|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers import PreTrainedModel, PretrainedConfig |
|
|
from transformers.generation.utils import GenerationMixin |
|
|
from transformers.modeling_outputs import CausalLMOutput |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TinyWayConfig(PretrainedConfig): |
|
|
model_type = "tinyway" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=50257, |
|
|
n_positions=256, |
|
|
n_embd=384, |
|
|
n_layer=8, |
|
|
n_head=8, |
|
|
dropout=0.1, |
|
|
**kwargs |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
self.n_positions = n_positions |
|
|
self.n_embd = n_embd |
|
|
self.n_layer = n_layer |
|
|
self.n_head = n_head |
|
|
self.dropout = dropout |
|
|
|
|
|
|
|
|
self.hidden_size = n_embd |
|
|
self.num_hidden_layers = n_layer |
|
|
self.num_attention_heads = n_head |
|
|
self.max_position_embeddings = n_positions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
assert config.n_embd % config.n_head == 0 |
|
|
|
|
|
self.n_head = config.n_head |
|
|
self.head_dim = config.n_embd // config.n_head |
|
|
|
|
|
self.qkv = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
self.proj = nn.Linear(config.n_embd, config.n_embd) |
|
|
|
|
|
self.register_buffer( |
|
|
"mask", |
|
|
torch.tril(torch.ones(config.n_positions, config.n_positions)) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
B, T, C = x.shape |
|
|
|
|
|
qkv = self.qkv(x) |
|
|
q, k, v = qkv.chunk(3, dim=-1) |
|
|
|
|
|
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) |
|
|
att = att.masked_fill(self.mask[:T, :T] == 0, float("-inf")) |
|
|
att = F.softmax(att, dim=-1) |
|
|
|
|
|
out = att @ v |
|
|
out = out.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
return self.proj(out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.attn = CausalSelfAttention(config) |
|
|
self.ffn = nn.Sequential( |
|
|
nn.Linear(config.n_embd, 4 * config.n_embd), |
|
|
nn.GELU(), |
|
|
nn.Linear(4 * config.n_embd, config.n_embd) |
|
|
) |
|
|
self.ln1 = nn.LayerNorm(config.n_embd) |
|
|
self.ln2 = nn.LayerNorm(config.n_embd) |
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x + self.dropout(self.attn(self.ln1(x))) |
|
|
x = x + self.dropout(self.ffn(self.ln2(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TinyWayForCausalLM(PreTrainedModel, GenerationMixin): |
|
|
config_class = TinyWayConfig |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
self.token_emb = nn.Embedding(config.vocab_size, config.n_embd) |
|
|
self.pos_emb = nn.Embedding(config.n_positions, config.n_embd) |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
|
[DecoderBlock(config) for _ in range(config.n_layer)] |
|
|
) |
|
|
|
|
|
self.ln = nn.LayerNorm(config.n_embd) |
|
|
|
|
|
|
|
|
self.head = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.token_emb |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.token_emb = value |
|
|
|
|
|
|
|
|
def forward(self, input_ids, **kwargs): |
|
|
B, T = input_ids.shape |
|
|
pos = torch.arange(T, device=input_ids.device) |
|
|
|
|
|
x = self.token_emb(input_ids) + self.pos_emb(pos) |
|
|
|
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
|
|
|
x = self.ln(x) |
|
|
logits = self.head(x) |
|
|
|
|
|
return CausalLMOutput(logits=logits) |
|
|
|