NadaGh commited on
Commit
dde5d93
1 Parent(s): 65f36c3

End of training

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +43 -0
  3. diffusers/.github/ISSUE_TEMPLATE/bug-report.yml +110 -0
  4. diffusers/.github/ISSUE_TEMPLATE/config.yml +4 -0
  5. diffusers/.github/ISSUE_TEMPLATE/feature_request.md +20 -0
  6. diffusers/.github/ISSUE_TEMPLATE/feedback.md +12 -0
  7. diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml +31 -0
  8. diffusers/.github/ISSUE_TEMPLATE/translate.md +29 -0
  9. diffusers/.github/PULL_REQUEST_TEMPLATE.md +61 -0
  10. diffusers/.github/actions/setup-miniconda/action.yml +146 -0
  11. diffusers/.github/workflows/benchmark.yml +66 -0
  12. diffusers/.github/workflows/build_docker_images.yml +103 -0
  13. diffusers/.github/workflows/build_documentation.yml +27 -0
  14. diffusers/.github/workflows/build_pr_documentation.yml +23 -0
  15. diffusers/.github/workflows/mirror_community_pipeline.yml +102 -0
  16. diffusers/.github/workflows/nightly_tests.yml +408 -0
  17. diffusers/.github/workflows/notify_slack_about_release.yml +23 -0
  18. diffusers/.github/workflows/pr_dependency_test.yml +35 -0
  19. diffusers/.github/workflows/pr_flax_dependency_test.yml +38 -0
  20. diffusers/.github/workflows/pr_test_fetcher.yml +177 -0
  21. diffusers/.github/workflows/pr_test_peft_backend.yml +132 -0
  22. diffusers/.github/workflows/pr_tests.yml +235 -0
  23. diffusers/.github/workflows/pr_torch_dependency_test.yml +36 -0
  24. diffusers/.github/workflows/push_tests.yml +391 -0
  25. diffusers/.github/workflows/push_tests_fast.yml +125 -0
  26. diffusers/.github/workflows/push_tests_mps.yml +75 -0
  27. diffusers/.github/workflows/pypi_publish.yaml +81 -0
  28. diffusers/.github/workflows/run_tests_from_a_pr.yml +74 -0
  29. diffusers/.github/workflows/ssh-pr-runner.yml +40 -0
  30. diffusers/.github/workflows/ssh-runner.yml +47 -0
  31. diffusers/.github/workflows/stale.yml +27 -0
  32. diffusers/.github/workflows/trufflehog.yml +15 -0
  33. diffusers/.github/workflows/typos.yml +14 -0
  34. diffusers/.github/workflows/update_metadata.yml +30 -0
  35. diffusers/.github/workflows/upload_pr_documentation.yml +16 -0
  36. diffusers/.gitignore +178 -0
  37. diffusers/CITATION.cff +52 -0
  38. diffusers/CODE_OF_CONDUCT.md +130 -0
  39. diffusers/CONTRIBUTING.md +506 -0
  40. diffusers/LICENSE +201 -0
  41. diffusers/MANIFEST.in +2 -0
  42. diffusers/Makefile +96 -0
  43. diffusers/PHILOSOPHY.md +110 -0
  44. diffusers/README.md +239 -0
  45. diffusers/_typos.toml +13 -0
  46. diffusers/benchmarks/base_classes.py +346 -0
  47. diffusers/benchmarks/benchmark_controlnet.py +26 -0
  48. diffusers/benchmarks/benchmark_ip_adapters.py +32 -0
  49. diffusers/benchmarks/benchmark_sd_img.py +29 -0
  50. diffusers/benchmarks/benchmark_sd_inpainting.py +28 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ diffusers/examples/research_projects/gligen/generated-images-100000-00.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: runwayml/stable-diffusion-v1-5
3
+ library_name: diffusers
4
+ license: creativeml-openrail-m
5
+ tags:
6
+ - text-to-image
7
+ - dreambooth
8
+ - diffusers-training
9
+ - stable-diffusion
10
+ - stable-diffusion-diffusers
11
+ inference: true
12
+ instance_prompt: tst chair
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+
19
+ # DreamBooth - NadaGh/working
20
+
21
+ This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on tst chair using [DreamBooth](https://dreambooth.github.io/).
22
+ You can find some example images in the following.
23
+
24
+
25
+
26
+ DreamBooth for the text encoder was enabled: False.
27
+
28
+
29
+ ## Intended uses & limitations
30
+
31
+ #### How to use
32
+
33
+ ```python
34
+ # TODO: add an example code snippet for running this diffusion pipeline
35
+ ```
36
+
37
+ #### Limitations and bias
38
+
39
+ [TODO: provide examples of latent issues and potential remediations]
40
+
41
+ ## Training details
42
+
43
+ [TODO: describe the data used to train the model]
diffusers/.github/ISSUE_TEMPLATE/bug-report.yml ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "\U0001F41B Bug Report"
2
+ description: Report a bug on Diffusers
3
+ labels: [ "bug" ]
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks a lot for taking the time to file this issue 🤗.
9
+ Issues do not only help to improve the library, but also publicly document common problems, questions, workflows for the whole community!
10
+ Thus, issues are of the same importance as pull requests when contributing to this library ❤️.
11
+ In order to make your issue as **useful for the community as possible**, let's try to stick to some simple guidelines:
12
+ - 1. Please try to be as precise and concise as possible.
13
+ *Give your issue a fitting title. Assume that someone which very limited knowledge of Diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
14
+ - 2. If your issue is about something not working, **always** provide a reproducible code snippet. The reader should be able to reproduce your issue by **only copy-pasting your code snippet into a Python shell**.
15
+ *The community cannot solve your issue if it cannot reproduce it. If your bug is related to training, add your training script and make everything needed to train public. Otherwise, just add a simple Python code snippet.*
16
+ - 3. Add the **minimum** amount of code / context that is needed to understand, reproduce your issue.
17
+ *Make the life of maintainers easy. `diffusers` is getting many issues every day. Make sure your issue is about one bug and one bug only. Make sure you add only the context, code needed to understand your issues - nothing more. Generally, every issue is a way of documenting this library, try to make it a good documentation entry.*
18
+ - 4. For issues related to community pipelines (i.e., the pipelines located in the `examples/community` folder), please tag the author of the pipeline in your issue thread as those pipelines are not maintained.
19
+ - type: markdown
20
+ attributes:
21
+ value: |
22
+ For more in-detail information on how to write good issues you can have a look [here](https://huggingface.co/course/chapter8/5?fw=pt).
23
+ - type: textarea
24
+ id: bug-description
25
+ attributes:
26
+ label: Describe the bug
27
+ description: A clear and concise description of what the bug is. If you intend to submit a pull request for this issue, tell us in the description. Thanks!
28
+ placeholder: Bug description
29
+ validations:
30
+ required: true
31
+ - type: textarea
32
+ id: reproduction
33
+ attributes:
34
+ label: Reproduction
35
+ description: Please provide a minimal reproducible code which we can copy/paste and reproduce the issue.
36
+ placeholder: Reproduction
37
+ validations:
38
+ required: true
39
+ - type: textarea
40
+ id: logs
41
+ attributes:
42
+ label: Logs
43
+ description: "Please include the Python logs if you can."
44
+ render: shell
45
+ - type: textarea
46
+ id: system-info
47
+ attributes:
48
+ label: System Info
49
+ description: Please share your system info with us. You can run the command `diffusers-cli env` and copy-paste its output below.
50
+ placeholder: Diffusers version, platform, Python version, ...
51
+ validations:
52
+ required: true
53
+ - type: textarea
54
+ id: who-can-help
55
+ attributes:
56
+ label: Who can help?
57
+ description: |
58
+ Your issue will be replied to more quickly if you can figure out the right person to tag with @.
59
+ If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
60
+
61
+ All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
62
+ a core maintainer will ping the right person.
63
+
64
+ Please tag a maximum of 2 people.
65
+
66
+ Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...): @sayakpaul @DN6
67
+
68
+ Questions on pipelines:
69
+ - Stable Diffusion @yiyixuxu @asomoza
70
+ - Stable Diffusion XL @yiyixuxu @sayakpaul @DN6
71
+ - Stable Diffusion 3: @yiyixuxu @sayakpaul @DN6 @asomoza
72
+ - Kandinsky @yiyixuxu
73
+ - ControlNet @sayakpaul @yiyixuxu @DN6
74
+ - T2I Adapter @sayakpaul @yiyixuxu @DN6
75
+ - IF @DN6
76
+ - Text-to-Video / Video-to-Video @DN6 @a-r-r-o-w
77
+ - Wuerstchen @DN6
78
+ - Other: @yiyixuxu @DN6
79
+ - Improving generation quality: @asomoza
80
+
81
+ Questions on models:
82
+ - UNet @DN6 @yiyixuxu @sayakpaul
83
+ - VAE @sayakpaul @DN6 @yiyixuxu
84
+ - Transformers/Attention @DN6 @yiyixuxu @sayakpaul
85
+
86
+ Questions on single file checkpoints: @DN6
87
+
88
+ Questions on Schedulers: @yiyixuxu
89
+
90
+ Questions on LoRA: @sayakpaul
91
+
92
+ Questions on Textual Inversion: @sayakpaul
93
+
94
+ Questions on Training:
95
+ - DreamBooth @sayakpaul
96
+ - Text-to-Image Fine-tuning @sayakpaul
97
+ - Textual Inversion @sayakpaul
98
+ - ControlNet @sayakpaul
99
+
100
+ Questions on Tests: @DN6 @sayakpaul @yiyixuxu
101
+
102
+ Questions on Documentation: @stevhliu
103
+
104
+ Questions on JAX- and MPS-related things: @pcuenca
105
+
106
+ Questions on audio pipelines: @sanchit-gandhi
107
+
108
+
109
+
110
+ placeholder: "@Username ..."
diffusers/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ contact_links:
2
+ - name: Questions / Discussions
3
+ url: https://github.com/huggingface/diffusers/discussions
4
+ about: General usage questions and community discussions
diffusers/.github/ISSUE_TEMPLATE/feature_request.md ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: "\U0001F680 Feature Request"
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Is your feature request related to a problem? Please describe.**
11
+ A clear and concise description of what the problem is. Ex. I'm always frustrated when [...].
12
+
13
+ **Describe the solution you'd like.**
14
+ A clear and concise description of what you want to happen.
15
+
16
+ **Describe alternatives you've considered.**
17
+ A clear and concise description of any alternative solutions or features you've considered.
18
+
19
+ **Additional context.**
20
+ Add any other context or screenshots about the feature request here.
diffusers/.github/ISSUE_TEMPLATE/feedback.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: "💬 Feedback about API Design"
3
+ about: Give feedback about the current API design
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **What API design would you like to have changed or added to the library? Why?**
11
+
12
+ **What use case would this enable or better enable? Can you give us a code example?**
diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "\U0001F31F New Model/Pipeline/Scheduler Addition"
2
+ description: Submit a proposal/request to implement a new diffusion model/pipeline/scheduler
3
+ labels: [ "New model/pipeline/scheduler" ]
4
+
5
+ body:
6
+ - type: textarea
7
+ id: description-request
8
+ validations:
9
+ required: true
10
+ attributes:
11
+ label: Model/Pipeline/Scheduler description
12
+ description: |
13
+ Put any and all important information relative to the model/pipeline/scheduler
14
+
15
+ - type: checkboxes
16
+ id: information-tasks
17
+ attributes:
18
+ label: Open source status
19
+ description: |
20
+ Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `diffusers`.
21
+ options:
22
+ - label: "The model implementation is available."
23
+ - label: "The model weights are available (Only relevant if addition is not a scheduler)."
24
+
25
+ - type: textarea
26
+ id: additional-info
27
+ attributes:
28
+ label: Provide useful links for the implementation
29
+ description: |
30
+ Please provide information regarding the implementation, the weights, and the authors.
31
+ Please mention the authors by @gh-username if you're aware of their usernames.
diffusers/.github/ISSUE_TEMPLATE/translate.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: 🌐 Translating a New Language?
3
+ about: Start a new translation effort in your language
4
+ title: '[<languageCode>] Translating docs to <languageName>'
5
+ labels: WIP
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ <!--
11
+ Note: Please search to see if an issue already exists for the language you are trying to translate.
12
+ -->
13
+
14
+ Hi!
15
+
16
+ Let's bring the documentation to all the <languageName>-speaking community 🌐.
17
+
18
+ Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/diffusers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
19
+
20
+ Some notes:
21
+
22
+ * Please translate using an informal tone (imagine you are talking with a friend about Diffusers 🤗).
23
+ * Please translate in a gender-neutral way.
24
+ * Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/diffusers/tree/main/docs/source).
25
+ * Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml).
26
+ * Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review.
27
+ * 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63).
28
+
29
+ Thank you so much for your help! 🤗
diffusers/.github/PULL_REQUEST_TEMPLATE.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # What does this PR do?
2
+
3
+ <!--
4
+ Congratulations! You've made it this far! You're not quite done yet though.
5
+
6
+ Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution.
7
+
8
+ Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change.
9
+
10
+ Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost.
11
+ -->
12
+
13
+ <!-- Remove if not applicable -->
14
+
15
+ Fixes # (issue)
16
+
17
+
18
+ ## Before submitting
19
+ - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
20
+ - [ ] Did you read the [contributor guideline](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md)?
21
+ - [ ] Did you read our [philosophy doc](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) (important for complex PRs)?
22
+ - [ ] Was this discussed/approved via a GitHub issue or the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)? Please add a link to it if that's the case.
23
+ - [ ] Did you make sure to update the documentation with your changes? Here are the
24
+ [documentation guidelines](https://github.com/huggingface/diffusers/tree/main/docs), and
25
+ [here are tips on formatting docstrings](https://github.com/huggingface/diffusers/tree/main/docs#writing-source-documentation).
26
+ - [ ] Did you write any new necessary tests?
27
+
28
+
29
+ ## Who can review?
30
+
31
+ Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
32
+ members/contributors who may be interested in your PR.
33
+
34
+ <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @.
35
+
36
+ If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
37
+ Please tag fewer than 3 people.
38
+
39
+ Core library:
40
+
41
+ - Schedulers: @yiyixuxu
42
+ - Pipelines and pipeline callbacks: @yiyixuxu and @asomoza
43
+ - Training examples: @sayakpaul
44
+ - Docs: @stevhliu and @sayakpaul
45
+ - JAX and MPS: @pcuenca
46
+ - Audio: @sanchit-gandhi
47
+ - General functionalities: @sayakpaul @yiyixuxu @DN6
48
+
49
+ Integrations:
50
+
51
+ - deepspeed: HF Trainer/Accelerate: @SunMarc
52
+ - PEFT: @sayakpaul @BenjaminBossan
53
+
54
+ HF projects:
55
+
56
+ - accelerate: [different repo](https://github.com/huggingface/accelerate)
57
+ - datasets: [different repo](https://github.com/huggingface/datasets)
58
+ - transformers: [different repo](https://github.com/huggingface/transformers)
59
+ - safetensors: [different repo](https://github.com/huggingface/safetensors)
60
+
61
+ -->
diffusers/.github/actions/setup-miniconda/action.yml ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Set up conda environment for testing
2
+
3
+ description: Sets up miniconda in your ${RUNNER_TEMP} environment and gives you the ${CONDA_RUN} environment variable so you don't have to worry about polluting non-empeheral runners anymore
4
+
5
+ inputs:
6
+ python-version:
7
+ description: If set to any value, don't use sudo to clean the workspace
8
+ required: false
9
+ type: string
10
+ default: "3.9"
11
+ miniconda-version:
12
+ description: Miniconda version to install
13
+ required: false
14
+ type: string
15
+ default: "4.12.0"
16
+ environment-file:
17
+ description: Environment file to install dependencies from
18
+ required: false
19
+ type: string
20
+ default: ""
21
+
22
+ runs:
23
+ using: composite
24
+ steps:
25
+ # Use the same trick from https://github.com/marketplace/actions/setup-miniconda
26
+ # to refresh the cache daily. This is kind of optional though
27
+ - name: Get date
28
+ id: get-date
29
+ shell: bash
30
+ run: echo "today=$(/bin/date -u '+%Y%m%d')d" >> $GITHUB_OUTPUT
31
+ - name: Setup miniconda cache
32
+ id: miniconda-cache
33
+ uses: actions/cache@v2
34
+ with:
35
+ path: ${{ runner.temp }}/miniconda
36
+ key: miniconda-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}
37
+ - name: Install miniconda (${{ inputs.miniconda-version }})
38
+ if: steps.miniconda-cache.outputs.cache-hit != 'true'
39
+ env:
40
+ MINICONDA_VERSION: ${{ inputs.miniconda-version }}
41
+ shell: bash -l {0}
42
+ run: |
43
+ MINICONDA_INSTALL_PATH="${RUNNER_TEMP}/miniconda"
44
+ mkdir -p "${MINICONDA_INSTALL_PATH}"
45
+ case ${RUNNER_OS}-${RUNNER_ARCH} in
46
+ Linux-X64)
47
+ MINICONDA_ARCH="Linux-x86_64"
48
+ ;;
49
+ macOS-ARM64)
50
+ MINICONDA_ARCH="MacOSX-arm64"
51
+ ;;
52
+ macOS-X64)
53
+ MINICONDA_ARCH="MacOSX-x86_64"
54
+ ;;
55
+ *)
56
+ echo "::error::Platform ${RUNNER_OS}-${RUNNER_ARCH} currently unsupported using this action"
57
+ exit 1
58
+ ;;
59
+ esac
60
+ MINICONDA_URL="https://repo.anaconda.com/miniconda/Miniconda3-py39_${MINICONDA_VERSION}-${MINICONDA_ARCH}.sh"
61
+ curl -fsSL "${MINICONDA_URL}" -o "${MINICONDA_INSTALL_PATH}/miniconda.sh"
62
+ bash "${MINICONDA_INSTALL_PATH}/miniconda.sh" -b -u -p "${MINICONDA_INSTALL_PATH}"
63
+ rm -rf "${MINICONDA_INSTALL_PATH}/miniconda.sh"
64
+ - name: Update GitHub path to include miniconda install
65
+ shell: bash
66
+ run: |
67
+ MINICONDA_INSTALL_PATH="${RUNNER_TEMP}/miniconda"
68
+ echo "${MINICONDA_INSTALL_PATH}/bin" >> $GITHUB_PATH
69
+ - name: Setup miniconda env cache (with env file)
70
+ id: miniconda-env-cache-env-file
71
+ if: ${{ runner.os }} == 'macOS' && ${{ inputs.environment-file }} != ''
72
+ uses: actions/cache@v2
73
+ with:
74
+ path: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
75
+ key: miniconda-env-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}-${{ hashFiles(inputs.environment-file) }}
76
+ - name: Setup miniconda env cache (without env file)
77
+ id: miniconda-env-cache
78
+ if: ${{ runner.os }} == 'macOS' && ${{ inputs.environment-file }} == ''
79
+ uses: actions/cache@v2
80
+ with:
81
+ path: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
82
+ key: miniconda-env-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}
83
+ - name: Setup conda environment with python (v${{ inputs.python-version }})
84
+ if: steps.miniconda-env-cache-env-file.outputs.cache-hit != 'true' && steps.miniconda-env-cache.outputs.cache-hit != 'true'
85
+ shell: bash
86
+ env:
87
+ PYTHON_VERSION: ${{ inputs.python-version }}
88
+ ENV_FILE: ${{ inputs.environment-file }}
89
+ run: |
90
+ CONDA_BASE_ENV="${RUNNER_TEMP}/conda-python-${PYTHON_VERSION}"
91
+ ENV_FILE_FLAG=""
92
+ if [[ -f "${ENV_FILE}" ]]; then
93
+ ENV_FILE_FLAG="--file ${ENV_FILE}"
94
+ elif [[ -n "${ENV_FILE}" ]]; then
95
+ echo "::warning::Specified env file (${ENV_FILE}) not found, not going to include it"
96
+ fi
97
+ conda create \
98
+ --yes \
99
+ --prefix "${CONDA_BASE_ENV}" \
100
+ "python=${PYTHON_VERSION}" \
101
+ ${ENV_FILE_FLAG} \
102
+ cmake=3.22 \
103
+ conda-build=3.21 \
104
+ ninja=1.10 \
105
+ pkg-config=0.29 \
106
+ wheel=0.37
107
+ - name: Clone the base conda environment and update GitHub env
108
+ shell: bash
109
+ env:
110
+ PYTHON_VERSION: ${{ inputs.python-version }}
111
+ CONDA_BASE_ENV: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
112
+ run: |
113
+ CONDA_ENV="${RUNNER_TEMP}/conda_environment_${GITHUB_RUN_ID}"
114
+ conda create \
115
+ --yes \
116
+ --prefix "${CONDA_ENV}" \
117
+ --clone "${CONDA_BASE_ENV}"
118
+ # TODO: conda-build could not be cloned because it hardcodes the path, so it
119
+ # could not be cached
120
+ conda install --yes -p ${CONDA_ENV} conda-build=3.21
121
+ echo "CONDA_ENV=${CONDA_ENV}" >> "${GITHUB_ENV}"
122
+ echo "CONDA_RUN=conda run -p ${CONDA_ENV} --no-capture-output" >> "${GITHUB_ENV}"
123
+ echo "CONDA_BUILD=conda run -p ${CONDA_ENV} conda-build" >> "${GITHUB_ENV}"
124
+ echo "CONDA_INSTALL=conda install -p ${CONDA_ENV}" >> "${GITHUB_ENV}"
125
+ - name: Get disk space usage and throw an error for low disk space
126
+ shell: bash
127
+ run: |
128
+ echo "Print the available disk space for manual inspection"
129
+ df -h
130
+ # Set the minimum requirement space to 4GB
131
+ MINIMUM_AVAILABLE_SPACE_IN_GB=4
132
+ MINIMUM_AVAILABLE_SPACE_IN_KB=$(($MINIMUM_AVAILABLE_SPACE_IN_GB * 1024 * 1024))
133
+ # Use KB to avoid floating point warning like 3.1GB
134
+ df -k | tr -s ' ' | cut -d' ' -f 4,9 | while read -r LINE;
135
+ do
136
+ AVAIL=$(echo $LINE | cut -f1 -d' ')
137
+ MOUNT=$(echo $LINE | cut -f2 -d' ')
138
+ if [ "$MOUNT" = "/" ]; then
139
+ if [ "$AVAIL" -lt "$MINIMUM_AVAILABLE_SPACE_IN_KB" ]; then
140
+ echo "There is only ${AVAIL}KB free space left in $MOUNT, which is less than the minimum requirement of ${MINIMUM_AVAILABLE_SPACE_IN_KB}KB. Please help create an issue to PyTorch Release Engineering via https://github.com/pytorch/test-infra/issues and provide the link to the workflow run."
