356 3.03 6000 6.2735
6.2017 3.29 6500 6.2527
6.1837 3.54 7000 6.2277
6.1682 3.79 7500 6.2102
6.1443 4.04 8000 6.1917
6.1128 4.3 8500 6.1767
6.1034 4.55 9000 6.1678
6.0838 4.8 9500 6.1552
6.0641 5.06 10000 6.1401
6.0417 5.31 10500 6.1350
6.0247 5.56 11000 6.1123
6.0125 5.81 11500 6.1082
6.0028 6.07 12000 6.1022
5.9788 6.32 12500 6.0895
5.9739 6.57 13000 6.0828
5.9545 6.83 13500 6.0687
5.9441 7.08 14000 6.0652
5.923 7.33 14500 6.0567
5.9115 7.58 15000 6.0492
5.9106 7.84 15500 6.0466
5.8943 8.09 16000 6.0315
5.8726 8.34 16500 6.0339
5.8665 8.59 17000 6.0243
5.8548 8.85 17500 6.0193
5.8431 9.1 18000 6.0111
5.8218 9.35 18500 6.0053
5.8193 9.61 19000 6.0026
5.8174 9.86 19500 5.9927
5.7954 10.11 20000 5.9873
5.7779 10.36 20500 5.9823
5.7749 10.62 21000 5.9799
5.7739 10.87 21500 5.9784
5.7582 11.12 22000 5.9757
5.7415 11.38 22500 5.9686
5.7467 11.63 23000 5.9650
5.7448 11.88 23500 5.9648
5.7372 12.13 24000 5.9585
5.7207 12.39 24500 5.9596
5.7264 12.64 25000 5.9546
5.7212 12.89 25500 5.9516
5.7142 13.14 26000 5.9553
5.7103 13.4 26500 5.9551
5.7093 13.65 27000 5.9527
5.7183 13.9 27500 5.9507

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.13.0
  • Tokenizers 0.13.3