|
|
|
|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers import PreTrainedModel, PretrainedConfig |
|
|
from transformers.modeling_outputs import CausalLMOutput |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TinyWayConfig(PretrainedConfig): |
|
|
model_type = "tinyway" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=50257, |
|
|
n_positions=256, |
|
|
n_embd=512, |
|
|
n_layer=10, |
|
|
n_head=8, |
|
|
dropout=0.1, |
|
|
**kwargs |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
self.n_positions = n_positions |
|
|
self.n_embd = n_embd |
|
|
self.n_layer = n_layer |
|
|
self.n_head = n_head |
|
|
self.dropout = dropout |
|
|
|
|
|
|
|
|
self.hidden_size = n_embd |
|
|
self.num_hidden_layers = n_layer |
|
|
self.num_attention_heads = n_head |
|
|
self.max_position_embeddings = n_positions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
assert config.n_embd % config.n_head == 0 |
|
|
|
|
|
self.n_head = config.n_head |
|
|
self.head_dim = config.n_embd // config.n_head |
|
|
|
|
|
self.qkv = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
self.proj = nn.Linear(config.n_embd, config.n_embd) |
|
|
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
|
self.proj_dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
self.register_buffer( |
|
|
"mask", |
|
|
torch.tril( |
|
|
torch.ones( |
|
|
config.n_positions, |
|
|
config.n_positions, |
|
|
dtype=torch.bool |
|
|
) |
|
|
) |
|
|
) |
|
|
|
|
|
self.last_attn = None |
|
|
|
|
|
def forward(self, x): |
|
|
B, T, C = x.shape |
|
|
|
|
|
qkv = self.qkv(x) |
|
|
q, k, v = qkv.chunk(3, dim=-1) |
|
|
|
|
|
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) |
|
|
att = att.masked_fill( |
|
|
~self.mask[:T, :T], |
|
|
torch.finfo(att.dtype).min |
|
|
) |
|
|
|
|
|
att = F.softmax(att, dim=-1) |
|
|
self.last_attn = att.detach() |
|
|
|
|
|
att = self.attn_dropout(att) |
|
|
|
|
|
out = att @ v |
|
|
out = out.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
out = self.proj(out) |
|
|
out = self.proj_dropout(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
|
|
|
self.ln1 = nn.LayerNorm(config.n_embd) |
|
|
self.attn = CausalSelfAttention(config) |
|
|
|
|
|
self.ln2 = nn.LayerNorm(config.n_embd) |
|
|
|
|
|
|
|
|
self.ffn = nn.Sequential( |
|
|
nn.Linear(config.n_embd, 4 * config.n_embd), |
|
|
nn.GELU(), |
|
|
nn.Linear(4 * config.n_embd, config.n_embd), |
|
|
nn.Dropout(config.dropout), |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x + self.attn(self.ln1(x)) |
|
|
x = x + self.ffn(self.ln2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TinyWayForCausalLM(PreTrainedModel): |
|
|
config_class = TinyWayConfig |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
self.token_emb = nn.Embedding(config.vocab_size, config.n_embd) |
|
|
self.pos_emb = nn.Embedding(config.n_positions, config.n_embd) |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
|
Block(config) for _ in range(config.n_layer) |
|
|
]) |
|
|
|
|
|
self.ln = nn.LayerNorm(config.n_embd) |
|
|
|
|
|
self.head = nn.Linear( |
|
|
config.n_embd, |
|
|
config.vocab_size, |
|
|
bias=False |
|
|
) |
|
|
|
|
|
|
|
|
self.head.weight = self.token_emb.weight |
|
|
|
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids, |
|
|
labels=None, |
|
|
attention_mask=None, |
|
|
**kwargs |
|
|
): |
|
|
B, T = input_ids.shape |
|
|
pos = torch.arange(T, device=input_ids.device) |
|
|
|
|
|
x = self.token_emb(input_ids) + self.pos_emb(pos) |
|
|
x = self.dropout(x) |
|
|
|
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
|
|
|
x = self.ln(x) |
|
|
logits = self.head(x) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = F.cross_entropy( |
|
|
logits.view(-1, logits.size(-1)), |
|
|
labels.view(-1) |
|
|
) |
|
|
|
|
|
return CausalLMOutput( |
|
|
loss=loss, |
|
|
logits=logits |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
|
return {"input_ids": input_ids} |
|
|
|