141
+ exit 1;
142
+ else
143
+ echo "There is ${AVAIL}KB free space left in $MOUNT, continue"
144
+ fi
145
+ fi
146
+ done
diffusers/.github/workflows/benchmark.yml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Benchmarking tests
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ schedule:
6
+ - cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM
7
+
8
+ env:
9
+ DIFFUSERS_IS_CI: yes
10
+ HF_HOME: /mnt/cache
11
+ OMP_NUM_THREADS: 8
12
+ MKL_NUM_THREADS: 8
13
+
14
+ jobs:
15
+ torch_pipelines_cuda_benchmark_tests:
16
+ env:
17
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
18
+ name: Torch Core Pipelines CUDA Benchmarking Tests
19
+ strategy:
20
+ fail-fast: false
21
+ max-parallel: 1
22
+ runs-on:
23
+ group: aws-g6-4xlarge-plus
24
+ container:
25
+ image: diffusers/diffusers-pytorch-compile-cuda
26
+ options: --shm-size "16gb" --ipc host --gpus 0
27
+ steps:
28
+ - name: Checkout diffusers
29
+ uses: actions/checkout@v3
30
+ with:
31
+ fetch-depth: 2
32
+ - name: NVIDIA-SMI
33
+ run: |
34
+ nvidia-smi
35
+ - name: Install dependencies
36
+ run: |
37
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
38
+ python -m uv pip install -e [quality,test]
39
+ python -m uv pip install pandas peft
40
+ - name: Environment
41
+ run: |
42
+ python utils/print_env.py
43
+ - name: Diffusers Benchmarking
44
+ env:
45
+ HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
46
+ BASE_PATH: benchmark_outputs
47
+ run: |
48
+ export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
49
+ cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
50
+
51
+ - name: Test suite reports artifacts
52
+ if: ${{ always() }}
53
+ uses: actions/upload-artifact@v2
54
+ with:
55
+ name: benchmark_test_reports
56
+ path: benchmarks/benchmark_outputs
57
+
58
+ - name: Report success status
59
+ if: ${{ success() }}
60
+ run: |
61
+ pip install requests && python utils/notify_benchmarking_status.py --status=success
62
+
63
+ - name: Report failure status
64
+ if: ${{ failure() }}
65
+ run: |
66
+ pip install requests && python utils/notify_benchmarking_status.py --status=failure
diffusers/.github/workflows/build_docker_images.yml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Test, build, and push Docker images
2
+
3
+ on:
4
+ pull_request: # During PRs, we just check if the changes Dockerfiles can be successfully built
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "docker/**"
9
+ workflow_dispatch:
10
+ schedule:
11
+ - cron: "0 0 * * *" # every day at midnight
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ env:
18
+ REGISTRY: diffusers
19
+ CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
20
+
21
+ jobs:
22
+ test-build-docker-images:
23
+ runs-on:
24
+ group: aws-general-8-plus
25
+ if: github.event_name == 'pull_request'
26
+ steps:
27
+ - name: Set up Docker Buildx
28
+ uses: docker/setup-buildx-action@v1
29
+
30
+ - name: Check out code
31
+ uses: actions/checkout@v3
32
+
33
+ - name: Find Changed Dockerfiles
34
+ id: file_changes
35
+ uses: jitterbit/get-changed-files@v1
36
+ with:
37
+ format: 'space-delimited'
38
+ token: ${{ secrets.GITHUB_TOKEN }}
39
+
40
+ - name: Build Changed Docker Images
41
+ run: |
42
+ CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
43
+ for FILE in $CHANGED_FILES; do
44
+ if [[ "$FILE" == docker/*Dockerfile ]]; then
45
+ DOCKER_PATH="${FILE%/Dockerfile}"
46
+ DOCKER_TAG=$(basename "$DOCKER_PATH")
47
+ echo "Building Docker image for $DOCKER_TAG"
48
+ docker build -t "$DOCKER_TAG" "$DOCKER_PATH"
49
+ fi
50
+ done
51
+ if: steps.file_changes.outputs.all != ''
52
+
53
+ build-and-push-docker-images:
54
+ runs-on:
55
+ group: aws-general-8-plus
56
+ if: github.event_name != 'pull_request'
57
+
58
+ permissions:
59
+ contents: read
60
+ packages: write
61
+
62
+ strategy:
63
+ fail-fast: false
64
+ matrix:
65
+ image-name:
66
+ - diffusers-pytorch-cpu
67
+ - diffusers-pytorch-cuda
68
+ - diffusers-pytorch-compile-cuda
69
+ - diffusers-pytorch-xformers-cuda
70
+ - diffusers-flax-cpu
71
+ - diffusers-flax-tpu
72
+ - diffusers-onnxruntime-cpu
73
+ - diffusers-onnxruntime-cuda
74
+ - diffusers-doc-builder
75
+
76
+ steps:
77
+ - name: Checkout repository
78
+ uses: actions/checkout@v3
79
+ - name: Set up Docker Buildx
80
+ uses: docker/setup-buildx-action@v1
81
+ - name: Login to Docker Hub
82
+ uses: docker/login-action@v2
83
+ with:
84
+ username: ${{ env.REGISTRY }}
85
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
86
+ - name: Build and push
87
+ uses: docker/build-push-action@v3
88
+ with:
89
+ no-cache: true
90
+ context: ./docker/${{ matrix.image-name }}
91
+ push: true
92
+ tags: ${{ env.REGISTRY }}/${{ matrix.image-name }}:latest
93
+
94
+ - name: Post to a Slack channel
95
+ id: slack
96
+ uses: huggingface/hf-workflows/.github/actions/post-slack@main
97
+ with:
98
+ # Slack channel id, channel name, or user id to post message.
99
+ # See also: https://api.slack.com/methods/chat.postMessage#channels
100
+ slack_channel: ${{ env.CI_SLACK_CHANNEL }}
101
+ title: "🤗 Results of the ${{ matrix.image-name }} Docker Image build"
102
+ status: ${{ job.status }}
103
+ slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
diffusers/.github/workflows/build_documentation.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build documentation
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ - doc-builder*
8
+ - v*-release
9
+ - v*-patch
10
+ paths:
11
+ - "src/diffusers/**.py"
12
+ - "examples/**"
13
+ - "docs/**"
14
+
15
+ jobs:
16
+ build:
17
+ uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
18
+ with:
19
+ commit_sha: ${{ github.sha }}
20
+ install_libgl1: true
21
+ package: diffusers
22
+ notebook_folder: diffusers_doc
23
+ languages: en ko zh ja pt
24
+ custom_container: diffusers/diffusers-doc-builder
25
+ secrets:
26
+ token: ${{ secrets.HUGGINGFACE_PUSH }}
27
+ hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
diffusers/.github/workflows/build_pr_documentation.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build PR Documentation
2
+
3
+ on:
4
+ pull_request:
5
+ paths:
6
+ - "src/diffusers/**.py"
7
+ - "examples/**"
8
+ - "docs/**"
9
+
10
+ concurrency:
11
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
12
+ cancel-in-progress: true
13
+
14
+ jobs:
15
+ build:
16
+ uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
17
+ with:
18
+ commit_sha: ${{ github.event.pull_request.head.sha }}
19
+ pr_number: ${{ github.event.number }}
20
+ install_libgl1: true
21
+ package: diffusers
22
+ languages: en ko zh ja pt
23
+ custom_container: diffusers/diffusers-doc-builder
diffusers/.github/workflows/mirror_community_pipeline.yml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Mirror Community Pipeline
2
+
3
+ on:
4
+ # Push changes on the main branch
5
+ push:
6
+ branches:
7
+ - main
8
+ paths:
9
+ - 'examples/community/**.py'
10
+
11
+ # And on tag creation (e.g. `v0.28.1`)
12
+ tags:
13
+ - '*'
14
+
15
+ # Manual trigger with ref input
16
+ workflow_dispatch:
17
+ inputs:
18
+ ref:
19
+ description: "Either 'main' or a tag ref"
20
+ required: true
21
+ default: 'main'
22
+
23
+ jobs:
24
+ mirror_community_pipeline:
25
+ env:
26
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
27
+
28
+ runs-on: ubuntu-latest
29
+ steps:
30
+ # Checkout to correct ref
31
+ # If workflow dispatch
32
+ # If ref is 'main', set:
33
+ # CHECKOUT_REF=refs/heads/main
34
+ # PATH_IN_REPO=main
35
+ # Else it must be a tag. Set:
36
+ # CHECKOUT_REF=refs/tags/{tag}
37
+ # PATH_IN_REPO={tag}
38
+ # If not workflow dispatch
39
+ # If ref is 'refs/heads/main' => set 'main'
40
+ # Else it must be a tag => set {tag}
41
+ - name: Set checkout_ref and path_in_repo
42
+ run: |
43
+ if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
44
+ if [ -z "${{ github.event.inputs.ref }}" ]; then
45
+ echo "Error: Missing ref input"
46
+ exit 1
47
+ elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
48
+ echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
49
+ echo "PATH_IN_REPO=main" >> $GITHUB_ENV
50
+ else
51
+ echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
52
+ echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
53
+ fi
54
+ elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
55
+ echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
56
+ echo "PATH_IN_REPO=main" >> $GITHUB_ENV
57
+ else
58
+ # e.g. refs/tags/v0.28.1 -> v0.28.1
59
+ echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
60
+ echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
61
+ fi
62
+ - name: Print env vars
63
+ run: |
64
+ echo "CHECKOUT_REF: ${{ env.CHECKOUT_REF }}"
65
+ echo "PATH_IN_REPO: ${{ env.PATH_IN_REPO }}"
66
+ - uses: actions/checkout@v3
67
+ with:
68
+ ref: ${{ env.CHECKOUT_REF }}
69
+
70
+ # Setup + install dependencies
71
+ - name: Set up Python
72
+ uses: actions/setup-python@v4
73
+ with:
74
+ python-version: "3.10"
75
+ - name: Install dependencies
76
+ run: |
77
+ python -m pip install --upgrade pip
78
+ pip install --upgrade huggingface_hub
79
+
80
+ # Check secret is set
81
+ - name: whoami
82
+ run: huggingface-cli whoami
83
+ env:
84
+ HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
85
+
86
+ # Push to HF! (under subfolder based on checkout ref)
87
+ # https://huggingface.co/datasets/diffusers/community-pipelines-mirror
88
+ - name: Mirror community pipeline to HF
89
+ run: huggingface-cli upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
90
+ env:
91
+ PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
92
+ HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
93
+
94
+ - name: Report success status
95
+ if: ${{ success() }}
96
+ run: |
97
+ pip install requests && python utils/notify_community_pipelines_mirror.py --status=success
98
+
99
+ - name: Report failure status
100
+ if: ${{ failure() }}
101
+ run: |
102
+ pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
diffusers/.github/workflows/nightly_tests.yml ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Nightly and release tests on main/release branch
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ schedule:
6
+ - cron: "0 0 * * *" # every day at midnight
7
+
8
+ env:
9
+ DIFFUSERS_IS_CI: yes
10
+ HF_HUB_ENABLE_HF_TRANSFER: 1
11
+ OMP_NUM_THREADS: 8
12
+ MKL_NUM_THREADS: 8
13
+ PYTEST_TIMEOUT: 600
14
+ RUN_SLOW: yes
15
+ RUN_NIGHTLY: yes
16
+ PIPELINE_USAGE_CUTOFF: 5000
17
+ SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
18
+
19
+ jobs:
20
+ setup_torch_cuda_pipeline_matrix:
21
+ name: Setup Torch Pipelines CUDA Slow Tests Matrix
22
+ runs-on:
23
+ group: aws-general-8-plus
24
+ container:
25
+ image: diffusers/diffusers-pytorch-cpu
26
+ outputs:
27
+ pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+ - name: Install dependencies
34
+ run: |
35
+ pip install -e .[test]
36
+ pip install huggingface_hub
37
+ - name: Fetch Pipeline Matrix
38
+ id: fetch_pipeline_matrix
39
+ run: |
40
+ matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
41
+ echo $matrix
42
+ echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
43
+
44
+ - name: Pipeline Tests Artifacts
45
+ if: ${{ always() }}
46
+ uses: actions/upload-artifact@v2
47
+ with:
48
+ name: test-pipelines.json
49
+ path: reports
50
+
51
+ run_nightly_tests_for_torch_pipelines:
52
+ name: Nightly Torch Pipelines CUDA Tests
53
+ needs: setup_torch_cuda_pipeline_matrix
54
+ strategy:
55
+ fail-fast: false
56
+ max-parallel: 8
57
+ matrix:
58
+ module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
59
+ runs-on:
60
+ group: aws-g4dn-2xlarge
61
+ container:
62
+ image: diffusers/diffusers-pytorch-cuda
63
+ options: --shm-size "16gb" --ipc host --gpus 0
64
+ steps:
65
+ - name: Checkout diffusers
66
+ uses: actions/checkout@v3
67
+ with:
68
+ fetch-depth: 2
69
+ - name: NVIDIA-SMI
70
+ run: nvidia-smi
71
+ - name: Install dependencies
72
+ run: |
73
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
74
+ python -m uv pip install -e [quality,test]
75
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
76
+ python -m uv pip install pytest-reportlog
77
+ - name: Environment
78
+ run: |
79
+ python utils/print_env.py
80
+ - name: Pipeline CUDA Test
81
+ env:
82
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
83
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
84
+ CUBLAS_WORKSPACE_CONFIG: :16:8
85
+ run: |
86
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
87
+ -s -v -k "not Flax and not Onnx" \
88
+ --make-reports=tests_pipeline_${{ matrix.module }}_cuda \
89
+ --report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
90
+ tests/pipelines/${{ matrix.module }}
91
+ - name: Failure short reports
92
+ if: ${{ failure() }}
93
+ run: |
94
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
95
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
96
+ - name: Test suite reports artifacts
97
+ if: ${{ always() }}
98
+ uses: actions/upload-artifact@v2
99
+ with:
100
+ name: pipeline_${{ matrix.module }}_test_reports
101
+ path: reports
102
+ - name: Generate Report and Notify Channel
103
+ if: always()
104
+ run: |
105
+ pip install slack_sdk tabulate
106
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
107
+
108
+ run_nightly_tests_for_other_torch_modules:
109
+ name: Nightly Torch CUDA Tests
110
+ runs-on:
111
+ group: aws-g4dn-2xlarge
112
+ container:
113
+ image: diffusers/diffusers-pytorch-cuda
114
+ options: --shm-size "16gb" --ipc host --gpus 0
115
+ defaults:
116
+ run:
117
+ shell: bash
118
+ strategy:
119
+ fail-fast: false
120
+ max-parallel: 2
121
+ matrix:
122
+ module: [models, schedulers, lora, others, single_file, examples]
123
+ steps:
124
+ - name: Checkout diffusers
125
+ uses: actions/checkout@v3
126
+ with:
127
+ fetch-depth: 2
128
+
129
+ - name: Install dependencies
130
+ run: |
131
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
132
+ python -m uv pip install -e [quality,test]
133
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
134
+ python -m uv pip install peft@git+https://github.com/huggingface/peft.git
135
+ python -m uv pip install pytest-reportlog
136
+ - name: Environment
137
+ run: python utils/print_env.py
138
+
139
+ - name: Run nightly PyTorch CUDA tests for non-pipeline modules
140
+ if: ${{ matrix.module != 'examples'}}
141
+ env:
142
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
143
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
144
+ CUBLAS_WORKSPACE_CONFIG: :16:8
145
+ run: |
146
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
147
+ -s -v -k "not Flax and not Onnx" \
148
+ --make-reports=tests_torch_${{ matrix.module }}_cuda \
149
+ --report-log=tests_torch_${{ matrix.module }}_cuda.log \
150
+ tests/${{ matrix.module }}
151
+
152
+ - name: Run nightly example tests with Torch
153
+ if: ${{ matrix.module == 'examples' }}
154
+ env:
155
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
156
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
157
+ CUBLAS_WORKSPACE_CONFIG: :16:8
158
+ run: |
159
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
160
+ -s -v --make-reports=examples_torch_cuda \
161
+ --report-log=examples_torch_cuda.log \
162
+ examples/
163
+
164
+ - name: Failure short reports
165
+ if: ${{ failure() }}
166
+ run: |
167
+ cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
168
+ cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
169
+
170
+ - name: Test suite reports artifacts
171
+ if: ${{ always() }}
172
+ uses: actions/upload-artifact@v2
173
+ with:
174
+ name: torch_${{ matrix.module }}_cuda_test_reports
175
+ path: reports
176
+
177
+ - name: Generate Report and Notify Channel
178
+ if: always()
179
+ run: |
180
+ pip install slack_sdk tabulate
181
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
182
+
183
+ run_flax_tpu_tests:
184
+ name: Nightly Flax TPU Tests
185
+ runs-on: docker-tpu
186
+ if: github.event_name == 'schedule'
187
+
188
+ container:
189
+ image: diffusers/diffusers-flax-tpu
190
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
191
+ defaults:
192
+ run:
193
+ shell: bash
194
+ steps:
195
+ - name: Checkout diffusers
196
+ uses: actions/checkout@v3
197
+ with:
198
+ fetch-depth: 2
199
+
200
+ - name: Install dependencies
201
+ run: |
202
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
203
+ python -m uv pip install -e [quality,test]
204
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
205
+ python -m uv pip install pytest-reportlog
206
+
207
+ - name: Environment
208
+ run: python utils/print_env.py
209
+
210
+ - name: Run nightly Flax TPU tests
211
+ env:
212
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
213
+ run: |
214
+ python -m pytest -n 0 \
215
+ -s -v -k "Flax" \
216
+ --make-reports=tests_flax_tpu \
217
+ --report-log=tests_flax_tpu.log \
218
+ tests/
219
+
220
+ - name: Failure short reports
221
+ if: ${{ failure() }}
222
+ run: |
223
+ cat reports/tests_flax_tpu_stats.txt
224
+ cat reports/tests_flax_tpu_failures_short.txt
225
+
226
+ - name: Test suite reports artifacts
227
+ if: ${{ always() }}
228
+ uses: actions/upload-artifact@v2
229
+ with:
230
+ name: flax_tpu_test_reports
231
+ path: reports
232
+
233
+ - name: Generate Report and Notify Channel
234
+ if: always()
235
+ run: |
236
+ pip install slack_sdk tabulate
237
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
238
+
239
+ run_nightly_onnx_tests:
240
+ name: Nightly ONNXRuntime CUDA tests on Ubuntu
241
+ runs-on:
242
+ group: aws-g4dn-2xlarge
243
+ container:
244
