simenaabol's picture
update model card README.md
5c132c1
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: norbert2_sentiment_norec_to_gpu_3000_rader_2
    results: []

norbert2_sentiment_norec_to_gpu_3000_rader_2

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6214
  • Compute Metrics: :
  • Accuracy: 0.69
  • Balanced Accuracy: 0.5
  • F1 Score: 0.8166
  • Recall: 1.0
  • Precision: 0.69

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
No log 0.85 5 0.6279 : 0.6827 0.4994 0.8102 0.9816 0.6897
0.719 1.85 10 0.6217 : 0.6897 0.4998 0.8163 0.9995 0.6899
0.719 2.85 15 0.6225 : 0.69 0.5 0.8166 1.0 0.69
0.7646 3.85 20 0.6186 : 0.69 0.5 0.8166 1.0 0.69
0.7646 4.85 25 0.6214 : 0.69 0.5 0.8166 1.0 0.69

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2