Update README.md
Browse files
README.md
CHANGED
@@ -1,60 +1,56 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
base_model:
|
4 |
-
- google/vit-base-patch16-224
|
5 |
---
|
6 |
|
7 |
-
# Model Card for
|
8 |
-
|
9 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
|
|
|
11 |
|
|
|
12 |
|
13 |
## Model Details
|
14 |
-
VIT model used for Pokemon type classification, also used in my CS 310 Final Project
|
15 |
-
|
16 |
-
### Model Description
|
17 |
-
|
18 |
-
<!-- Provide a longer summary of what this model is. -->
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
- **Funded by [optional]:** [More Information Needed]
|
24 |
-
- **Shared by [optional]:** [More Information Needed]
|
25 |
-
- **Model type:** Vision Transformer for Regression
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
Use the code below to get started with the model
|
30 |
|
|
|
31 |
import torch
|
32 |
from PIL import Image
|
33 |
import torchvision.transforms as transforms
|
34 |
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
35 |
|
|
|
36 |
hf_model = ViTForImageClassification.from_pretrained("NP-NP/pokemon_model")
|
37 |
hf_feature_extractor = ViTFeatureExtractor.from_pretrained("NP-NP/pokemon_model")
|
38 |
|
|
|
39 |
transform = transforms.Compose([
|
40 |
transforms.Resize((224, 224)),
|
41 |
transforms.ToTensor(),
|
42 |
transforms.Normalize(mean=hf_feature_extractor.image_mean, std=hf_feature_extractor.image_std)
|
43 |
])
|
44 |
|
|
|
45 |
labels_dict = {
|
46 |
'Grass': 0, 'Fire': 1, 'Water': 2, 'Bug': 3, 'Normal': 4, 'Poison': 5, 'Electric': 6,
|
47 |
'Ground': 7, 'Fairy': 8, 'Fighting': 9, 'Psychic': 10, 'Rock': 11, 'Ghost': 12,
|
48 |
'Ice': 13, 'Dragon': 14, 'Dark': 15, 'Steel': 16, 'Flying': 17
|
49 |
}
|
50 |
-
|
51 |
idx_to_label = {v: k for k, v in labels_dict.items()}
|
52 |
|
|
|
53 |
image_path = "cute-pikachu-flowers-pokemon-desktop-wallpaper.jpg"
|
54 |
image = Image.open(image_path).convert("RGB")
|
55 |
-
|
56 |
input_tensor = transform(image).unsqueeze(0) # shape: (1, 3, 224, 224)
|
57 |
|
|
|
58 |
hf_model.eval()
|
59 |
with torch.no_grad():
|
60 |
outputs = hf_model(input_tensor)
|
@@ -63,6 +59,7 @@ with torch.no_grad():
|
|
63 |
|
64 |
predicted_class = idx_to_label[predicted_class_idx]
|
65 |
print("Predicted Pokémon type:", predicted_class)
|
|
|
66 |
|
67 |
|
68 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
base_model:
|
4 |
+
- google/vit-base-patch16-224
|
5 |
---
|
6 |
|
7 |
+
# Model Card for Pokémon Type Classification
|
|
|
|
|
8 |
|
9 |
+
This model leverages a Vision Transformer (ViT) to classify Pokémon images into 18 different types.
|
10 |
|
11 |
+
It was developed as part of the CS 310 Final Project and trained on a Pokémon image dataset.
|
12 |
|
13 |
## Model Details
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
- **Developer:** Xianglu (Steven) Zhu
|
16 |
+
- **Purpose:** Pokémon type classification
|
17 |
+
- **Model Type:** Vision Transformer (ViT) for image classification
|
18 |
|
19 |
+
## Getting Started
|
|
|
|
|
|
|
20 |
|
21 |
+
Here’s how you can use the model for classification:
|
|
|
|
|
22 |
|
23 |
+
```python
|
24 |
import torch
|
25 |
from PIL import Image
|
26 |
import torchvision.transforms as transforms
|
27 |
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
28 |
|
29 |
+
# Load the pretrained model and feature extractor
|
30 |
hf_model = ViTForImageClassification.from_pretrained("NP-NP/pokemon_model")
|
31 |
hf_feature_extractor = ViTFeatureExtractor.from_pretrained("NP-NP/pokemon_model")
|
32 |
|
33 |
+
# Define preprocessing transformations
|
34 |
transform = transforms.Compose([
|
35 |
transforms.Resize((224, 224)),
|
36 |
transforms.ToTensor(),
|
37 |
transforms.Normalize(mean=hf_feature_extractor.image_mean, std=hf_feature_extractor.image_std)
|
38 |
])
|
39 |
|
40 |
+
# Mapping of labels to indices and vice versa
|
41 |
labels_dict = {
|
42 |
'Grass': 0, 'Fire': 1, 'Water': 2, 'Bug': 3, 'Normal': 4, 'Poison': 5, 'Electric': 6,
|
43 |
'Ground': 7, 'Fairy': 8, 'Fighting': 9, 'Psychic': 10, 'Rock': 11, 'Ghost': 12,
|
44 |
'Ice': 13, 'Dragon': 14, 'Dark': 15, 'Steel': 16, 'Flying': 17
|
45 |
}
|
|
|
46 |
idx_to_label = {v: k for k, v in labels_dict.items()}
|
47 |
|
48 |
+
# Load and preprocess the image
|
49 |
image_path = "cute-pikachu-flowers-pokemon-desktop-wallpaper.jpg"
|
50 |
image = Image.open(image_path).convert("RGB")
|
|
|
51 |
input_tensor = transform(image).unsqueeze(0) # shape: (1, 3, 224, 224)
|
52 |
|
53 |
+
# Make a prediction
|
54 |
hf_model.eval()
|
55 |
with torch.no_grad():
|
56 |
outputs = hf_model(input_tensor)
|
|
|
59 |
|
60 |
predicted_class = idx_to_label[predicted_class_idx]
|
61 |
print("Predicted Pokémon type:", predicted_class)
|
62 |
+
```
|
63 |
|
64 |
|
65 |
|