+ image: diffusers/diffusers-onnxruntime-cuda
245
+ options: --gpus 0 --shm-size "16gb" --ipc host
246
+
247
+ steps:
248
+ - name: Checkout diffusers
249
+ uses: actions/checkout@v3
250
+ with:
251
+ fetch-depth: 2
252
+
253
+ - name: NVIDIA-SMI
254
+ run: nvidia-smi
255
+
256
+ - name: Install dependencies
257
+ run: |
258
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
259
+ python -m uv pip install -e [quality,test]
260
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
261
+ python -m uv pip install pytest-reportlog
262
+ - name: Environment
263
+ run: python utils/print_env.py
264
+
265
+ - name: Run Nightly ONNXRuntime CUDA tests
266
+ env:
267
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
268
+ run: |
269
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
270
+ -s -v -k "Onnx" \
271
+ --make-reports=tests_onnx_cuda \
272
+ --report-log=tests_onnx_cuda.log \
273
+ tests/
274
+
275
+ - name: Failure short reports
276
+ if: ${{ failure() }}
277
+ run: |
278
+ cat reports/tests_onnx_cuda_stats.txt
279
+ cat reports/tests_onnx_cuda_failures_short.txt
280
+
281
+ - name: Test suite reports artifacts
282
+ if: ${{ always() }}
283
+ uses: actions/upload-artifact@v2
284
+ with:
285
+ name: ${{ matrix.config.report }}_test_reports
286
+ path: reports
287
+
288
+ - name: Generate Report and Notify Channel
289
+ if: always()
290
+ run: |
291
+ pip install slack_sdk tabulate
292
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
293
+
294
+ # M1 runner currently not well supported
295
+ # TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
296
+ # run_nightly_tests_apple_m1:
297
+ # name: Nightly PyTorch MPS tests on MacOS
298
+ # runs-on: [ self-hosted, apple-m1 ]
299
+ # if: github.event_name == 'schedule'
300
+ #
301
+ # steps:
302
+ # - name: Checkout diffusers
303
+ # uses: actions/checkout@v3
304
+ # with:
305
+ # fetch-depth: 2
306
+ #
307
+ # - name: Clean checkout
308
+ # shell: arch -arch arm64 bash {0}
309
+ # run: |
310
+ # git clean -fxd
311
+ # - name: Setup miniconda
312
+ # uses: ./.github/actions/setup-miniconda
313
+ # with:
314
+ # python-version: 3.9
315
+ #
316
+ # - name: Install dependencies
317
+ # shell: arch -arch arm64 bash {0}
318
+ # run: |
319
+ # ${CONDA_RUN} python -m pip install --upgrade pip uv
320
+ # ${CONDA_RUN} python -m uv pip install -e [quality,test]
321
+ # ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
322
+ # ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
323
+ # ${CONDA_RUN} python -m uv pip install pytest-reportlog
324
+ # - name: Environment
325
+ # shell: arch -arch arm64 bash {0}
326
+ # run: |
327
+ # ${CONDA_RUN} python utils/print_env.py
328
+ # - name: Run nightly PyTorch tests on M1 (MPS)
329
+ # shell: arch -arch arm64 bash {0}
330
+ # env:
331
+ # HF_HOME: /System/Volumes/Data/mnt/cache
332
+ # HF_TOKEN: ${{ secrets.HF_TOKEN }}
333
+ # run: |
334
+ # ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
335
+ # --report-log=tests_torch_mps.log \
336
+ # tests/
337
+ # - name: Failure short reports
338
+ # if: ${{ failure() }}
339
+ # run: cat reports/tests_torch_mps_failures_short.txt
340
+ #
341
+ # - name: Test suite reports artifacts
342
+ # if: ${{ always() }}
343
+ # uses: actions/upload-artifact@v2
344
+ # with:
345
+ # name: torch_mps_test_reports
346
+ # path: reports
347
+ #
348
+ # - name: Generate Report and Notify Channel
349
+ # if: always()
350
+ # run: |
351
+ # pip install slack_sdk tabulate
352
+ # python utils/log_reports.py >> $GITHUB_STEP_SUMMARY run_nightly_tests_apple_m1:
353
+ # name: Nightly PyTorch MPS tests on MacOS
354
+ # runs-on: [ self-hosted, apple-m1 ]
355
+ # if: github.event_name == 'schedule'
356
+ #
357
+ # steps:
358
+ # - name: Checkout diffusers
359
+ # uses: actions/checkout@v3
360
+ # with:
361
+ # fetch-depth: 2
362
+ #
363
+ # - name: Clean checkout
364
+ # shell: arch -arch arm64 bash {0}
365
+ # run: |
366
+ # git clean -fxd
367
+ # - name: Setup miniconda
368
+ # uses: ./.github/actions/setup-miniconda
369
+ # with:
370
+ # python-version: 3.9
371
+ #
372
+ # - name: Install dependencies
373
+ # shell: arch -arch arm64 bash {0}
374
+ # run: |
375
+ # ${CONDA_RUN} python -m pip install --upgrade pip uv
376
+ # ${CONDA_RUN} python -m uv pip install -e [quality,test]
377
+ # ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
378
+ # ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
379
+ # ${CONDA_RUN} python -m uv pip install pytest-reportlog
380
+ # - name: Environment
381
+ # shell: arch -arch arm64 bash {0}
382
+ # run: |
383
+ # ${CONDA_RUN} python utils/print_env.py
384
+ # - name: Run nightly PyTorch tests on M1 (MPS)
385
+ # shell: arch -arch arm64 bash {0}
386
+ # env:
387
+ # HF_HOME: /System/Volumes/Data/mnt/cache
388
+ # HF_TOKEN: ${{ secrets.HF_TOKEN }}
389
+ # run: |
390
+ # ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
391
+ # --report-log=tests_torch_mps.log \
392
+ # tests/
393
+ # - name: Failure short reports
394
+ # if: ${{ failure() }}
395
+ # run: cat reports/tests_torch_mps_failures_short.txt
396
+ #
397
+ # - name: Test suite reports artifacts
398
+ # if: ${{ always() }}
399
+ # uses: actions/upload-artifact@v2
400
+ # with:
401
+ # name: torch_mps_test_reports
402
+ # path: reports
403
+ #
404
+ # - name: Generate Report and Notify Channel
405
+ # if: always()
406
+ # run: |
407
+ # pip install slack_sdk tabulate
408
+ # python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
diffusers/.github/workflows/notify_slack_about_release.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Notify Slack about a release
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ release:
6
+ types: [published]
7
+
8
+ jobs:
9
+ build:
10
+ runs-on: ubuntu-latest
11
+
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+
15
+ - name: Setup Python
16
+ uses: actions/setup-python@v4
17
+ with:
18
+ python-version: '3.8'
19
+
20
+ - name: Notify Slack about the release
21
+ env:
22
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}
23
+ run: pip install requests && python utils/notify_slack_about_release.py
diffusers/.github/workflows/pr_dependency_test.yml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_dependencies:
19
+ runs-on: ubuntu-latest
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install pytest
32
+ - name: Check for soft dependencies
33
+ run: |
34
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
35
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/pr_flax_dependency_test.yml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Flax dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_flax_dependencies:
19
+ runs-on: ubuntu-latest
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install "jax[cpu]>=0.2.16,!=0.3.2"
32
+ python -m uv pip install "flax>=0.4.1"
33
+ python -m uv pip install "jaxlib>=0.1.65"
34
+ python -m uv pip install pytest
35
+ - name: Check for soft dependencies
36
+ run: |
37
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
38
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/pr_test_fetcher.yml ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs - Test Fetcher
2
+
3
+ on: workflow_dispatch
4
+
5
+ env:
6
+ DIFFUSERS_IS_CI: yes
7
+ OMP_NUM_THREADS: 4
8
+ MKL_NUM_THREADS: 4
9
+ PYTEST_TIMEOUT: 60
10
+
11
+ concurrency:
12
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13
+ cancel-in-progress: true
14
+
15
+ jobs:
16
+ setup_pr_tests:
17
+ name: Setup PR Tests
18
+ runs-on:
19
+ group: aws-general-8-plus
20
+ container:
21
+ image: diffusers/diffusers-pytorch-cpu
22
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
23
+ defaults:
24
+ run:
25
+ shell: bash
26
+ outputs:
27
+ matrix: ${{ steps.set_matrix.outputs.matrix }}
28
+ test_map: ${{ steps.set_matrix.outputs.test_map }}
29
+ steps:
30
+ - name: Checkout diffusers
31
+ uses: actions/checkout@v3
32
+ with:
33
+ fetch-depth: 0
34
+ - name: Install dependencies
35
+ run: |
36
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
37
+ python -m uv pip install -e [quality,test]
38
+ - name: Environment
39
+ run: |
40
+ python utils/print_env.py
41
+ echo $(git --version)
42
+ - name: Fetch Tests
43
+ run: |
44
+ python utils/tests_fetcher.py | tee test_preparation.txt
45
+ - name: Report fetched tests
46
+ uses: actions/upload-artifact@v3
47
+ with:
48
+ name: test_fetched
49
+ path: test_preparation.txt
50
+ - id: set_matrix
51
+ name: Create Test Matrix
52
+ # The `keys` is used as GitHub actions matrix for jobs, i.e. `models`, `pipelines`, etc.
53
+ # The `test_map` is used to get the actual identified test files under each key.
54
+ # If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
55
+ run: |
56
+ if [ -f test_map.json ]; then
57
+ keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(json.dumps(d))')
58
+ test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(json.dumps(test_map))')
59
+ else
60
+ keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
61
+ test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
62
+ fi
63
+ echo $keys
64
+ echo $test_map
65
+ echo "matrix=$keys" >> $GITHUB_OUTPUT
66
+ echo "test_map=$test_map" >> $GITHUB_OUTPUT
67
+
68
+ run_pr_tests:
69
+ name: Run PR Tests
70
+ needs: setup_pr_tests
71
+ if: contains(fromJson(needs.setup_pr_tests.outputs.matrix), 'dummy') != true
72
+ strategy:
73
+ fail-fast: false
74
+ max-parallel: 2
75
+ matrix:
76
+ modules: ${{ fromJson(needs.setup_pr_tests.outputs.matrix) }}
77
+ runs-on:
78
+ group: aws-general-8-plus
79
+ container:
80
+ image: diffusers/diffusers-pytorch-cpu
81
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
82
+ defaults:
83
+ run:
84
+ shell: bash
85
+ steps:
86
+ - name: Checkout diffusers
87
+ uses: actions/checkout@v3
88
+ with:
89
+ fetch-depth: 2
90
+
91
+ - name: Install dependencies
92
+ run: |
93
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
94
+ python -m pip install -e [quality,test]
95
+ python -m pip install accelerate
96
+
97
+ - name: Environment
98
+ run: |
99
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
100
+ python utils/print_env.py
101
+
102
+ - name: Run all selected tests on CPU
103
+ run: |
104
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
105
+ python -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
106
+
107
+ - name: Failure short reports
108
+ if: ${{ failure() }}
109
+ continue-on-error: true
110
+ run: |
111
+ cat reports/${{ matrix.modules }}_tests_cpu_stats.txt
112
+ cat reports/${{ matrix.modules }}_tests_cpu_failures_short.txt
113
+
114
+ - name: Test suite reports artifacts
115
+ if: ${{ always() }}
116
+ uses: actions/upload-artifact@v3
117
+ with:
118
+ name: ${{ matrix.modules }}_test_reports
119
+ path: reports
120
+
121
+ run_staging_tests:
122
+ strategy:
123
+ fail-fast: false
124
+ matrix:
125
+ config:
126
+ - name: Hub tests for models, schedulers, and pipelines
127
+ framework: hub_tests_pytorch
128
+ runner: aws-general-8-plus
129
+ image: diffusers/diffusers-pytorch-cpu
130
+ report: torch_hub
131
+
132
+ name: ${{ matrix.config.name }}
133
+ runs-on:
134
+ group: ${{ matrix.config.runner }}
135
+ container:
136
+ image: ${{ matrix.config.image }}
137
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
138
+
139
+ defaults:
140
+ run:
141
+ shell: bash
142
+
143
+ steps:
144
+ - name: Checkout diffusers
145
+ uses: actions/checkout@v3
146
+ with:
147
+ fetch-depth: 2
148
+
149
+ - name: Install dependencies
150
+ run: |
151
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
152
+ python -m pip install -e [quality,test]
153
+
154
+ - name: Environment
155
+ run: |
156
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
157
+ python utils/print_env.py
158
+
159
+ - name: Run Hub tests for models, schedulers, and pipelines on a staging env
160
+ if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
161
+ run: |
162
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
163
+ HUGGINGFACE_CO_STAGING=true python -m pytest \
164
+ -m "is_staging_test" \
165
+ --make-reports=tests_${{ matrix.config.report }} \
166
+ tests
167
+
168
+ - name: Failure short reports
169
+ if: ${{ failure() }}
170
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
171
+
172
+ - name: Test suite reports artifacts
173
+ if: ${{ always() }}
174
+ uses: actions/upload-artifact@v2
175
+ with:
176
+ name: pr_${{ matrix.config.report }}_test_reports
177
+ path: reports
diffusers/.github/workflows/pr_test_peft_backend.yml ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs - PEFT backend
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "tests/**.py"
10
+
11
+ concurrency:
12
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13
+ cancel-in-progress: true
14
+
15
+ env:
16
+ DIFFUSERS_IS_CI: yes
17
+ OMP_NUM_THREADS: 4
18
+ MKL_NUM_THREADS: 4
19
+ PYTEST_TIMEOUT: 60
20
+
21
+ jobs:
22
+ check_code_quality:
23
+ runs-on: ubuntu-latest
24
+ steps:
25
+ - uses: actions/checkout@v3
26
+ - name: Set up Python
27
+ uses: actions/setup-python@v4
28
+ with:
29
+ python-version: "3.8"
30
+ - name: Install dependencies
31
+ run: |
32
+ python -m pip install --upgrade pip
33
+ pip install .[quality]
34
+ - name: Check quality
35
+ run: make quality
36
+ - name: Check if failure
37
+ if: ${{ failure() }}
38
+ run: |
39
+ echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
40
+
41
+ check_repository_consistency:
42
+ needs: check_code_quality
43
+ runs-on: ubuntu-latest
44
+ steps:
45
+ - uses: actions/checkout@v3
46
+ - name: Set up Python
47
+ uses: actions/setup-python@v4
48
+ with:
49
+ python-version: "3.8"
50
+ - name: Install dependencies
51
+ run: |
52
+ python -m pip install --upgrade pip
53
+ pip install .[quality]
54
+ - name: Check repo consistency
55
+ run: |
56
+ python utils/check_copies.py
57
+ python utils/check_dummies.py
58
+ make deps_table_check_updated
59
+ - name: Check if failure
60
+ if: ${{ failure() }}
61
+ run: |
62
+ echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
63
+
64
+ run_fast_tests:
65
+ needs: [check_code_quality, check_repository_consistency]
66
+ strategy:
67
+ fail-fast: false
68
+ matrix:
69
+ lib-versions: ["main", "latest"]
70
+
71
+
72
+ name: LoRA - ${{ matrix.lib-versions }}
73
+
74
+ runs-on:
75
+ group: aws-general-8-plus
76
+
77
+ container:
78
+ image: diffusers/diffusers-pytorch-cpu
79
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
80
+
81
+ defaults:
82
+ run:
83
+ shell: bash
84
+
85
+ steps:
86
+ - name: Checkout diffusers
87
+ uses: actions/checkout@v3
88
+ with:
89
+ fetch-depth: 2
90
+
91
+ - name: Install dependencies
92
+ run: |
93
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
94
+ python -m uv pip install -e [quality,test]
95
+ if [ "${{ matrix.lib-versions }}" == "main" ]; then
96
+ python -m pip install -U peft@git+https://github.com/huggingface/peft.git
97
+ python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
98
+ python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
99
+ else
100
+ python -m uv pip install -U peft transformers accelerate
101
+ fi
102
+
103
+ - name: Environment
104
+ run: |
105
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
106
+ python utils/print_env.py
107
+
108
+ - name: Run fast PyTorch LoRA CPU tests with PEFT backend
109
+ run: |
110
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
111
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
112
+ -s -v \
113
+ --make-reports=tests_${{ matrix.config.report }} \
114
+ tests/lora/
115
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
116
+ -s -v \
117
+ --make-reports=tests_models_lora_${{ matrix.config.report }} \
118
+ tests/models/ -k "lora"
119
+
120
+
121
+ - name: Failure short reports
122
+ if: ${{ failure() }}
123
+ run: |
124
+ cat reports/tests_${{ matrix.config.report }}_failures_short.txt
125
+ cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
126
+
127
+ - name: Test suite reports artifacts
128
+ if: ${{ always() }}
129
+ uses: actions/upload-artifact@v2
130
+ with:
131
+ name: pr_${{ matrix.config.report }}_test_reports
132
+ path: reports
diffusers/.github/workflows/pr_tests.yml ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "benchmarks/**.py"
10
+ - "examples/**.py"
11
+ - "scripts/**.py"
12
+ - "tests/**.py"
13
+ - ".github/**.yml"
14
+ - "utils/**.py"
15
+ push:
16
+ branches:
17
+ - ci-*
18
+
19
+ concurrency:
20
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
21
+ cancel-in-progress: true
22
+
23
+ env:
24
+ DIFFUSERS_IS_CI: yes
25
+ OMP_NUM_THREADS: 4
26
+ MKL_NUM_THREADS: 4
27
+ PYTEST_TIMEOUT: 60
28
+
29
+ jobs:
30
+ check_code_quality:
31
+ runs-on: ubuntu-latest
32
+ steps:
33
+ - uses: actions/checkout@v3
34
+ - name: Set up Python
35
+ uses: actions/setup-python@v4
36
+ with:
37
+ python-version: "3.8"
38
+ - name: Install dependencies
39
+ run: |
40
+ python -m pip install --upgrade pip
41
+ pip install .[quality]
42
+ - name: Check quality
43
+ run: make quality
44
+ - name: Check if failure
45
+ if: ${{ failure() }}
46
+ run: |
47
+ echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
48
+
49
+ check_repository_consistency:
50
+ needs: check_code_quality
51
+ runs-on: ubuntu-latest
52
+ steps:
53
+ - uses: actions/checkout@v3
54
+ - name: Set up Python
55
+ uses: actions/setup-python@v4
56
+ with:
57
+ python-version: "3.8"
58
+ - name: Install dependencies
59
+ run: |
60
+ python -m pip install --upgrade pip
61
+ pip install .[quality]
62
+ - name: Check repo consistency
63
