banglabert-MLTC-BB1 / README.md
NaeemCSECUET18's picture
End of training
9b315a9 verified
|
raw
history blame
2.99 kB
metadata
base_model: csebuetnlp/banglabert
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: banglabert-MLTC-BB1
    results: []

banglabert-MLTC-BB1

This model is a fine-tuned version of csebuetnlp/banglabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3577
  • F1: 0.8555
  • F1 Weighted: 0.8534
  • Roc Auc: 0.8534
  • Accuracy: 0.5733
  • Hamming Loss: 0.1465
  • Jaccard Score: 0.7475
  • Zero One Loss: 0.4267

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 F1 Weighted Roc Auc Accuracy Hamming Loss Jaccard Score Zero One Loss
0.5579 1.0 49 0.5012 0.7993 0.7864 0.7832 0.4267 0.2166 0.6657 0.5733
0.4039 2.0 98 0.4338 0.8318 0.8287 0.8218 0.5347 0.1780 0.7121 0.4653
0.3704 3.0 147 0.3728 0.8600 0.8604 0.8560 0.5861 0.1440 0.7544 0.4139
0.3117 4.0 196 0.3615 0.8568 0.8553 0.8528 0.5733 0.1472 0.7495 0.4267
0.2723 5.0 245 0.3514 0.8548 0.8537 0.8528 0.5784 0.1472 0.7464 0.4216
0.2709 6.0 294 0.3640 0.8469 0.8434 0.8438 0.5476 0.1562 0.7344 0.4524
0.224 7.0 343 0.3581 0.8488 0.8461 0.8477 0.5578 0.1523 0.7373 0.4422
0.2335 8.0 392 0.3622 0.8532 0.8510 0.8502 0.5656 0.1497 0.7440 0.4344
0.2453 9.0 441 0.3552 0.8573 0.8560 0.8554 0.5758 0.1446 0.7503 0.4242
0.2194 10.0 490 0.3577 0.8555 0.8534 0.8534 0.5733 0.1465 0.7475 0.4267

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1