tiny-distilbert-sequence-classification / create_dummy_models.py
Narsil's picture
Narsil HF staff
Saving orginal script used.
39367a0
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import copy
import re
import importlib
import os
import tempfile
from collections import OrderedDict
import string
import h5py
import numpy as np
import torch
from tqdm import tqdm
from transformers import (
AutoTokenizer,
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING,
logging,
)
logging.set_verbosity_error()
HOME = os.getenv("HOME")
weights_path = f"{HOME}/data/weights"
def to_snake_case(name):
"https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case"
name = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
name = re.sub("__([A-Z])", r"_\1", name)
name = re.sub("([a-z0-9])([A-Z])", r"\1_\2", name)
return name.lower()
def flattened(somelist):
output = []
for item in somelist:
if isinstance(item, (tuple, list)):
output.extend(list(item))
else:
output.append(item)
return output
# UTILITY METHODS
def get_tiny_config_from_class(configuration_class):
"""
Retrieve a tiny configuration from the configuration class. It uses each class' `ModelTester`.
Args:
configuration_class: Subclass of `PreTrainedConfig`.
Returns:
an instance of the configuration passed, with very small hyper-parameters
"""
model_type = configuration_class.model_type
camel_case_model_name = configuration_class.__name__.split("Config")[0]
try:
module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
except ModuleNotFoundError:
print(f"Will not build {model_type}: no model tester or cannot find the testing module from the model name.")
return
if model_tester_class is None:
return
model_tester = model_tester_class(parent=None)
if hasattr(model_tester, "get_pipeline_config"):
return model_tester.get_pipeline_config()
elif hasattr(model_tester, "get_config"):
return model_tester.get_config()
def eventual_create_tokenizer(dirname, architecture, config):
try:
_ = AutoTokenizer.from_pretrained(dirname, local_files_only=True)
return
except:
pass
checkpoint = get_checkpoint_from_architecture(architecture)
if checkpoint is None:
return
tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
if tokenizer is None:
return
if hasattr(config, "max_position_embeddings"):
tokenizer.model_max_length = config.max_position_embeddings
assert tokenizer.vocab_size <= config.vocab_size
if checkpoint is not None and tokenizer is not None:
try:
tokenizer.save_pretrained(dirname)
except Exception:
pass
try:
tokenizer._tokenizer.save(f"{dirname}/tokenizer.json")
except Exception:
return
_ = AutoTokenizer.from_pretrained(dirname, local_files_only=True)
# print(f"SUCCESS {dirname}")
def build_pt_architecture(architecture, config):
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__))
try:
model = architecture.from_pretrained(dirname, local_files_only=True)
# Already created
print(f"{dirname} already created")
return
except Exception:
pass
state_dict = {}
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
if "ReformerModelWithLMHead" in architecture.__name__:
config.is_decoder = True
if "ReformerForMaskedLM" in architecture.__name__:
config.is_decoder = False
os.makedirs(dirname, exist_ok=True)
config.save_pretrained(dirname)
eventual_create_tokenizer(dirname, architecture, config)
model = architecture.from_pretrained(None, config=config, state_dict=state_dict, local_files_only=True)
model.save_pretrained(dirname)
# Make sure we can load what we just saved
model = architecture.from_pretrained(dirname, local_files_only=True)
def build_pytorch_weights_from_multiple_architectures(pytorch_architectures):
# Create the PyTorch tiny models
for config, architectures in tqdm(pytorch_architectures.items(), desc="Building PyTorch weights"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
build_pt_architecture(architecture, copy.deepcopy(base_tiny_config))
def build_tf_architecture(architecture, config):
# [2:] remove TF prefix of architecture name
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__[2:]))
try:
model = architecture.from_pretrained(dirname, local_files_only=True)
# Already created
return
except Exception:
pass
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
if "ReformerModelWithLMHead" in architecture.__name__:
config.is_decoder = True
if "ReformerForMaskedLM" in architecture.__name__:
config.is_decoder = False
config.num_labels = 2
os.makedirs(dirname, exist_ok=True)
config.save_pretrained(dirname)
eventual_create_tokenizer(dirname, architecture, config)
try:
model = architecture.from_pretrained(dirname, config=config, from_pt=True, local_files_only=True)
except Exception as e:
raise ValueError(f"Couldn't load {architecture.__name__}.") from e
model.save_pretrained(dirname)
model = architecture.from_pretrained(dirname, local_files_only=True)
def build_tensorflow_weights_from_multiple_architectures(tensorflow_architectures):
# Create the TensorFlow tiny models
for config, architectures in tqdm(tensorflow_architectures.items(), desc="Building TensorFlow weights"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
build_tf_architecture(architecture, copy.deepcopy(base_tiny_config))
def get_tiny_tokenizer_from_checkpoint(checkpoint):
try:
tokenizer = AutoTokenizer.from_pretrained(checkpoint, local_files_only=True)
except Exception:
return
# logger.warning("Training new from iterator ...")
vocabulary = string.ascii_letters + string.digits + " "
if not tokenizer.__class__.__name__.endswith("Fast"):
return
try:
tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
except: # noqa: E722
return
# logger.warning("Trained.")
return tokenizer
def get_checkpoint_from_architecture(architecture):
try:
module = importlib.import_module(architecture.__module__)
except Exception:
# logger.error(f"Ignoring architecture {architecture}")
return
if hasattr(module, "_CHECKPOINT_FOR_DOC"):
return module._CHECKPOINT_FOR_DOC
else:
# logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
pass
def pt_architectures():
pytorch_mappings = [
MODEL_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
pt_architectures = {
config: [pytorch_mapping[config] for pytorch_mapping in pytorch_mappings if config in pytorch_mapping]
for config in CONFIG_MAPPING.values()
}
build_pytorch_weights_from_multiple_architectures(pt_architectures)
print("Built PyTorch weights")
for config, architectures in tqdm(pt_architectures.items(), desc="Checking PyTorch weights validity"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
if "DPRQuestionEncoder" in architecture.__name__:
continue
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__))
model, loading_info = architecture.from_pretrained(
dirname,
output_loading_info=True,
local_files_only=True,
)
if len(loading_info["missing_keys"]) > 0:
raise ValueError(f"Missing weights when loading PyTorch checkpoints: {loading_info['missing_keys']}")
print("Checked PyTorch weights")
def tf_architectures():
tensorflow_mappings = [
TF_MODEL_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
]
tf_architectures = {
config: [
tensorflow_mapping[config] for tensorflow_mapping in tensorflow_mappings if config in tensorflow_mapping
]
for config in CONFIG_MAPPING.values()
}
build_tensorflow_weights_from_multiple_architectures(tf_architectures)
print("Built TensorFlow weights")
for config, architectures in tqdm(tf_architectures.items(), desc="Checking TensorFlow weights validity"):
base_tiny_config = get_tiny_config_from_class(config)
if base_tiny_config is None:
continue
flat_architectures = flattened(architectures)
for architecture in flat_architectures:
if "DPRQuestionEncoder" in architecture.__name__:
# Not supported
return
# [2:] to remove TF prefix
dirname = os.path.join(weights_path, config.model_type, to_snake_case(architecture.__name__[2:]))
try:
model, loading_info = architecture.from_pretrained(
dirname, output_loading_info=True, local_files_only=True
)
except Exception as e:
raise ValueError(f"Couldn't load {architecture.__name__}") from e
if len(loading_info["missing_keys"]) != 0:
required_weights_missing = []
for missing_key in loading_info["missing_keys"]:
if "dropout" not in missing_key:
required_weights_missing.append(missing_key)
if len(required_weights_missing) > 0:
raise ValueError(f"Found missing weights in {architecture}: {required_weights_missing}")
print("Checked TensorFlow weights")
def main():
# Define the PyTorch and TensorFlow mappings
pt_architectures()
tf_architectures()
if __name__ == "__main__":
main()