+ run: |
64
+ python utils/check_copies.py
65
+ python utils/check_dummies.py
66
+ make deps_table_check_updated
67
+ - name: Check if failure
68
+ if: ${{ failure() }}
69
+ run: |
70
+ echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
71
+
72
+ run_fast_tests:
73
+ needs: [check_code_quality, check_repository_consistency]
74
+ strategy:
75
+ fail-fast: false
76
+ matrix:
77
+ config:
78
+ - name: Fast PyTorch Pipeline CPU tests
79
+ framework: pytorch_pipelines
80
+ runner: aws-highmemory-32-plus
81
+ image: diffusers/diffusers-pytorch-cpu
82
+ report: torch_cpu_pipelines
83
+ - name: Fast PyTorch Models & Schedulers CPU tests
84
+ framework: pytorch_models
85
+ runner: aws-general-8-plus
86
+ image: diffusers/diffusers-pytorch-cpu
87
+ report: torch_cpu_models_schedulers
88
+ - name: Fast Flax CPU tests
89
+ framework: flax
90
+ runner: aws-general-8-plus
91
+ image: diffusers/diffusers-flax-cpu
92
+ report: flax_cpu
93
+ - name: PyTorch Example CPU tests
94
+ framework: pytorch_examples
95
+ runner: aws-general-8-plus
96
+ image: diffusers/diffusers-pytorch-cpu
97
+ report: torch_example_cpu
98
+
99
+ name: ${{ matrix.config.name }}
100
+
101
+ runs-on:
102
+ group: ${{ matrix.config.runner }}
103
+
104
+ container:
105
+ image: ${{ matrix.config.image }}
106
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
107
+
108
+ defaults:
109
+ run:
110
+ shell: bash
111
+
112
+ steps:
113
+ - name: Checkout diffusers
114
+ uses: actions/checkout@v3
115
+ with:
116
+ fetch-depth: 2
117
+
118
+ - name: Install dependencies
119
+ run: |
120
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
121
+ python -m uv pip install -e [quality,test]
122
+ python -m uv pip install accelerate
123
+
124
+ - name: Environment
125
+ run: |
126
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
127
+ python utils/print_env.py
128
+
129
+ - name: Run fast PyTorch Pipeline CPU tests
130
+ if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
131
+ run: |
132
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
133
+ python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
134
+ -s -v -k "not Flax and not Onnx" \
135
+ --make-reports=tests_${{ matrix.config.report }} \
136
+ tests/pipelines
137
+
138
+ - name: Run fast PyTorch Model Scheduler CPU tests
139
+ if: ${{ matrix.config.framework == 'pytorch_models' }}
140
+ run: |
141
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
142
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
143
+ -s -v -k "not Flax and not Onnx and not Dependency" \
144
+ --make-reports=tests_${{ matrix.config.report }} \
145
+ tests/models tests/schedulers tests/others
146
+
147
+ - name: Run fast Flax TPU tests
148
+ if: ${{ matrix.config.framework == 'flax' }}
149
+ run: |
150
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
151
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
152
+ -s -v -k "Flax" \
153
+ --make-reports=tests_${{ matrix.config.report }} \
154
+ tests
155
+
156
+ - name: Run example PyTorch CPU tests
157
+ if: ${{ matrix.config.framework == 'pytorch_examples' }}
158
+ run: |
159
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
160
+ python -m uv pip install peft timm
161
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
162
+ --make-reports=tests_${{ matrix.config.report }} \
163
+ examples
164
+
165
+ - name: Failure short reports
166
+ if: ${{ failure() }}
167
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
168
+
169
+ - name: Test suite reports artifacts
170
+ if: ${{ always() }}
171
+ uses: actions/upload-artifact@v2
172
+ with:
173
+ name: pr_${{ matrix.config.report }}_test_reports
174
+ path: reports
175
+
176
+ run_staging_tests:
177
+ needs: [check_code_quality, check_repository_consistency]
178
+ strategy:
179
+ fail-fast: false
180
+ matrix:
181
+ config:
182
+ - name: Hub tests for models, schedulers, and pipelines
183
+ framework: hub_tests_pytorch
184
+ runner:
185
+ group: aws-general-8-plus
186
+ image: diffusers/diffusers-pytorch-cpu
187
+ report: torch_hub
188
+
189
+ name: ${{ matrix.config.name }}
190
+
191
+ runs-on: ${{ matrix.config.runner }}
192
+
193
+ container:
194
+ image: ${{ matrix.config.image }}
195
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
196
+
197
+ defaults:
198
+ run:
199
+ shell: bash
200
+
201
+ steps:
202
+ - name: Checkout diffusers
203
+ uses: actions/checkout@v3
204
+ with:
205
+ fetch-depth: 2
206
+
207
+ - name: Install dependencies
208
+ run: |
209
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
210
+ python -m uv pip install -e [quality,test]
211
+
212
+ - name: Environment
213
+ run: |
214
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
215
+ python utils/print_env.py
216
+
217
+ - name: Run Hub tests for models, schedulers, and pipelines on a staging env
218
+ if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
219
+ run: |
220
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
221
+ HUGGINGFACE_CO_STAGING=true python -m pytest \
222
+ -m "is_staging_test" \
223
+ --make-reports=tests_${{ matrix.config.report }} \
224
+ tests
225
+
226
+ - name: Failure short reports
227
+ if: ${{ failure() }}
228
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
229
+
230
+ - name: Test suite reports artifacts
231
+ if: ${{ always() }}
232
+ uses: actions/upload-artifact@v2
233
+ with:
234
+ name: pr_${{ matrix.config.report }}_test_reports
235
+ path: reports
diffusers/.github/workflows/pr_torch_dependency_test.yml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Torch dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_torch_dependencies:
19
+ runs-on: ubuntu-latest
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install torch torchvision torchaudio
32
+ python -m uv pip install pytest
33
+ - name: Check for soft dependencies
34
+ run: |
35
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
36
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/push_tests.yml ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast GPU Tests on main
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ - "v*.*.*-release"
8
+ - "v*.*.*-patch"
9
+ paths:
10
+ - "src/diffusers/**.py"
11
+ - "examples/**.py"
12
+ - "tests/**.py"
13
+
14
+ env:
15
+ DIFFUSERS_IS_CI: yes
16
+ OMP_NUM_THREADS: 8
17
+ MKL_NUM_THREADS: 8
18
+ PYTEST_TIMEOUT: 600
19
+ PIPELINE_USAGE_CUTOFF: 50000
20
+
21
+ jobs:
22
+ setup_torch_cuda_pipeline_matrix:
23
+ name: Setup Torch Pipelines CUDA Slow Tests Matrix
24
+ runs-on:
25
+ group: aws-general-8-plus
26
+ container:
27
+ image: diffusers/diffusers-pytorch-cpu
28
+ outputs:
29
+ pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
30
+ steps:
31
+ - name: Checkout diffusers
32
+ uses: actions/checkout@v3
33
+ with:
34
+ fetch-depth: 2
35
+ - name: Install dependencies
36
+ run: |
37
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
38
+ python -m uv pip install -e [quality,test]
39
+ - name: Environment
40
+ run: |
41
+ python utils/print_env.py
42
+ - name: Fetch Pipeline Matrix
43
+ id: fetch_pipeline_matrix
44
+ run: |
45
+ matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
46
+ echo $matrix
47
+ echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
48
+ - name: Pipeline Tests Artifacts
49
+ if: ${{ always() }}
50
+ uses: actions/upload-artifact@v2
51
+ with:
52
+ name: test-pipelines.json
53
+ path: reports
54
+
55
+ torch_pipelines_cuda_tests:
56
+ name: Torch Pipelines CUDA Tests
57
+ needs: setup_torch_cuda_pipeline_matrix
58
+ strategy:
59
+ fail-fast: false
60
+ max-parallel: 8
61
+ matrix:
62
+ module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
63
+ runs-on:
64
+ group: aws-g4dn-2xlarge
65
+ container:
66
+ image: diffusers/diffusers-pytorch-cuda
67
+ options: --shm-size "16gb" --ipc host --gpus 0
68
+ steps:
69
+ - name: Checkout diffusers
70
+ uses: actions/checkout@v3
71
+ with:
72
+ fetch-depth: 2
73
+ - name: NVIDIA-SMI
74
+ run: |
75
+ nvidia-smi
76
+ - name: Install dependencies
77
+ run: |
78
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
79
+ python -m uv pip install -e [quality,test]
80
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
81
+ - name: Environment
82
+ run: |
83
+ python utils/print_env.py
84
+ - name: Slow PyTorch CUDA checkpoint tests on Ubuntu
85
+ env:
86
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
87
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
88
+ CUBLAS_WORKSPACE_CONFIG: :16:8
89
+ run: |
90
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
91
+ -s -v -k "not Flax and not Onnx" \
92
+ --make-reports=tests_pipeline_${{ matrix.module }}_cuda \
93
+ tests/pipelines/${{ matrix.module }}
94
+ - name: Failure short reports
95
+ if: ${{ failure() }}
96
+ run: |
97
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
98
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
99
+ - name: Test suite reports artifacts
100
+ if: ${{ always() }}
101
+ uses: actions/upload-artifact@v2
102
+ with:
103
+ name: pipeline_${{ matrix.module }}_test_reports
104
+ path: reports
105
+
106
+ torch_cuda_tests:
107
+ name: Torch CUDA Tests
108
+ runs-on:
109
+ group: aws-g4dn-2xlarge
110
+ container:
111
+ image: diffusers/diffusers-pytorch-cuda
112
+ options: --shm-size "16gb" --ipc host --gpus 0
113
+ defaults:
114
+ run:
115
+ shell: bash
116
+ strategy:
117
+ fail-fast: false
118
+ max-parallel: 2
119
+ matrix:
120
+ module: [models, schedulers, lora, others, single_file]
121
+ steps:
122
+ - name: Checkout diffusers
123
+ uses: actions/checkout@v3
124
+ with:
125
+ fetch-depth: 2
126
+
127
+ - name: Install dependencies
128
+ run: |
129
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
130
+ python -m uv pip install -e [quality,test]
131
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
132
+ python -m uv pip install peft@git+https://github.com/huggingface/peft.git
133
+
134
+ - name: Environment
135
+ run: |
136
+ python utils/print_env.py
137
+
138
+ - name: Run PyTorch CUDA tests
139
+ env:
140
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
141
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
142
+ CUBLAS_WORKSPACE_CONFIG: :16:8
143
+ run: |
144
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
145
+ -s -v -k "not Flax and not Onnx" \
146
+ --make-reports=tests_torch_cuda \
147
+ tests/${{ matrix.module }}
148
+
149
+ - name: Failure short reports
150
+ if: ${{ failure() }}
151
+ run: |
152
+ cat reports/tests_torch_cuda_stats.txt
153
+ cat reports/tests_torch_cuda_failures_short.txt
154
+
155
+ - name: Test suite reports artifacts
156
+ if: ${{ always() }}
157
+ uses: actions/upload-artifact@v2
158
+ with:
159
+ name: torch_cuda_test_reports
160
+ path: reports
161
+
162
+ flax_tpu_tests:
163
+ name: Flax TPU Tests
164
+ runs-on: docker-tpu
165
+ container:
166
+ image: diffusers/diffusers-flax-tpu
167
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
168
+ defaults:
169
+ run:
170
+ shell: bash
171
+ steps:
172
+ - name: Checkout diffusers
173
+ uses: actions/checkout@v3
174
+ with:
175
+ fetch-depth: 2
176
+
177
+ - name: Install dependencies
178
+ run: |
179
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
180
+ python -m uv pip install -e [quality,test]
181
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
182
+
183
+ - name: Environment
184
+ run: |
185
+ python utils/print_env.py
186
+
187
+ - name: Run slow Flax TPU tests
188
+ env:
189
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
190
+ run: |
191
+ python -m pytest -n 0 \
192
+ -s -v -k "Flax" \
193
+ --make-reports=tests_flax_tpu \
194
+ tests/
195
+
196
+ - name: Failure short reports
197
+ if: ${{ failure() }}
198
+ run: |
199
+ cat reports/tests_flax_tpu_stats.txt
200
+ cat reports/tests_flax_tpu_failures_short.txt
201
+
202
+ - name: Test suite reports artifacts
203
+ if: ${{ always() }}
204
+ uses: actions/upload-artifact@v2
205
+ with:
206
+ name: flax_tpu_test_reports
207
+ path: reports
208
+
209
+ onnx_cuda_tests:
210
+ name: ONNX CUDA Tests
211
+ runs-on:
212
+ group: aws-g4dn-2xlarge
213
+ container:
214
+ image: diffusers/diffusers-onnxruntime-cuda
215
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
216
+ defaults:
217
+ run:
218
+ shell: bash
219
+ steps:
220
+ - name: Checkout diffusers
221
+ uses: actions/checkout@v3
222
+ with:
223
+ fetch-depth: 2
224
+
225
+ - name: Install dependencies
226
+ run: |
227
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
228
+ python -m uv pip install -e [quality,test]
229
+ python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
230
+
231
+ - name: Environment
232
+ run: |
233
+ python utils/print_env.py
234
+
235
+ - name: Run slow ONNXRuntime CUDA tests
236
+ env:
237
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
238
+ run: |
239
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
240
+ -s -v -k "Onnx" \
241
+ --make-reports=tests_onnx_cuda \
242
+ tests/
243
+
244
+ - name: Failure short reports
245
+ if: ${{ failure() }}
246
+ run: |
247
+ cat reports/tests_onnx_cuda_stats.txt
248
+ cat reports/tests_onnx_cuda_failures_short.txt
249
+
250
+ - name: Test suite reports artifacts
251
+ if: ${{ always() }}
252
+ uses: actions/upload-artifact@v2
253
+ with:
254
+ name: onnx_cuda_test_reports
255
+ path: reports
256
+
257
+ run_torch_compile_tests:
258
+ name: PyTorch Compile CUDA tests
259
+
260
+ runs-on:
261
+ group: aws-g4dn-2xlarge
262
+
263
+ container:
264
+ image: diffusers/diffusers-pytorch-compile-cuda
265
+ options: --gpus 0 --shm-size "16gb" --ipc host
266
+
267
+ steps:
268
+ - name: Checkout diffusers
269
+ uses: actions/checkout@v3
270
+ with:
271
+ fetch-depth: 2
272
+
273
+ - name: NVIDIA-SMI
274
+ run: |
275
+ nvidia-smi
276
+ - name: Install dependencies
277
+ run: |
278
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
279
+ python -m uv pip install -e [quality,test,training]
280
+ - name: Environment
281
+ run: |
282
+ python utils/print_env.py
283
+ - name: Run example tests on GPU
284
+ env:
285
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
286
+ RUN_COMPILE: yes
287
+ run: |
288
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
289
+ - name: Failure short reports
290
+ if: ${{ failure() }}
291
+ run: cat reports/tests_torch_compile_cuda_failures_short.txt
292
+
293
+ - name: Test suite reports artifacts
294
+ if: ${{ always() }}
295
+ uses: actions/upload-artifact@v2
296
+ with:
297
+ name: torch_compile_test_reports
298
+ path: reports
299
+
300
+ run_xformers_tests:
301
+ name: PyTorch xformers CUDA tests
302
+
303
+ runs-on:
304
+ group: aws-g4dn-2xlarge
305
+
306
+ container:
307
+ image: diffusers/diffusers-pytorch-xformers-cuda
308
+ options: --gpus 0 --shm-size "16gb" --ipc host
309
+
310
+ steps:
311
+ - name: Checkout diffusers
312
+ uses: actions/checkout@v3
313
+ with:
314
+ fetch-depth: 2
315
+
316
+ - name: NVIDIA-SMI
317
+ run: |
318
+ nvidia-smi
319
+ - name: Install dependencies
320
+ run: |
321
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
322
+ python -m uv pip install -e [quality,test,training]
323
+ - name: Environment
324
+ run: |
325
+ python utils/print_env.py
326
+ - name: Run example tests on GPU
327
+ env:
328
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
329
+ run: |
330
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
331
+ - name: Failure short reports
332
+ if: ${{ failure() }}
333
+ run: cat reports/tests_torch_xformers_cuda_failures_short.txt
334
+
335
+ - name: Test suite reports artifacts
336
+ if: ${{ always() }}
337
+ uses: actions/upload-artifact@v2
338
+ with:
339
+ name: torch_xformers_test_reports
340
+ path: reports
341
+
342
+ run_examples_tests:
343
+ name: Examples PyTorch CUDA tests on Ubuntu
344
+
345
+ runs-on:
346
+ group: aws-g4dn-2xlarge
347
+
348
+ container:
349
+ image: diffusers/diffusers-pytorch-cuda
350
+ options: --gpus 0 --shm-size "16gb" --ipc host
351
+
352
+ steps:
353
+ - name: Checkout diffusers
354
+ uses: actions/checkout@v3
355
+ with:
356
+ fetch-depth: 2
357
+
358
+ - name: NVIDIA-SMI
359
+ run: |
360
+ nvidia-smi
361
+
362
+ - name: Install dependencies
363
+ run: |
364
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
365
+ python -m uv pip install -e [quality,test,training]
366
+
367
+ - name: Environment
368
+ run: |
369
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
370
+ python utils/print_env.py
371
+
372
+ - name: Run example tests on GPU
373
+ env:
374
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
375
+ run: |
376
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
377
+ python -m uv pip install timm
378
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
379
+
380
+ - name: Failure short reports
381
+ if: ${{ failure() }}
382
+ run: |
383
+ cat reports/examples_torch_cuda_stats.txt
384
+ cat reports/examples_torch_cuda_failures_short.txt
385
+
386
+ - name: Test suite reports artifacts
387
+ if: ${{ always() }}
388
+ uses: actions/upload-artifact@v2
389
+ with:
390
+ name: examples_test_reports
391
+ path: reports
diffusers/.github/workflows/push_tests_fast.yml ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests on main
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "examples/**.py"
10
+ - "tests/**.py"
11
+
12
+ concurrency:
13
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
14
+ cancel-in-progress: true
15
+
16
+ env:
17
+ DIFFUSERS_IS_CI: yes
18
+ HF_HOME: /mnt/cache
19
+ OMP_NUM_THREADS: 8
20
+ MKL_NUM_THREADS: 8
21
+ PYTEST_TIMEOUT: 600
22
+ RUN_SLOW: no
23
+
