|
--- |
|
license: mit |
|
--- |
|
The model uses only sign `ӏ` for explosive consonants (small cyrillic palochka letter)! |
|
|
|
```python |
|
import torch |
|
from transformers import BertTokenizer, AutoModel |
|
import numpy as np |
|
import pandas as pd |
|
import razdel |
|
import matplotlib.pyplot as plt |
|
from tqdm.auto import tqdm, trange |
|
``` |
|
Download the model from Huggingface repository: |
|
```python |
|
model_name = 'NM-development/labse-en-ru-ce-prototype' |
|
tokenizer = BertTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name) |
|
``` |
|
Assign files with the texts you want to split into parallel sentences: |
|
```python |
|
file_ru = None |
|
file_nm = None |
|
|
|
if file_ru is None or file_nm is None: |
|
nm_text = 'Ламро. Сахьт. Къена. Адам. Зуда. Вокха. Тӏулг.' |
|
ru_text = 'Горец. Час. Старый. Человек. Жена. Высокий. Камень.' |
|
else: |
|
with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2: |
|
nm_text = f1.read() |
|
ru_text = f2.read() |
|
``` |
|
In the following section define auxillary functions for parallel sentence comparison: |
|
```python |
|
def embed(text): |
|
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt') |
|
with torch.inference_mode(): |
|
model_output = model(**encoded_input.to(model.device)) |
|
embeddings = model_output.pooler_output |
|
embeddings = torch.nn.functional.normalize(embeddings) |
|
return embeddings[0].cpu().numpy() |
|
|
|
def center_norm(v): |
|
v = v - v.mean(0) |
|
return v / (v**2).sum(1, keepdims=True) ** 0.5 |
|
|
|
|
|
def center_dot(x, y): |
|
m = (x.sum(0) + y.sum(0)) / (x.shape[0] + y.shape[0]) |
|
x = x - m |
|
y = y - m |
|
x = x / (x**2).sum(1, keepdims=True) ** 0.5 |
|
y = y / (y**2).sum(1, keepdims=True) ** 0.5 |
|
return np.dot(x, y.T) |
|
|
|
def get_top_mean_by_row(x, k=5): |
|
m, n = x.shape |
|
k = min(k, n) |
|
topk_indices = np.argpartition(x, -k, axis=1)[:, -k:] |
|
rows, _ = np.indices((m, k)) |
|
return x[rows, topk_indices].mean(1) |
|
|
|
def align3(sims): |
|
|
|
#sims = np.dot(center_norm(orig_vecs), center_norm(sum_vecs).T) ** 3 |
|
#sims = center_dot(orig_embeds, sum_embeds) #** 3 |
|
|
|
rewards = np.zeros_like(sims) |
|
choices = np.zeros_like(sims).astype(int) # 1: choose this pair, 2: decrease i, 3: decrease j |
|
|
|
# алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность |
|
for i in range(sims.shape[0]): |
|
for j in range(0, sims.shape[1]): |
|
# вариант первый: выровнять i-тое предложение с j-тым |
|
score_add = sims[i, j] |
|
if i > 0 and j > 0: # вот как тогда выровняются предыдущие |
|
score_add += rewards[i-1, j-1] |
|
choices[i, j] = 1 |
|
best = score_add |
|
if i > 0 and rewards[i-1, j] > best: |
|
best = rewards[i-1, j] |
|
choices[i, j] = 2 |
|
if j > 0 and rewards[i, j-1] > best: |
|
best = rewards[i, j-1] |
|
choices[i, j] = 3 |
|
rewards[i, j] = best |
|
alignment = [] |
|
i = sims.shape[0] - 1 |
|
j = sims.shape[1] - 1 |
|
while i > 0 and j > 0: |
|
if choices[i, j] == 1: |
|
alignment.append([i, j]) |
|
i -= 1 |
|
j -= 1 |
|
elif choices[i, j] == 2: |
|
i -= 1 |
|
else: |
|
j -= 1 |
|
return alignment[::-1] |
|
|
|
def make_sents(text): |
|
sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)] |
|
sents = [s for s in sents if s] |
|
return sents |
|
``` |
|
Firstly split your texts into sentences: |
|
```python |
|
sents_nm = make_sents(nm_text) |
|
sents_ru = make_sents(ru_text) |
|
``` |
|
Then embed all the chunks: |
|
```python |
|
emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)]) |
|
emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)]) |
|
``` |
|
Now compare sentenses' semanics vectors and build correlation heatmap: |
|
```python |
|
pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru]) |
|
sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen |
|
|
|
alpha = 0.2 |
|
penalty = 0.2 |
|
sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty |
|
|
|
alignment = align3(sims_rel) |
|
|
|
print(sum(sims[i, j] for i, j in alignment) / min(sims.shape)) |
|
plt.figure(figsize=(12, 6)) |
|
plt.subplot(1, 2, 1) |
|
plt.imshow(sims_rel) |
|
plt.subplot(1, 2, 2) |
|
plt.scatter(*list(zip(*alignment)), s=5); |
|
``` |
|
Finally, save the parallel corpus into a json file: |
|
```python |
|
nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]}) |
|
corpus_filename = 'nm_ru_corpus.json' |
|
with open(corpus_filename, 'w') as f: |
|
nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4) |
|
``` |