|
import argparse |
|
from typing import Dict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers import SparseControlNetModel |
|
|
|
|
|
KEYS_RENAME_MAPPING = { |
|
".attention_blocks.0": ".attn1", |
|
".attention_blocks.1": ".attn2", |
|
".attn1.pos_encoder": ".pos_embed", |
|
".ff_norm": ".norm3", |
|
".norms.0": ".norm1", |
|
".norms.1": ".norm2", |
|
".temporal_transformer": "", |
|
} |
|
|
|
|
|
def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]: |
|
converted_state_dict = {} |
|
|
|
for key in list(original_state_dict.keys()): |
|
renamed_key = key |
|
for new_name, old_name in KEYS_RENAME_MAPPING.items(): |
|
renamed_key = renamed_key.replace(new_name, old_name) |
|
converted_state_dict[renamed_key] = original_state_dict.pop(key) |
|
|
|
return converted_state_dict |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") |
|
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory") |
|
parser.add_argument( |
|
"--max_motion_seq_length", |
|
type=int, |
|
default=32, |
|
help="Max motion sequence length supported by the motion adapter", |
|
) |
|
parser.add_argument( |
|
"--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet" |
|
) |
|
parser.add_argument( |
|
"--use_simplified_condition_embedding", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`", |
|
) |
|
parser.add_argument( |
|
"--save_fp16", |
|
action="store_true", |
|
default=False, |
|
help="Whether or not to save model in fp16 precision along with fp32", |
|
) |
|
parser.add_argument( |
|
"--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub" |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu") |
|
if "state_dict" in state_dict.keys(): |
|
state_dict: dict = state_dict["state_dict"] |
|
|
|
controlnet = SparseControlNetModel( |
|
conditioning_channels=args.conditioning_channels, |
|
motion_max_seq_length=args.max_motion_seq_length, |
|
use_simplified_condition_embedding=args.use_simplified_condition_embedding, |
|
) |
|
|
|
state_dict = convert(state_dict) |
|
controlnet.load_state_dict(state_dict, strict=True) |
|
|
|
controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub) |
|
if args.save_fp16: |
|
controlnet = controlnet.to(dtype=torch.float16) |
|
controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub) |
|
|