24
+ jobs:
25
+ run_fast_tests:
26
+ strategy:
27
+ fail-fast: false
28
+ matrix:
29
+ config:
30
+ - name: Fast PyTorch CPU tests on Ubuntu
31
+ framework: pytorch
32
+ runner: aws-general-8-plus
33
+ image: diffusers/diffusers-pytorch-cpu
34
+ report: torch_cpu
35
+ - name: Fast Flax CPU tests on Ubuntu
36
+ framework: flax
37
+ runner: aws-general-8-plus
38
+ image: diffusers/diffusers-flax-cpu
39
+ report: flax_cpu
40
+ - name: Fast ONNXRuntime CPU tests on Ubuntu
41
+ framework: onnxruntime
42
+ runner: aws-general-8-plus
43
+ image: diffusers/diffusers-onnxruntime-cpu
44
+ report: onnx_cpu
45
+ - name: PyTorch Example CPU tests on Ubuntu
46
+ framework: pytorch_examples
47
+ runner: aws-general-8-plus
48
+ image: diffusers/diffusers-pytorch-cpu
49
+ report: torch_example_cpu
50
+
51
+ name: ${{ matrix.config.name }}
52
+
53
+ runs-on:
54
+ group: ${{ matrix.config.runner }}
55
+
56
+ container:
57
+ image: ${{ matrix.config.image }}
58
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
59
+
60
+ defaults:
61
+ run:
62
+ shell: bash
63
+
64
+ steps:
65
+ - name: Checkout diffusers
66
+ uses: actions/checkout@v3
67
+ with:
68
+ fetch-depth: 2
69
+
70
+ - name: Install dependencies
71
+ run: |
72
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
73
+ python -m uv pip install -e [quality,test]
74
+
75
+ - name: Environment
76
+ run: |
77
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
78
+ python utils/print_env.py
79
+
80
+ - name: Run fast PyTorch CPU tests
81
+ if: ${{ matrix.config.framework == 'pytorch' }}
82
+ run: |
83
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
84
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
85
+ -s -v -k "not Flax and not Onnx" \
86
+ --make-reports=tests_${{ matrix.config.report }} \
87
+ tests/
88
+
89
+ - name: Run fast Flax TPU tests
90
+ if: ${{ matrix.config.framework == 'flax' }}
91
+ run: |
92
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
93
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
94
+ -s -v -k "Flax" \
95
+ --make-reports=tests_${{ matrix.config.report }} \
96
+ tests/
97
+
98
+ - name: Run fast ONNXRuntime CPU tests
99
+ if: ${{ matrix.config.framework == 'onnxruntime' }}
100
+ run: |
101
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
102
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
103
+ -s -v -k "Onnx" \
104
+ --make-reports=tests_${{ matrix.config.report }} \
105
+ tests/
106
+
107
+ - name: Run example PyTorch CPU tests
108
+ if: ${{ matrix.config.framework == 'pytorch_examples' }}
109
+ run: |
110
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
111
+ python -m uv pip install peft timm
112
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
113
+ --make-reports=tests_${{ matrix.config.report }} \
114
+ examples
115
+
116
+ - name: Failure short reports
117
+ if: ${{ failure() }}
118
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
119
+
120
+ - name: Test suite reports artifacts
121
+ if: ${{ always() }}
122
+ uses: actions/upload-artifact@v2
123
+ with:
124
+ name: pr_${{ matrix.config.report }}_test_reports
125
+ path: reports
diffusers/.github/workflows/push_tests_mps.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast mps tests on main
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "tests/**.py"
10
+
11
+ env:
12
+ DIFFUSERS_IS_CI: yes
13
+ HF_HOME: /mnt/cache
14
+ OMP_NUM_THREADS: 8
15
+ MKL_NUM_THREADS: 8
16
+ PYTEST_TIMEOUT: 600
17
+ RUN_SLOW: no
18
+
19
+ concurrency:
20
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
21
+ cancel-in-progress: true
22
+
23
+ jobs:
24
+ run_fast_tests_apple_m1:
25
+ name: Fast PyTorch MPS tests on MacOS
26
+ runs-on: macos-13-xlarge
27
+
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+
34
+ - name: Clean checkout
35
+ shell: arch -arch arm64 bash {0}
36
+ run: |
37
+ git clean -fxd
38
+
39
+ - name: Setup miniconda
40
+ uses: ./.github/actions/setup-miniconda
41
+ with:
42
+ python-version: 3.9
43
+
44
+ - name: Install dependencies
45
+ shell: arch -arch arm64 bash {0}
46
+ run: |
47
+ ${CONDA_RUN} python -m pip install --upgrade pip uv
48
+ ${CONDA_RUN} python -m uv pip install -e [quality,test]
49
+ ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
50
+ ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
51
+ ${CONDA_RUN} python -m uv pip install transformers --upgrade
52
+
53
+ - name: Environment
54
+ shell: arch -arch arm64 bash {0}
55
+ run: |
56
+ ${CONDA_RUN} python utils/print_env.py
57
+
58
+ - name: Run fast PyTorch tests on M1 (MPS)
59
+ shell: arch -arch arm64 bash {0}
60
+ env:
61
+ HF_HOME: /System/Volumes/Data/mnt/cache
62
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
63
+ run: |
64
+ ${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
65
+
66
+ - name: Failure short reports
67
+ if: ${{ failure() }}
68
+ run: cat reports/tests_torch_mps_failures_short.txt
69
+
70
+ - name: Test suite reports artifacts
71
+ if: ${{ always() }}
72
+ uses: actions/upload-artifact@v2
73
+ with:
74
+ name: pr_torch_mps_test_reports
75
+ path: reports
diffusers/.github/workflows/pypi_publish.yaml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://blog.deepjyoti30.dev/pypi-release-github-action
2
+
3
+ name: PyPI release
4
+
5
+ on:
6
+ workflow_dispatch:
7
+ push:
8
+ tags:
9
+ - "*"
10
+
11
+ jobs:
12
+ find-and-checkout-latest-branch:
13
+ runs-on: ubuntu-latest
14
+ outputs:
15
+ latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
16
+ steps:
17
+ - name: Checkout Repo
18
+ uses: actions/checkout@v3
19
+
20
+ - name: Set up Python
21
+ uses: actions/setup-python@v4
22
+ with:
23
+ python-version: '3.8'
24
+
25
+ - name: Fetch latest branch
26
+ id: fetch_latest_branch
27
+ run: |
28
+ pip install -U requests packaging
29
+ LATEST_BRANCH=$(python utils/fetch_latest_release_branch.py)
30
+ echo "Latest branch: $LATEST_BRANCH"
31
+ echo "latest_branch=$LATEST_BRANCH" >> $GITHUB_ENV
32
+
33
+ - name: Set latest branch output
34
+ id: set_latest_branch
35
+ run: echo "::set-output name=latest_branch::${{ env.latest_branch }}"
36
+
37
+ release:
38
+ needs: find-and-checkout-latest-branch
39
+ runs-on: ubuntu-latest
40
+
41
+ steps:
42
+ - name: Checkout Repo
43
+ uses: actions/checkout@v3
44
+ with:
45
+ ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
46
+
47
+ - name: Setup Python
48
+ uses: actions/setup-python@v4
49
+ with:
50
+ python-version: "3.8"
51
+
52
+ - name: Install dependencies
53
+ run: |
54
+ python -m pip install --upgrade pip
55
+ pip install -U setuptools wheel twine
56
+ pip install -U torch --index-url https://download.pytorch.org/whl/cpu
57
+ pip install -U transformers
58
+
59
+ - name: Build the dist files
60
+ run: python setup.py bdist_wheel && python setup.py sdist
61
+
62
+ - name: Publish to the test PyPI
63
+ env:
64
+ TWINE_USERNAME: ${{ secrets.TEST_PYPI_USERNAME }}
65
+ TWINE_PASSWORD: ${{ secrets.TEST_PYPI_PASSWORD }}
66
+ run: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
67
+
68
+ - name: Test installing diffusers and importing
69
+ run: |
70
+ pip install diffusers && pip uninstall diffusers -y
71
+ pip install -i https://testpypi.python.org/pypi diffusers
72
+ python -c "from diffusers import __version__; print(__version__)"
73
+ python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
74
+ python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"
75
+ python -c "from diffusers import *"
76
+
77
+ - name: Publish to PyPI
78
+ env:
79
+ TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
80
+ TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
81
+ run: twine upload dist/* -r pypi
diffusers/.github/workflows/run_tests_from_a_pr.yml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check running SLOW tests from a PR (only GPU)
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ docker_image:
7
+ default: 'diffusers/diffusers-pytorch-cuda'
8
+ description: 'Name of the Docker image'
9
+ required: true
10
+ branch:
11
+ description: 'PR Branch to test on'
12
+ required: true
13
+ test:
14
+ description: 'Tests to run (e.g.: `tests/models`).'
15
+ required: true
16
+
17
+ env:
18
+ DIFFUSERS_IS_CI: yes
19
+ IS_GITHUB_CI: "1"
20
+ HF_HOME: /mnt/cache
21
+ OMP_NUM_THREADS: 8
22
+ MKL_NUM_THREADS: 8
23
+ PYTEST_TIMEOUT: 600
24
+ RUN_SLOW: yes
25
+
26
+ jobs:
27
+ run_tests:
28
+ name: "Run a test on our runner from a PR"
29
+ runs-on:
30
+ group: aws-g4dn-2xlarge
31
+ container:
32
+ image: ${{ github.event.inputs.docker_image }}
33
+ options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
34
+
35
+ steps:
36
+ - name: Validate test files input
37
+ id: validate_test_files
38
+ env:
39
+ PY_TEST: ${{ github.event.inputs.test }}
40
+ run: |
41
+ if [[ ! "$PY_TEST" =~ ^tests/ ]]; then
42
+ echo "Error: The input string must start with 'tests/'."
43
+ exit 1
44
+ fi
45
+
46
+ if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
47
+ echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
48
+ exit 1
49
+ fi
50
+
51
+ if [[ "$PY_TEST" == *";"* ]]; then
52
+ echo "Error: The input string must not contain ';'."
53
+ exit 1
54
+ fi
55
+ echo "$PY_TEST"
56
+
57
+ - name: Checkout PR branch
58
+ uses: actions/checkout@v4
59
+ with:
60
+ ref: ${{ github.event.inputs.branch }}
61
+ repository: ${{ github.event.pull_request.head.repo.full_name }}
62
+
63
+
64
+ - name: Install pytest
65
+ run: |
66
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
67
+ python -m uv pip install -e [quality,test]
68
+ python -m uv pip install peft
69
+
70
+ - name: Run tests
71
+ env:
72
+ PY_TEST: ${{ github.event.inputs.test }}
73
+ run: |
74
+ pytest "$PY_TEST"
diffusers/.github/workflows/ssh-pr-runner.yml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SSH into PR runners
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ docker_image:
7
+ description: 'Name of the Docker image'
8
+ required: true
9
+
10
+ env:
11
+ IS_GITHUB_CI: "1"
12
+ HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
13
+ HF_HOME: /mnt/cache
14
+ DIFFUSERS_IS_CI: yes
15
+ OMP_NUM_THREADS: 8
16
+ MKL_NUM_THREADS: 8
17
+ RUN_SLOW: yes
18
+
19
+ jobs:
20
+ ssh_runner:
21
+ name: "SSH"
22
+ runs-on:
23
+ group: aws-highmemory-32-plus
24
+ container:
25
+ image: ${{ github.event.inputs.docker_image }}
26
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --privileged
27
+
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+
34
+ - name: Tailscale # In order to be able to SSH when a test fails
35
+ uses: huggingface/tailscale-action@main
36
+ with:
37
+ authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
38
+ slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
39
+ slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
40
+ waitForSSH: true
diffusers/.github/workflows/ssh-runner.yml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SSH into GPU runners
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ runner_type:
7
+ description: 'Type of runner to test (a10 or t4)'
8
+ required: true
9
+ docker_image:
10
+ description: 'Name of the Docker image'
11
+ required: true
12
+
13
+ env:
14
+ IS_GITHUB_CI: "1"
15
+ HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
16
+ HF_HOME: /mnt/cache
17
+ DIFFUSERS_IS_CI: yes
18
+ OMP_NUM_THREADS: 8
19
+ MKL_NUM_THREADS: 8
20
+ RUN_SLOW: yes
21
+
22
+ jobs:
23
+ ssh_runner:
24
+ name: "SSH"
25
+ runs-on:
26
+ group: "${{ github.event.inputs.runner_type }}"
27
+ container:
28
+ image: ${{ github.event.inputs.docker_image }}
29
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
30
+
31
+ steps:
32
+ - name: Checkout diffusers
33
+ uses: actions/checkout@v3
34
+ with:
35
+ fetch-depth: 2
36
+
37
+ - name: NVIDIA-SMI
38
+ run: |
39
+ nvidia-smi
40
+
41
+ - name: Tailscale # In order to be able to SSH when a test fails
42
+ uses: huggingface/tailscale-action@main
43
+ with:
44
+ authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
45
+ slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
46
+ slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
47
+ waitForSSH: true
diffusers/.github/workflows/stale.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Stale Bot
2
+
3
+ on:
4
+ schedule:
5
+ - cron: "0 15 * * *"
6
+
7
+ jobs:
8
+ close_stale_issues:
9
+ name: Close Stale Issues
10
+ if: github.repository == 'huggingface/diffusers'
11
+ runs-on: ubuntu-latest
12
+ env:
13
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
14
+ steps:
15
+ - uses: actions/checkout@v2
16
+
17
+ - name: Setup Python
18
+ uses: actions/setup-python@v1
19
+ with:
20
+ python-version: 3.8
21
+
22
+ - name: Install requirements
23
+ run: |
24
+ pip install PyGithub
25
+ - name: Close stale issues
26
+ run: |
27
+ python utils/stale.py
diffusers/.github/workflows/trufflehog.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ on:
2
+ push:
3
+
4
+ name: Secret Leaks
5
+
6
+ jobs:
7
+ trufflehog:
8
+ runs-on: ubuntu-latest
9
+ steps:
10
+ - name: Checkout code
11
+ uses: actions/checkout@v4
12
+ with:
13
+ fetch-depth: 0
14
+ - name: Secret Scanning
15
+ uses: trufflesecurity/trufflehog@main
diffusers/.github/workflows/typos.yml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check typos
2
+
3
+ on:
4
+ workflow_dispatch:
5
+
6
+ jobs:
7
+ build:
8
+ runs-on: ubuntu-latest
9
+
10
+ steps:
11
+ - uses: actions/checkout@v3
12
+
13
+ - name: typos-action
14
+ uses: crate-ci/typos@v1.12.4
diffusers/.github/workflows/update_metadata.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Update Diffusers metadata
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ push:
6
+ branches:
7
+ - main
8
+ - update_diffusers_metadata*
9
+
10
+ jobs:
11
+ update_metadata:
12
+ runs-on: ubuntu-22.04
13
+ defaults:
14
+ run:
15
+ shell: bash -l {0}
16
+
17
+ steps:
18
+ - uses: actions/checkout@v3
19
+
20
+ - name: Setup environment
21
+ run: |
22
+ pip install --upgrade pip
23
+ pip install datasets pandas
24
+ pip install .[torch]
25
+
26
+ - name: Update metadata
27
+ env:
28
+ HF_TOKEN: ${{ secrets.SAYAK_HF_TOKEN }}
29
+ run: |
30
+ python utils/update_metadata.py --commit_sha ${{ github.sha }}
diffusers/.github/workflows/upload_pr_documentation.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Upload PR Documentation
2
+
3
+ on:
4
+ workflow_run:
5
+ workflows: ["Build PR Documentation"]
6
+ types:
7
+ - completed
8
+
9
+ jobs:
10
+ build:
11
+ uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
12
+ with:
13
+ package_name: diffusers
14
+ secrets:
15
+ hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
16
+ comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
diffusers/.gitignore ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Initially taken from GitHub's Python gitignore file
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # tests and logs
12
+ tests/fixtures/cached_*_text.txt
13
+ logs/
14
+ lightning_logs/
15
+ lang_code_data/
16
+
17
+ # Distribution / packaging
18
+ .Python
19
+ build/
20
+ develop-eggs/
21
+ dist/
22
+ downloads/
23
+ eggs/
24
+ .eggs/
25
+ lib/
26
+ lib64/
27
+ parts/
28
+ sdist/
29
+ var/
30
+ wheels/
31
+ *.egg-info/
32
+ .installed.cfg
33
+ *.egg
34
+ MANIFEST
35
+
36
+ # PyInstaller
37
+ # Usually these files are written by a Python script from a template
38
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
39
+ *.manifest
40
+ *.spec
41
+
42
+ # Installer logs
43
+ pip-log.txt
44
+ pip-delete-this-directory.txt
45
+
46
+ # Unit test / coverage reports
47
+ htmlcov/
48
+ .tox/
49
+ .nox/
50
+ .coverage
51
+ .coverage.*
52
+ .cache
53
+ nosetests.xml
54
+ coverage.xml
55
+ *.cover
56
+ .hypothesis/
57
+ .pytest_cache/
58
+
59
+ # Translations
60
+ *.mo
61
+ *.pot
62
+
63
+ # Django stuff:
64
+ *.log
65
+ local_settings.py
66
+ db.sqlite3
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ target/
80
+
81
+ # Jupyter Notebook
82
+ .ipynb_checkpoints
83
+
84
+ # IPython
85
+ profile_default/
86
+ ipython_config.py
87
+
88
+ # pyenv
89
+ .python-version
90
+
91
+ # celery beat schedule file
92
+ celerybeat-schedule
93
+
94
+ # SageMath parsed files
95
+ *.sage.py
96
+
97
+ # Environments
98
+ .env
99
+ .venv
100
+ env/
101
+ venv/
102
+ ENV/
103
+ env.bak/
104
+ venv.bak/
105
+
106
+ # Spyder project settings
107
+ .spyderproject
108
+ .spyproject
109
+
110
+ # Rope project settings
111
+ .ropeproject
112
+
113
+ # mkdocs documentation
114
+ /site
115
+
116
+ # mypy
117
+ .mypy_cache/
118
+ .dmypy.json
119
+ dmypy.json
120
+
121
+ # Pyre type checker
122
+ .pyre/
123
+
124
+ # vscode
125
+ .vs
126
+ .vscode
127
+
128
+ # Pycharm
129
+ .idea
130
+
131
+ # TF code
132
+ tensorflow_code
133
+
134
+ # Models
135
+ proc_data
136
+
137
+ # examples
138
+ runs
139
+ /runs_old
140
+ /wandb
141
+ /examples/runs
142
+ /examples/**/*.args
143
+ /examples/rag/sweep
144
+
145
+ # data
146
+ /data
147
+ serialization_dir
148
+
149
+ # emacs
150
+ *.*~
151
+ debug.env
152
+
153
+ # vim
154
+ .*.swp
155
+
156
+ # ctags
157
+ tags
158
+
159
+ # pre-commit
160
+ .pre-commit*
161
+
162
+ # .lock
163
+ *.lock
164
+
165
+ # DS_Store (MacOS)
166
+ .DS_Store
167
+
168
+ # RL pipelines may produce mp4 outputs
169
+ *.mp4
170
+
171
+ # dependencies
172
+ /transformers
173
+
174
+ # ruff
175
+ .ruff_cache
176
+
177
+ # wandb
178
+ wandb
diffusers/CITATION.cff ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ title: 'Diffusers: State-of-the-art diffusion models'
3
+ message: >-
4
+ If you use this software, please cite it using the
5
+ metadata from this file.
6
+ type: software
7
+ authors:
8
+ - given-names: Patrick
9
+ family-names: von Platen
10
+ - given-names: Suraj
11
+ family-names: Patil
12
+ - given-names: Anton
13
+ family-names: Lozhkov
14
+ - given-names: Pedro
15
+ family-names: Cuenca
16
+ - given-names: Nathan
17
+ family-names: Lambert
18
+ - given-names: Kashif
19
+ family-names: Rasul
20
+ - given-names: Mishig
21
+ family-names: Davaadorj
22
+ - given-names: Dhruv
23
+ family-names: Nair
24
+ - given-names: Sayak
25
+ family-names: Paul
26
+ - given-names: Steven
27
+ family-names: Liu
28
+ - given-names: William
29
+ family-names: Berman
30
+ - given-names: Yiyi
31
+ family-names: Xu
32
+ - given-names: Thomas
33
+ family-names: Wolf
34
+ repository-code: 'https://github.com/huggingface/diffusers'
35
+ abstract: >-
36
+ Diffusers provides pretrained diffusion models across
37
+ multiple modalities, such as vision and audio, and serves
38
+ as a modular toolbox for inference and training of
39
+ diffusion models.
40
+ keywords:
41
+ - deep-learning
42
+ - pytorch
43
+ - image-generation
44
+ - hacktoberfest
45
+ - diffusion
46
+ - text2image
47
+ - image2image
48
+ - score-based-generative-modeling
49
+ - stable-diffusion
50
+ - stable-diffusion-diffusers
51
+ license: Apache-2.0
52
+ version: 0.12.1
diffusers/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Contributor Covenant Code of Conduct
3
+
4
+ ## Our Pledge
5
+
6
+ We as members, contributors, and leaders pledge to make participation in our
7
+ community a harassment-free experience for everyone, regardless of age, body
8
+ size, visible or invisible disability, ethnicity, sex characteristics, gender
9
+ identity and expression, level of experience, education, socio-economic status,
10
+ nationality, personal appearance, race, caste, color, religion, or sexual identity
11
+ and orientation.
12
+
13
+ We pledge to act and interact in ways that contribute to an open, welcoming,
14
+ diverse, inclusive, and healthy community.
15
+
16
+ ## Our Standards
17
+
18
+ Examples of behavior that contributes to a positive environment for our
19
+ community include:
20
+
21
+ * Demonstrating empathy and kindness toward other people
22
+ * Being respectful of differing opinions, viewpoints, and experiences
23
+ * Giving and gracefully accepting constructive feedback
24
+ * Accepting responsibility and apologizing to those affected by our mistakes,
25
+ and learning from the experience
26
+ * Focusing on what is best not just for us as individuals, but for the
27
+ overall Diffusers community
28
+
29
+ Examples of unacceptable behavior include:
30
+
31
+ * The use of sexualized language or imagery, and sexual attention or
32
+ advances of any kind
33
+ * Trolling, insulting or derogatory comments, and personal or political attacks
34
+ * Public or private harassment
35
+ * Publishing others' private information, such as a physical or email
36
+ address, without their explicit permission
37
+ * Spamming issues or PRs with links to projects unrelated to this library
38
+ * Other conduct which could reasonably be considered inappropriate in a
39
+ professional setting
40
+
41
+ ## Enforcement Responsibilities
42
+
43
+ Community leaders are responsible for clarifying and enforcing our standards of
44
+ acceptable behavior and will take appropriate and fair corrective action in
45
+ response to any behavior that they deem inappropriate, threatening, offensive,
46
+ or harmful.
47
+
48
+ Community leaders have the right and responsibility to remove, edit, or reject
49
+ comments, commits, code, wiki edits, issues, and other contributions that are
50
+ not aligned to this Code of Conduct, and will communicate reasons for moderation
51
+ decisions when appropriate.
52
+
53
+ ## Scope
54
+
55
+ This Code of Conduct applies within all community spaces, and also applies when
56
+ an individual is officially representing the community in public spaces.
57
+ Examples of representing our community include using an official e-mail address,
58
+ posting via an official social media account, or acting as an appointed
59
+ representative at an online or offline event.
60
+
61
+ ## Enforcement
62
+
63
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
64
+ reported to the community leaders responsible for enforcement at
65
+ feedback@huggingface.co.
66
+ All complaints will be reviewed and investigated promptly and fairly.
67
+
68
+ All community leaders are obligated to respect the privacy and security of the
69
+ reporter of any incident.
70
+
71
+ ## Enforcement Guidelines
72
+
73
+ Community leaders will follow these Community Impact Guidelines in determining
74
+ the consequences for any action they deem in violation of this Code of Conduct:
75
+
76
+ ### 1. Correction
77
+
78
+ **Community Impact**: Use of inappropriate language or other behavior deemed
79
+ unprofessional or unwelcome in the community.
80
+
81
+ **Consequence**: A private, written warning from community leaders, providing
82
+ clarity around the nature of the violation and an explanation of why the
83
+ behavior was inappropriate. A public apology may be requested.
84
+
85
+ ### 2. Warning
86
+
87
+ **Community Impact**: A violation through a single incident or series
88
+ of actions.
89
+
90
+ **Consequence**: A warning with consequences for continued behavior. No
91
+ interaction with the people involved, including unsolicited interaction with
92
+ those enforcing the Code of Conduct, for a specified period of time. This
93
+ includes avoiding interactions in community spaces as well as external channels
94
+ like social media. Violating these terms may lead to a temporary or
95
+ permanent ban.
96
+
97
+ ### 3. Temporary Ban
98
+
99
+ **Community Impact**: A serious violation of community standards, including
100
+ sustained inappropriate behavior.
101
+
102
+ **Consequence**: A temporary ban from any sort of interaction or public
103
+ communication with the community for a specified period of time. No public or
104
+ private interaction with the people involved, including unsolicited interaction
105
+ with those enforcing the Code of Conduct, is allowed during this period.
106
+ Violating these terms may lead to a permanent ban.
107
+
108
+ ### 4. Permanent Ban
109
+
110
+ **Community Impact**: Demonstrating a pattern of violation of community
111
+ standards, including sustained inappropriate behavior, harassment of an
112
+ individual, or aggression toward or disparagement of classes of individuals.
113
+
114
+ **Consequence**: A permanent ban from any sort of public interaction within
115
+ the community.
116
+
117
+ ## Attribution
118
+
119
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage],
120
+ version 2.1, available at
121
+ https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
122
+
123
+ Community Impact Guidelines were inspired by [Mozilla's code of conduct
124
+ enforcement ladder](https://github.com/mozilla/diversity).
125
+
126
+ [homepage]: https://www.contributor-covenant.org
127
+
128
+ For answers to common questions about this code of conduct, see the FAQ at
129
+ https://www.contributor-covenant.org/faq. Translations are available at
130
+ https://www.contributor-covenant.org/translations.
diffusers/CONTRIBUTING.md ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!--Copyright 2024 The HuggingFace Team. All rights reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4
+ the License. You may obtain a copy of the License at
5
+
6
+ http://www.apache.org/licenses/LICENSE-2.0
7
+
8
+ Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9
+ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
+ specific language governing permissions and limitations under the License.
11
+ -->
12
+
13
+ # How to contribute to Diffusers 🧨
14
+
15
+ We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation –not just code– are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
16
+
17
+ Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
18
+
19
+ Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
20
+
21
+ We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
22
+
23
+ ## Overview
24
+
25
+ You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
26
+ the core library.
27
+
28
+ In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
29
+
30
+ * 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
31
+ * 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
32
+ * 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
33
+ * 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
34
+ * 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
35
+ * 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
36
+ * 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
37
+ * 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
38
+ * 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
39
+
40
+ As said before, **all contributions are valuable to the community**.
41
+ In the following, we will explain each contribution a bit more in detail.
42
+
43
+ For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
44
+
45
+ ### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
46
+
47
+ Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
48
+ - Reports of training or inference experiments in an attempt to share knowledge
49
+ - Presentation of personal projects
50
+ - Questions to non-official training examples
51
+ - Project proposals
52
+ - General feedback
53
+ - Paper summaries
54
+ - Asking for help on personal projects that build on top of the Diffusers library
55
+ - General questions
56
+ - Ethical questions regarding diffusion models
57
+ - ...
58
+
59
+ Every question that is asked on the forum or on Discord actively encourages the community to publicly
60
+ share knowledge and might very well help a beginner in the future who has the same question you're
61
+ having. Please do pose any questions you might have.
62
+ In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
63
+
64
+ **Please** keep in mind that the more effort you put into asking or answering a question, the higher
65
+ the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
66
+ In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
67
+
68
+ **NOTE about channels**:
69
+ [*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
70
+ In addition, questions and answers posted in the forum can easily be linked to.
71
+ In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
72
+ While it will most likely take less time for you to get an answer to your question on Discord, your
73
+ question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
74
+
75
+ ### 2. Opening new issues on the GitHub issues tab
76
+
77
+ The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
78
+ the problems they encounter. So thank you for reporting an issue.
79
+
80
+ Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
81
+
82
+ In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
83
+
84
+ **Please consider the following guidelines when opening a new issue**:
85
+ - Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
86
+ - Please never report a new issue on another (related) issue. If another issue is highly related, please
87
+ open a new issue nevertheless and link to the related issue.
88
+ - Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
89
+ - Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
90
+ - Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
91
+
92
+ New issues usually include the following.
93
+
94
+ #### 2.1. Reproducible, minimal bug reports
95
+
96
+ A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
97
+ This means in more detail:
98
+ - Narrow the bug down as much as you can, **do not just dump your whole code file**.
99
+ - Format your code.
100
+ - Do not include any external libraries except for Diffusers depending on them.
101
+ - **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
102
+ - Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
103
+ - **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
104
+ - If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
105
+
106
+ For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
107
+
108
+ You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
109
+
110
+ #### 2.2. Feature requests
111
+
112
+ A world-class feature request addresses the following points:
113
+
114
+ 1. Motivation first:
115
+ * Is it related to a problem/frustration with the library? If so, please explain
116
+ why. Providing a code snippet that demonstrates the problem is best.
117
+ * Is it related to something you would need for a project? We'd love to hear
118
+ about it!
119
+ * Is it something you worked on and think could benefit the community?
120
+ Awesome! Tell us what problem it solved for you.
121
+ 2. Write a *full paragraph* describing the feature;
122
+ 3. Provide a **code snippet** that demonstrates its future use;
123
+ 4. In case this is related to a paper, please attach a link;
124
+ 5. Attach any additional information (drawings, screenshots, etc.) you think may help.
125
+
126
+ You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
127
+
128
+ #### 2.3 Feedback
129
+
130
+ Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
131
+ If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
132
+
133
+ You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
134
+
135
+ #### 2.4 Technical questions
136
+
137
+ Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
138
+ why this part of the code is difficult to understand.
139
+
140
+ You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
141
+
142
+ #### 2.5 Proposal to add a new model, scheduler, or pipeline
143
+
144
+ If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
145
+
146
+ * Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
147
+ * Link to any of its open-source implementation.
148
+ * Link to the model weights if they are available.
149
+
150
+ If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
151
+ to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
152
+
153
+ You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
154
+
155
+ ### 3. Answering issues on the GitHub issues tab
156
+
157
+ Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
158
+ Some tips to give a high-quality answer to an issue:
159
+ - Be as concise and minimal as possible.
160
+ - Stay on topic. An answer to the issue should concern the issue and only the issue.
161
+ - Provide links to code, papers, or other sources that prove or encourage your point.
162
+ - Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
163
+
164
+ Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
165
+ help to the maintainers if you can answer such issues, encouraging the author of the issue to be
166
+ more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
167
+
168
+ If you have verified that the issued bug report is correct and requires a correction in the source code,
169
+ please have a look at the next sections.
170
+
171
+ For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
172
+
173
+ ### 4. Fixing a "Good first issue"
174
+
175
+ *Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
176
+ explains how a potential solution should look so that it is easier to fix.
177
+ If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
178
+ - a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
179
+ - b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
180
+ - c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
181
+
182
+
183
+ ### 5. Contribute to the documentation
184
+
185
+ A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
186
+ valuable contribution**.
187
+
188
+ Contributing to the library can have many forms:
189
+
190
+ - Correcting spelling or grammatical errors.
191
+ - Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we are very happy if you take some time to correct it.
192
+ - Correct the shape or dimensions of a docstring input or output tensor.
193
+ - Clarify documentation that is hard to understand or incorrect.
194
+ - Update outdated code examples.
195
+ - Translating the documentation to another language.
196
+
197
+ Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
198
+
199
+ Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
200
+
201
+
202
+ ### 6. Contribute a community pipeline
203
+
204
+ [Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
205
+ Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
206
+ We support two types of pipelines:
207
+
208
+ - Official Pipelines
209
+ - Community Pipelines
210
+
211
+ Both official and community pipelines follow the same design and consist of the same type of components.
212
+
213
+ Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
214
+ resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
215
+ In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
216
+ They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
217
+
218
+ The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
219
+ possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
220
+ Officially released diffusion pipelines,
221
+ such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
222
+ high quality of maintenance, no backward-breaking code changes, and testing.
223
+ More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
224
+
225
+ To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
226
+
227
+ An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
228
+
229
+ Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
230
+
231
+ Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
232
+ core package.
233
+
234
+ ### 7. Contribute to training examples
235
+
236
+ Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
237
+
238
+ We support two types of training examples:
239
+
240
+ - Official training examples
241
+ - Research training examples
242
+
243
+ Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
244
+ The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
245
+ This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
246
+ If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
247
+
248
+ Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
249
+ training examples, it is required to clone the repository:
250
+
251
+ ```bash
252
+ git clone https://github.com/huggingface/diffusers
253
+ ```
254
+
255
+ as well as to install all additional dependencies required for training:
256
+
257
+ ```bash
258
+ cd diffusers
259
+ pip install -r examples/<your-example-folder>/requirements.txt
260
+ ```
261
+
262
+ Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
263
+
264
+ Training examples of the Diffusers library should adhere to the following philosophy:
265
+ - All the code necessary to run the examples should be found in a single Python file.
266
+ - One should be able to run the example from the command line with `python <your-example>.py --args`.
267
+ - Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
268
+
269
+ To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
270
+ We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
271
+ with Diffusers.
272
+ Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
273
+ - An example command on how to run the example script as shown [here e.g.](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
274
+ - A link to some training results (logs, models, ...) that show what the user can expect as shown [here e.g.](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
275
+ - If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
276
+
277
+ If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
278
+
279
+ ### 8. Fixing a "Good second issue"
280
+
281
+ *Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
282
+ usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
283
+ The issue description usually gives less guidance on how to fix the issue and requires
284
+ a decent understanding of the library by the interested contributor.
285
+ If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
286
+ Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
287
+
288
+ ### 9. Adding pipelines, models, schedulers
289
+
290
+ Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
291
+ They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
292
+ build powerful generative AI applications.
293
+
294
+ By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
295
+
296
+ Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
297
+ if you don't know yet what specific component you would like to add:
298
+ - [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
299
+ - [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
300
+
301
+ Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
302
+ we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
303
+ as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
304
+ open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
305
+ pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
306
+
307
+ Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
308
+ original author directly on the PR so that they can follow the progress and potentially help with questions.
309
+
310
+ If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
311
+
312
+ ## How to write a good issue
313
+
314
+ **The better your issue is written, the higher the chances that it will be quickly resolved.**
315
+
316
+ 1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
317
+ 2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
318
+ 3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
319
+ 4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
320
+ 5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
321
+ 6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
322
+ 7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
323
+
324
+ ## How to write a good PR
325
+
326
+ 1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
327
+ 2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
328
+ 3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
329
+ 4. The title of your pull request should be a summary of its contribution.
330
+ 5. If your pull request addresses an issue, please mention the issue number in
331
+ the pull request description to make sure they are linked (and people
332
+ consulting the issue know you are working on it);
333
+ 6. To indicate a work in progress please prefix the title with `[WIP]`. These
334
+ are useful to avoid duplicated work, and to differentiate it from PRs ready
335
+ to be merged;
336
+ 7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
337
+ 8. Make sure existing tests pass;
338
+ 9. Add high-coverage tests. No quality testing = no merge.
339
+ - If you are adding new `@slow` tests, make sure they pass using
340
+ `RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
341
+ CircleCI does not run the slow tests, but GitHub Actions does every night!
342
+ 10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
343
+ 11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
344
+ [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
345
+ If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
346
+ to this dataset.
347
+
348
+ ## How to open a PR
349
+
350
+ Before writing code, we strongly advise you to search through the existing PRs or
351
+ issues to make sure that nobody is already working on the same thing. If you are
352
+ unsure, it is always a good idea to open an issue to get some feedback.
353
+
354
+ You will need basic `git` proficiency to be able to contribute to
355
+ 🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
356
+ manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
357
+ Git](https://git-scm.com/book/en/v2) is a very good reference.
358
+
359
+ Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/42f25d601a910dceadaee6c44345896b4cfa9928/setup.py#L270)):
360
+
361
+ 1. Fork the [repository](https://github.com/huggingface/diffusers) by
362
+ clicking on the 'Fork' button on the repository's page. This creates a copy of the code
363
+ under your GitHub user account.
364
+
365
+ 2. Clone your fork to your local disk, and add the base repository as a remote:
366
+
367
+ ```bash
368
+ $ git clone git@github.com:<your GitHub handle>/diffusers.git
369
+ $ cd diffusers
370
+ $ git remote add upstream https://github.com/huggingface/diffusers.git
371
+ ```
372
+
373
+ 3. Create a new branch to hold your development changes:
374
+
375
+ ```bash
376
+ $ git checkout -b a-descriptive-name-for-my-changes
377
+ ```
378
+
379
+ **Do not** work on the `main` branch.
380
+
381
+ 4. Set up a development environment by running the following command in a virtual environment:
382
+
383
+ ```bash
384
+ $ pip install -e ".[dev]"
385
+ ```
386
+
387
+ If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
388
+ library.
389
+
390
+ 5. Develop the features on your branch.
391
+
392
+ As you work on the features, you should make sure that the test suite
393
+ passes. You should run the tests impacted by your changes like this:
394
+
395
+ ```bash
396
+ $ pytest tests/<TEST_TO_RUN>.py
397
+ ```
398
+
399
+ Before you run the tests, please make sure you install the dependencies required for testing. You can do so
400
+ with this command:
401
+
402
+ ```bash
403
+ $ pip install -e ".[test]"
404
+ ```
405
+
406
+ You can also run the full test suite with the following command, but it takes
407
+ a beefy machine to produce a result in a decent amount of time now that
408
+ Diffusers has grown a lot. Here is the command for it:
409
+
410
+ ```bash
411
+ $ make test
412
+ ```
413
+
414
+ 🧨 Diffusers relies on `ruff` and `isort` to format its source code
415
+ consistently. After you make changes, apply automatic style corrections and code verifications
416
+ that can't be automated in one go with:
417
+
418
+ ```bash
419
+ $ make style
420
+ ```
421
+
422
+ 🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
423
+ control runs in CI, however, you can also run the same checks with:
424
+
425
+ ```bash
426
+ $ make quality
427
+ ```
428
+
429
+ Once you're happy with your changes, add changed files using `git add` and
430
+ make a commit with `git commit` to record your changes locally:
431
+
432
+ ```bash
433
+ $ git add modified_file.py
434
+ $ git commit -m "A descriptive message about your changes."
435
+ ```
436
+
437
+ It is a good idea to sync your copy of the code with the original
438
+ repository regularly. This way you can quickly account for changes:
439
+
440
+ ```bash
441
+ $ git pull upstream main
442
+ ```
443
+
444
+ Push the changes to your account using:
445
+
446
+ ```bash
447
+ $ git push -u origin a-descriptive-name-for-my-changes
448
+ ```
449
+
450
+ 6. Once you are satisfied, go to the
451
+ webpage of your fork on GitHub. Click on 'Pull request' to send your changes
452
+ to the project maintainers for review.
453
+
454
+ 7. It's ok if maintainers ask you for changes. It happens to core contributors
455
+ too! So everyone can see the changes in the Pull request, work in your local
456
+ branch and push the changes to your fork. They will automatically appear in
457
+ the pull request.
458
+
459
+ ### Tests
460
+
461
+ An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
462
+ the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
463
+
464
+ We like `pytest` and `pytest-xdist` because it's faster. From the root of the
465
+ repository, here's how to run tests with `pytest` for the library:
466
+
467
+ ```bash
468
+ $ python -m pytest -n auto --dist=loadfile -s -v ./tests/
469
+ ```
470
+
471
+ In fact, that's how `make test` is implemented!
472
+
473
+ You can specify a smaller set of tests in order to test only the feature
474
+ you're working on.
475
+
476
+ By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
477
+ `yes` to run them. This will download many gigabytes of models — make sure you
478
+ have enough disk space and a good Internet connection, or a lot of patience!
479
+
480
+ ```bash
481
+ $ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
482
+ ```
483
+
484
+ `unittest` is fully supported, here's how to run tests with it:
485
+
486
+ ```bash
487
+ $ python -m unittest discover -s tests -t . -v
488
+ $ python -m unittest discover -s examples -t examples -v
489
+ ```
490
+
491
+ ### Syncing forked main with upstream (HuggingFace) main
492
+
493
+ To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
494
+ when syncing the main branch of a forked repository, please, follow these steps:
495
+ 1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
496
+ 2. If a PR is absolutely necessary, use the following steps after checking out your branch:
497
+ ```bash
498
+ $ git checkout -b your-branch-for-syncing
499
+ $ git pull --squash --no-commit upstream main
500
+ $ git commit -m '<your message without GitHub references>'
501
+ $ git push --set-upstream origin your-branch-for-syncing
502
+ ```
503
+
504
+ ### Style guide
505
+
506
+ For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
diffusers/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
diffusers/MANIFEST.in ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ include LICENSE
2
+ include src/diffusers/utils/model_card_template.md
diffusers/Makefile ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
2
+
3
+ # make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
4
+ export PYTHONPATH = src
5
+
6
+ check_dirs := examples scripts src tests utils benchmarks
7
+
8
+ modified_only_fixup:
9
+ $(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
10
+ @if test -n "$(modified_py_files)"; then \
11
+ echo "Checking/fixing $(modified_py_files)"; \
12
+ ruff check $(modified_py_files) --fix; \
13
+ ruff format $(modified_py_files);\
14
+ else \
15
+ echo "No library .py files were modified"; \
16
+ fi
17
+
18
+ # Update src/diffusers/dependency_versions_table.py
19
+
20
+ deps_table_update:
21
+ @python setup.py deps_table_update
22
+
23
+ deps_table_check_updated:
24
+ @md5sum src/diffusers/dependency_versions_table.py > md5sum.saved
25
+ @python setup.py deps_table_update
26
+ @md5sum -c --quiet md5sum.saved || (printf "\nError: the version dependency table is outdated.\nPlease run 'make fixup' or 'make style' and commit the changes.\n\n" && exit 1)
27
+ @rm md5sum.saved
28
+
29
+ # autogenerating code
30
+
31
+ autogenerate_code: deps_table_update
32
+
33
+ # Check that the repo is in a good state
34
+
35
+ repo-consistency:
36
+ python utils/check_dummies.py
37
+ python utils/check_repo.py
38
+ python utils/check_inits.py
39
+
40
+ # this target runs checks on all files
41
+
42
+ quality:
43
+ ruff check $(check_dirs) setup.py
44
+ ruff format --check $(check_dirs) setup.py
45
+ doc-builder style src/diffusers docs/source --max_len 119 --check_only
46
+ python utils/check_doc_toc.py
47
+
48
+ # Format source code automatically and check is there are any problems left that need manual fixing
49
+
50
+ extra_style_checks:
51
+ python utils/custom_init_isort.py
52
+ python utils/check_doc_toc.py --fix_and_overwrite
53
+
54
+ # this target runs checks on all files and potentially modifies some of them
55
+
56
+ style:
57
+ ruff check $(check_dirs) setup.py --fix
58
+ ruff format $(check_dirs) setup.py
59
+ doc-builder style src/diffusers docs/source --max_len 119
60
+ ${MAKE} autogenerate_code
61
+ ${MAKE} extra_style_checks
62
+
63
+ # Super fast fix and check target that only works on relevant modified files since the branch was made
64
+
65
+ fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
66
+
67
+ # Make marked copies of snippets of codes conform to the original
68
+
69
+ fix-copies:
70
+ python utils/check_copies.py --fix_and_overwrite
71
+ python utils/check_dummies.py --fix_and_overwrite
72
+
73
+ # Run tests for the library
74
+
75
+ test:
76
+ python -m pytest -n auto --dist=loadfile -s -v ./tests/
77
+
78
+ # Run tests for examples
79
+
80
+ test-examples:
81
+ python -m pytest -n auto --dist=loadfile -s -v ./examples/
82
+
83
+
84
+ # Release stuff
85
+
86
+ pre-release:
87
+ python utils/release.py
88
+
89
+ pre-patch:
90
+ python utils/release.py --patch
91
+
92
+ post-release:
93
+ python utils/release.py --post_release
94
+
95
+ post-patch:
96
+ python utils/release.py --post_release --patch
diffusers/PHILOSOPHY.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!--Copyright 2024 The HuggingFace Team. All rights reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4
+ the License. You may obtain a copy of the License at
5
+
6
+ http://www.apache.org/licenses/LICENSE-2.0
7
+
8
+ Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9
+ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
+ specific language governing permissions and limitations under the License.
11
+ -->
12
+
13
+ # Philosophy
14
+
15
+ 🧨 Diffusers provides **state-of-the-art** pretrained diffusion models across multiple modalities.
16
+ Its purpose is to serve as a **modular toolbox** for both inference and training.
17
+
18
+ We aim to build a library that stands the test of time and therefore take API design very seriously.
19
+
20
+ In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefore, most of our design choices are based on [PyTorch's Design Principles](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy). Let's go over the most important ones:
21
+
22
+ ## Usability over Performance
23
+
24
+ - While Diffusers has many built-in performance-enhancing features (see [Memory and Speed](https://huggingface.co/docs/diffusers/optimization/fp16)), models are always loaded with the highest precision and lowest optimization. Therefore, by default diffusion pipelines are always instantiated on CPU with float32 precision if not otherwise defined by the user. This ensures usability across different platforms and accelerators and means that no complex installations are required to run the library.
25
+ - Diffusers aims to be a **light-weight** package and therefore has very few required dependencies, but many soft dependencies that can improve performance (such as `accelerate`, `safetensors`, `onnx`, etc...). We strive to keep the library as lightweight as possible so that it can be added without much concern as a dependency on other packages.
26
+ - Diffusers prefers simple, self-explainable code over condensed, magic code. This means that short-hand code syntaxes such as lambda functions, and advanced PyTorch operators are often not desired.
27
+
28
+ ## Simple over easy
29
+
30
+ As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
31
+ - We follow PyTorch's API with methods like [`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to) to let the user handle device management.
32
+ - Raising concise error messages is preferred to silently correct erroneous input. Diffusers aims at teaching the user, rather than making the library as easy to use as possible.
33
+ - Complex model vs. scheduler logic is exposed instead of magically handled inside. Schedulers/Samplers are separated from diffusion models with minimal dependencies on each other. This forces the user to write the unrolled denoising loop. However, the separation allows for easier debugging and gives the user more control over adapting the denoising process or switching out diffusion models or schedulers.
34
+ - Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the UNet, and the variational autoencoder, each has their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. DreamBooth or Textual Inversion training
35
+ is very simple thanks to Diffusers' ability to separate single components of the diffusion pipeline.
36
+
37
+ ## Tweakable, contributor-friendly over abstraction
38
+
39
+ For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
40
+ In short, just like Transformers does for modeling files, Diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
41
+ Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
42
+ **However**, this design has proven to be extremely successful for Transformers and makes a lot of sense for community-driven, open-source machine learning libraries because:
43
+ - Machine Learning is an extremely fast-moving field in which paradigms, model architectures, and algorithms are changing rapidly, which therefore makes it very difficult to define long-lasting code abstractions.
44
+ - Machine Learning practitioners like to be able to quickly tweak existing code for ideation and research and therefore prefer self-contained code over one that contains many abstractions.
45
+ - Open-source libraries rely on community contributions and therefore must build a library that is easy to contribute to. The more abstract the code, the more dependencies, the harder to read, and the harder to contribute to. Contributors simply stop contributing to very abstract libraries out of fear of breaking vital functionality. If contributing to a library cannot break other fundamental code, not only is it more inviting for potential new contributors, but it is also easier to review and contribute to multiple parts in parallel.
46
+
47
+ At Hugging Face, we call this design the **single-file policy** which means that almost all of the code of a certain class should be written in a single, self-contained file. To read more about the philosophy, you can have a look
48
+ at [this blog post](https://huggingface.co/blog/transformers-design-philosophy).
49
+
50
+ In Diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
51
+ as [DDPM](https://huggingface.co/docs/diffusers/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [unCLIP (DALL·E 2)](https://huggingface.co/docs/diffusers/api/pipelines/unclip) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models/unet2d-cond).
52
+
53
+ Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
54
+ We try to apply these design principles consistently across the library. Nevertheless, there are some minor exceptions to the philosophy or some unlucky design choices. If you have feedback regarding the design, we would ❤️ to hear it [directly on GitHub](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
55
+
56
+ ## Design Philosophy in Details
57
+
58
+ Now, let's look a bit into the nitty-gritty details of the design philosophy. Diffusers essentially consists of three major classes: [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines), [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models), and [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
59
+ Let's walk through more detailed design decisions for each class.
60
+
61
+ ### Pipelines
62
+
63
+ Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
64
+
65
+ The following design principles are followed:
66
+ - Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as it’s done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
67
+ - Pipelines all inherit from [`DiffusionPipeline`].
68
+ - Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
69
+ - Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
70
+ - Pipelines should be used **only** for inference.
71
+ - Pipelines should be very readable, self-explanatory, and easy to tweak.
72
+ - Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
73
+ - Pipelines are **not** intended to be feature-complete user interfaces. For feature-complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
74
+ - Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
75
+ - Pipelines should be named after the task they are intended to solve.
76
+ - In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
77
+
78
+ ### Models
79
+
80
+ Models are designed as configurable toolboxes that are natural extensions of [PyTorch's Module class](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). They only partly follow the **single-file policy**.
81
+
82
+ The following design principles are followed:
83
+ - Models correspond to **a type of model architecture**. *E.g.* the [`UNet2DConditionModel`] class is used for all UNet variations that expect 2D image inputs and are conditioned on some context.
84
+ - All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unets/unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py), [`transformers/transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_2d.py), etc...
85
+ - Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modeling files and shows that models do not really follow the single-file policy.
86
+ - Models intend to expose complexity, just like PyTorch's `Module` class, and give clear error messages.
87
+ - Models all inherit from `ModelMixin` and `ConfigMixin`.
88
+ - Models can be optimized for performance when it doesn’t demand major code changes, keep backward compatibility, and give significant memory or compute gain.
89
+ - Models should by default have the highest precision and lowest performance setting.
90
+ - To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
91
+ - Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
92
+ - The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
93
+ readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
94
+
95
+ ### Schedulers
96
+
97
+ Schedulers are responsible to guide the denoising process for inference as well as to define a noise schedule for training. They are designed as individual classes with loadable configuration files and strongly follow the **single-file policy**.
98
+
99
+ The following design principles are followed:
100
+ - All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
101
+ - Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
102
+ - One scheduler Python file corresponds to one scheduler algorithm (as might be defined in a paper).
103
+ - If schedulers share similar functionalities, we can make use of the `# Copied from` mechanism.
104
+ - Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
105
+ - Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./docs/source/en/using-diffusers/schedulers.md).
106
+ - Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
107
+ - Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
108
+ - The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
109
+ - Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
110
+ - In almost all cases, novel schedulers shall be implemented in a new scheduling file.
diffusers/README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!---
2
+ Copyright 2022 - The HuggingFace Team. All rights reserved.
3
+
4
+ Licensed under the Apache License, Version 2.0 (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ -->
16
+
17
+ <p align="center">
18
+ <br>
19
+ <img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
20
+ <br>
21
+ <p>
22
+ <p align="center">
23
+ <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"></a>
24
+ <a href="https://github.com/huggingface/diffusers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"></a>
25
+ <a href="https://pepy.tech/project/diffusers"><img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month"></a>
26
+ <a href="CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg"></a>
27
+ <a href="https://twitter.com/diffuserslib"><img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib"></a>
28
+ </p>
29
+
30
+ 🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
31
+
32
+ 🤗 Diffusers offers three core components:
33
+
34
+ - State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
35
+ - Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
36
+ - Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
37
+
38
+ ## Installation
39
+
40
+ We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
41
+
42
+ ### PyTorch
43
+
44
+ With `pip` (official package):
45
+
46
+ ```bash
47
+ pip install --upgrade diffusers[torch]
48
+ ```
49
+
50
+ With `conda` (maintained by the community):
51
+
52
+ ```sh
53
+ conda install -c conda-forge diffusers
54
+ ```
55
+
56
+ ### Flax
57
+
58
+ With `pip` (official package):
59
+
60
+ ```bash
61
+ pip install --upgrade diffusers[flax]
62
+ ```
63
+
64
+ ### Apple Silicon (M1/M2) support
65
+
66
+ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.
67
+
68
+ ## Quickstart
69
+
70
+ Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 30,000+ checkpoints):
71
+
72
+ ```python
73
+ from diffusers import DiffusionPipeline
74
+ import torch
75
+
76
+ pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
77
+ pipeline.to("cuda")
78
+ pipeline("An image of a squirrel in Picasso style").images[0]
79
+ ```
80
+
81
+ You can also dig into the models and schedulers toolbox to build your own diffusion system:
82
+
83
+ ```python
84
+ from diffusers import DDPMScheduler, UNet2DModel
85
+ from PIL import Image
86
+ import torch
87
+
88
+ scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
89
+ model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
90
+ scheduler.set_timesteps(50)
91
+
92
+ sample_size = model.config.sample_size
93
+ noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
94
+ input = noise
95
+
96
+ for t in scheduler.timesteps:
97
+ with torch.no_grad():
98
+ noisy_residual = model(input, t).sample
99
+ prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
100
+ input = prev_noisy_sample
101
+
102
+ image = (input / 2 + 0.5).clamp(0, 1)
103
+ image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
104
+ image = Image.fromarray((image * 255).round().astype("uint8"))
105
+ image
106
+ ```
107
+
108
+ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today!
109
+
110
+ ## How to navigate the documentation
111
+
112
+ | **Documentation** | **What can I learn?** |
113
+ |---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
114
+ | [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
115
+ | [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
116
+ | [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
117
+ | [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
118
+ | [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
119
+ ## Contribution
120
+
121
+ We ❤️ contributions from the open-source community!
122
+ If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
123
+ You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
124
+ - See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
125
+ - See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
126
+ - See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
127
+
128
+ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.
129
+
130
+
131
+ ## Popular Tasks & Pipelines
132
+
133
+ <table>
134
+ <tr>
135
+ <th>Task</th>
136
+ <th>Pipeline</th>
137
+ <th>🤗 Hub</th>
138
+ </tr>
139
+ <tr style="border-top: 2px solid black">
140
+ <td>Unconditional Image Generation</td>
141
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
142
+ <td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
143
+ </tr>
144
+ <tr style="border-top: 2px solid black">
145
+ <td>Text-to-Image</td>
146
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
147
+ <td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
148
+ </tr>
149
+ <tr>
150
+ <td>Text-to-Image</td>
151
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td>
152
+ <td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
153
+ </tr>
154
+ <tr>
155
+ <td>Text-to-Image</td>
156
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td>
157
+ <td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
158
+ </tr>
159
+ <tr>
160
+ <td>Text-to-Image</td>
161
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td>
162
+ <td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td>
163
+ </tr>
164
+ <tr style="border-top: 2px solid black">
165
+ <td>Text-guided Image-to-Image</td>
166
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td>
167
+ <td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
168
+ </tr>
169
+ <tr>
170
+ <td>Text-guided Image-to-Image</td>
171
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td>
172
+ <td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
173
+ </tr>
174
+ <tr>
175
+ <td>Text-guided Image-to-Image</td>
176
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
177
+ <td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
178
+ </tr>
179
+ <tr style="border-top: 2px solid black">
180
+ <td>Text-guided Image Inpainting</td>
181
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
182
+ <td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
183
+ </tr>
184
+ <tr style="border-top: 2px solid black">
185
+ <td>Image Variation</td>
186
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
187
+ <td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
188
+ </tr>
189
+ <tr style="border-top: 2px solid black">
190
+ <td>Super Resolution</td>
191
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
192
+ <td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
193
+ </tr>
194
+ <tr>
195
+ <td>Super Resolution</td>
196
+ <td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
197
+ <td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
198
+ </tr>
199
+ </table>
200
+
201
+ ## Popular libraries using 🧨 Diffusers
202
+
203
+ - https://github.com/microsoft/TaskMatrix
204
+ - https://github.com/invoke-ai/InvokeAI
205
+ - https://github.com/InstantID/InstantID
206
+ - https://github.com/apple/ml-stable-diffusion
207
+ - https://github.com/Sanster/lama-cleaner
208
+ - https://github.com/IDEA-Research/Grounded-Segment-Anything
209
+ - https://github.com/ashawkey/stable-dreamfusion
210
+ - https://github.com/deep-floyd/IF
211
+ - https://github.com/bentoml/BentoML
212
+ - https://github.com/bmaltais/kohya_ss
213
+ - +14,000 other amazing GitHub repositories 💪
214
+
215
+ Thank you for using us ❤️.
216
+
217
+ ## Credits
218
+
219
+ This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
220
+
221
+ - @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
222
+ - @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
223
+ - @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim)
224
+ - @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)
225
+
226
+ We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
227
+
228
+ ## Citation
229
+
230
+ ```bibtex
231
+ @misc{von-platen-etal-2022-diffusers,
232
+ author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
233
+ title = {Diffusers: State-of-the-art diffusion models},
234
+ year = {2022},
235
+ publisher = {GitHub},
236
+ journal = {GitHub repository},
237
+ howpublished = {\url{https://github.com/huggingface/diffusers}}
238
+ }
239
+ ```
diffusers/_typos.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Files for typos
2
+ # Instruction: https://github.com/marketplace/actions/typos-action#getting-started
3
+
4
+ [default.extend-identifiers]
5
+
6
+ [default.extend-words]
7
+ NIN="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py
8
+ nd="np" # nd may be np (numpy)
9
+ parms="parms" # parms is used in scripts/convert_original_stable_diffusion_to_diffusers.py
10
+
11
+
12
+ [files]
13
+ extend-exclude = ["_typos.toml"]
diffusers/benchmarks/base_classes.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ import torch
5
+
6
+ from diffusers import (
7
+ AutoPipelineForImage2Image,
8
+ AutoPipelineForInpainting,
9
+ AutoPipelineForText2Image,
10
+ ControlNetModel,
11
+ LCMScheduler,
12
+ StableDiffusionAdapterPipeline,
13
+ StableDiffusionControlNetPipeline,
14
+ StableDiffusionXLAdapterPipeline,
15
+ StableDiffusionXLControlNetPipeline,
16
+ T2IAdapter,
17
+ WuerstchenCombinedPipeline,
18
+ )
19
+ from diffusers.utils import load_image
20
+
21
+
22
+ sys.path.append(".")
23
+
24
+ from utils import ( # noqa: E402
25
+ BASE_PATH,
26
+ PROMPT,
27
+ BenchmarkInfo,
28
+ benchmark_fn,
29
+ bytes_to_giga_bytes,
30
+ flush,
31
+ generate_csv_dict,
32
+ write_to_csv,
33
+ )
34
+
35
+
36
+ RESOLUTION_MAPPING = {
37
+ "runwayml/stable-diffusion-v1-5": (512, 512),
38
+ "lllyasviel/sd-controlnet-canny": (512, 512),
39
+ "diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
40
+ "TencentARC/t2iadapter_canny_sd14v1": (512, 512),
41
+ "TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024),
42
+ "stabilityai/stable-diffusion-2-1": (768, 768),
43
+ "stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024),
44
+ "stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024),
45
+ "stabilityai/sdxl-turbo": (512, 512),
46
+ }
47
+
48
+
49
+ class BaseBenchmak:
50
+ pipeline_class = None
51
+
52
+ def __init__(self, args):
53
+ super().__init__()
54
+
55
+ def run_inference(self, args):
56
+ raise NotImplementedError
57
+
58
+ def benchmark(self, args):
59
+ raise NotImplementedError
60
+
61
+ def get_result_filepath(self, args):
62
+ pipeline_class_name = str(self.pipe.__class__.__name__)
63
+ name = (
64
+ args.ckpt.replace("/", "_")
65
+ + "_"
66
+ + pipeline_class_name
67
+ + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
68
+ )
69
+ filepath = os.path.join(BASE_PATH, name)
70
+ return filepath
71
+
72
+
73
+ class TextToImageBenchmark(BaseBenchmak):
74
+ pipeline_class = AutoPipelineForText2Image
75
+
76
+ def __init__(self, args):
77
+ pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
78
+ pipe = pipe.to("cuda")
79
+
80
+ if args.run_compile:
81
+ if not isinstance(pipe, WuerstchenCombinedPipeline):
82
+ pipe.unet.to(memory_format=torch.channels_last)
83
+ print("Run torch compile")
84
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
85
+
86
+ if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None:
87
+ pipe.movq.to(memory_format=torch.channels_last)
88
+ pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True)
89
+ else:
90
+ print("Run torch compile")
91
+ pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True)
92
+ pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True)
93
+
94
+ pipe.set_progress_bar_config(disable=True)
95
+ self.pipe = pipe
96
+
97
+ def run_inference(self, pipe, args):
98
+ _ = pipe(
99
+ prompt=PROMPT,
100
+ num_inference_steps=args.num_inference_steps,
101
+ num_images_per_prompt=args.batch_size,
102
+ )
103
+
104
+ def benchmark(self, args):
105
+ flush()
106
+
107
+ print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
108
+
109
+ time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
110
+ memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
111
+ benchmark_info = BenchmarkInfo(time=time, memory=memory)
112
+
113
+ pipeline_class_name = str(self.pipe.__class__.__name__)
114
+ flush()
115
+ csv_dict = generate_csv_dict(
116
+ pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info
117
+ )
118
+ filepath = self.get_result_filepath(args)
119
+ write_to_csv(filepath, csv_dict)
120
+ print(f"Logs written to: {filepath}")
121
+ flush()
122
+
123
+
124
+ class TurboTextToImageBenchmark(TextToImageBenchmark):
125
+ def __init__(self, args):
126
+ super().__init__(args)
127
+
128
+ def run_inference(self, pipe, args):
129
+ _ = pipe(
130
+ prompt=PROMPT,
131
+ num_inference_steps=args.num_inference_steps,
132
+ num_images_per_prompt=args.batch_size,
133
+ guidance_scale=0.0,
134
+ )
135
+
136
+
137
+ class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
138
+ lora_id = "latent-consistency/lcm-lora-sdxl"
139
+
140
+ def __init__(self, args):
141
+ super().__init__(args)
142
+ self.pipe.load_lora_weights(self.lora_id)
143
+ self.pipe.fuse_lora()
144
+ self.pipe.unload_lora_weights()
145
+ self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
146
+
147
+ def get_result_filepath(self, args):
148
+ pipeline_class_name = str(self.pipe.__class__.__name__)
149
+ name = (
150
+ self.lora_id.replace("/", "_")
151
+ + "_"
152
+ + pipeline_class_name
153
+ + f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
154
+ )
155
+ filepath = os.path.join(BASE_PATH, name)
156
+ return filepath
157
+
158
+ def run_inference(self, pipe, args):
159
+ _ = pipe(
160
+ prompt=PROMPT,
161
+ num_inference_steps=args.num_inference_steps,
162
+ num_images_per_prompt=args.batch_size,
163
+ guidance_scale=1.0,
164
+ )
165
+
166
+ def benchmark(self, args):
167
+ flush()
168
+
169
+ print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
170
+
171
+ time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
172
+ memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
173
+ benchmark_info = BenchmarkInfo(time=time, memory=memory)
174
+
175
+ pipeline_class_name = str(self.pipe.__class__.__name__)
176
+ flush()
177
+ csv_dict = generate_csv_dict(
178
+ pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info
179
+ )
180
+ filepath = self.get_result_filepath(args)
181
+ write_to_csv(filepath, csv_dict)
182
+ print(f"Logs written to: {filepath}")
183
+ flush()
184
+
185
+
186
+ class ImageToImageBenchmark(TextToImageBenchmark):
187
+ pipeline_class = AutoPipelineForImage2Image
188
+ url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg"
189
+ image = load_image(url).convert("RGB")
190
+
191
+ def __init__(self, args):
192
+ super().__init__(args)
193
+ self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
194
+
195
+ def run_inference(self, pipe, args):
196
+ _ = pipe(
197
+ prompt=PROMPT,
198
+ image=self.image,
199
+ num_inference_steps=args.num_inference_steps,
200
+ num_images_per_prompt=args.batch_size,
201
+ )
202
+
203
+
204
+ class TurboImageToImageBenchmark(ImageToImageBenchmark):
205
+ def __init__(self, args):
206
+ super().__init__(args)
207
+
208
+ def run_inference(self, pipe, args):
209
+ _ = pipe(
210
+ prompt=PROMPT,
211
+ image=self.image,
212
+ num_inference_steps=args.num_inference_steps,
213
+ num_images_per_prompt=args.batch_size,
214
+ guidance_scale=0.0,
215
+ strength=0.5,
216
+ )
217
+
218
+
219
+ class InpaintingBenchmark(ImageToImageBenchmark):
220
+ pipeline_class = AutoPipelineForInpainting
221
+ mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png"
222
+ mask = load_image(mask_url).convert("RGB")
223
+
224
+ def __init__(self, args):
225
+ super().__init__(args)
226
+ self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
227
+ self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt])
228
+
229
+ def run_inference(self, pipe, args):
230
+ _ = pipe(
231
+ prompt=PROMPT,
232
+ image=self.image,
233
+ mask_image=self.mask,
234
+ num_inference_steps=args.num_inference_steps,
235
+ num_images_per_prompt=args.batch_size,
236
+ )
237
+
238
+
239
+ class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
240
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png"
241
+ image = load_image(url)
242
+
243
+ def __init__(self, args):
244
+ pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda")
245
+ pipe.load_ip_adapter(
246
+ args.ip_adapter_id[0],
247
+ subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models",
248
+ weight_name=args.ip_adapter_id[1],
249
+ )
250
+
251
+ if args.run_compile:
252
+ pipe.unet.to(memory_format=torch.channels_last)
253
+ print("Run torch compile")
254
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
255
+
256
+ pipe.set_progress_bar_config(disable=True)
257
+ self.pipe = pipe
258
+
259
+ def run_inference(self, pipe, args):
260
+ _ = pipe(
261
+ prompt=PROMPT,
262
+ ip_adapter_image=self.image,
263
+ num_inference_steps=args.num_inference_steps,
264
+ num_images_per_prompt=args.batch_size,
265
+ )
266
+
267
+
268
+ class ControlNetBenchmark(TextToImageBenchmark):
269
+ pipeline_class = StableDiffusionControlNetPipeline
270
+ aux_network_class = ControlNetModel
271
+ root_ckpt = "runwayml/stable-diffusion-v1-5"
272
+
273
+ url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
274
+ image = load_image(url).convert("RGB")
275
+
276
+ def __init__(self, args):
277
+ aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
278
+ pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16)
279
+ pipe = pipe.to("cuda")
280
+
281
+ pipe.set_progress_bar_config(disable=True)
282
+ self.pipe = pipe
283
+
284
+ if args.run_compile:
285
+ pipe.unet.to(memory_format=torch.channels_last)
286
+ pipe.controlnet.to(memory_format=torch.channels_last)
287
+
288
+ print("Run torch compile")
289
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
290
+ pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
291
+
292
+ self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
293
+
294
+ def run_inference(self, pipe, args):
295
+ _ = pipe(
296
+ prompt=PROMPT,
297
+ image=self.image,
298
+ num_inference_steps=args.num_inference_steps,
299
+ num_images_per_prompt=args.batch_size,
300
+ )
301
+
302
+
303
+ class ControlNetSDXLBenchmark(ControlNetBenchmark):
304
+ pipeline_class = StableDiffusionXLControlNetPipeline
305
+ root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
306
+
307
+ def __init__(self, args):
308
+ super().__init__(args)
309
+
310
+
311
+ class T2IAdapterBenchmark(ControlNetBenchmark):
312
+ pipeline_class = StableDiffusionAdapterPipeline
313
+ aux_network_class = T2IAdapter
314
+ root_ckpt = "CompVis/stable-diffusion-v1-4"
315
+
316
+ url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
317
+ image = load_image(url).convert("L")
318
+
319
+ def __init__(self, args):
320
+ aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
321
+ pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16)
322
+ pipe = pipe.to("cuda")
323
+
324
+ pipe.set_progress_bar_config(disable=True)
325
+ self.pipe = pipe
326
+
327
+ if args.run_compile:
328
+ pipe.unet.to(memory_format=torch.channels_last)
329
+ pipe.adapter.to(memory_format=torch.channels_last)
330
+
331
+ print("Run torch compile")
332
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
333
+ pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True)
334
+
335
+ self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
336
+
337
+
338
+ class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark):
339
+ pipeline_class = StableDiffusionXLAdapterPipeline
340
+ root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
341
+
342
+ url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png"
343
+ image = load_image(url)
344
+
345
+ def __init__(self, args):
346
+ super().__init__(args)
diffusers/benchmarks/benchmark_controlnet.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+
4
+
5
+ sys.path.append(".")
6
+ from base_classes import ControlNetBenchmark, ControlNetSDXLBenchmark # noqa: E402
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument(
12
+ "--ckpt",
13
+ type=str,
14
+ default="lllyasviel/sd-controlnet-canny",
15
+ choices=["lllyasviel/sd-controlnet-canny", "diffusers/controlnet-canny-sdxl-1.0"],
16
+ )
17
+ parser.add_argument("--batch_size", type=int, default=1)
18
+ parser.add_argument("--num_inference_steps", type=int, default=50)
19
+ parser.add_argument("--model_cpu_offload", action="store_true")
20
+ parser.add_argument("--run_compile", action="store_true")
21
+ args = parser.parse_args()
22
+
23
+ benchmark_pipe = (
24
+ ControlNetBenchmark(args) if args.ckpt == "lllyasviel/sd-controlnet-canny" else ControlNetSDXLBenchmark(args)
25
+ )
26
+ benchmark_pipe.benchmark(args)
diffusers/benchmarks/benchmark_ip_adapters.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+
4
+
5
+ sys.path.append(".")
6
+ from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
7
+
8
+
9
+ IP_ADAPTER_CKPTS = {
10
+ "runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
11
+ "stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
12
+ }
13
+
14
+
15
+ if __name__ == "__main__":
16
+ parser = argparse.ArgumentParser()
17
+ parser.add_argument(
18
+ "--ckpt",
19
+ type=str,
20
+ default="runwayml/stable-diffusion-v1-5",
21
+ choices=list(IP_ADAPTER_CKPTS.keys()),
22
+ )
23
+ parser.add_argument("--batch_size", type=int, default=1)
24
+ parser.add_argument("--num_inference_steps", type=int, default=50)
25
+ parser.add_argument("--model_cpu_offload", action="store_true")
26
+ parser.add_argument("--run_compile", action="store_true")
27
+ args = parser.parse_args()
28
+
29
+ args.ip_adapter_id = IP_ADAPTER_CKPTS[args.ckpt]
30
+ benchmark_pipe = IPAdapterTextToImageBenchmark(args)
31
+ args.ckpt = f"{args.ckpt} (IP-Adapter)"
32
+ benchmark_pipe.benchmark(args)
diffusers/benchmarks/benchmark_sd_img.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+
4
+
5
+ sys.path.append(".")
6
+ from base_classes import ImageToImageBenchmark, TurboImageToImageBenchmark # noqa: E402
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument(
12
+ "--ckpt",
13
+ type=str,
14
+ default="runwayml/stable-diffusion-v1-5",
15
+ choices=[
16
+ "runwayml/stable-diffusion-v1-5",
17
+ "stabilityai/stable-diffusion-2-1",
18
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
19
+ "stabilityai/sdxl-turbo",
20
+ ],
21
+ )
22
+ parser.add_argument("--batch_size", type=int, default=1)
23
+ parser.add_argument("--num_inference_steps", type=int, default=50)
24
+ parser.add_argument("--model_cpu_offload", action="store_true")
25
+ parser.add_argument("--run_compile", action="store_true")
26
+ args = parser.parse_args()
27
+
28
+ benchmark_pipe = ImageToImageBenchmark(args) if "turbo" not in args.ckpt else TurboImageToImageBenchmark(args)
29
+ benchmark_pipe.benchmark(args)
diffusers/benchmarks/benchmark_sd_inpainting.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+
4
+
5
+ sys.path.append(".")
6
+ from base_classes import InpaintingBenchmark # noqa: E402
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument(
12
+ "--ckpt",
13
+ type=str,
14
+ default="runwayml/stable-diffusion-v1-5",
15
+ choices=[
16
+ "runwayml/stable-diffusion-v1-5",
17
+ "stabilityai/stable-diffusion-2-1",
18
+ "stabilityai/stable-diffusion-xl-base-1.0",
19
+ ],
20
+ )
21
+ parser.add_argument("--batch_size", type=int, default=1)
22
+ parser.add_argument("--num_inference_steps", type=int, default=50)
23
+ parser.add_argument("--model_cpu_offload", action="store_true")
24
+ parser.add_argument("--run_compile", action="store_true")
25
+ args = parser.parse_args()
26
+
27
+ benchmark_pipe = InpaintingBenchmark(args)
28
+ benchmark_pipe.benchmark(args)