sleepygorgoyle's picture
Update README.md (#1)
a385dbe verified
|
raw
history blame
4.42 kB
---
license: mit
language:
- ce
- ru
- en
metrics:
- codeparrot/apps_metric
- accuracy
tags:
- code
---
The model uses only sign **ӏ** for explosive consonants (small cyrillic palochka letter)!
The model was teached by folloving David Dale's instructions for erzya language (https://arxiv.org/abs/2209.09368) and using code from his repository. Commentaries in Russian were left untouched.
```python
import torch
from transformers import BertTokenizer, AutoModel
import numpy as np
import pandas as pd
import razdel
import matplotlib.pyplot as plt
from tqdm.auto import tqdm, trange
```
Download the model from Huggingface repository:
```python
model_name = 'NM-development/labse-en-ru-ce-prototype'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
Assign files with the texts you want to split into parallel sentences:
```python
file_ru = None
file_nm = None
with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2:
nm_text = f1.read()
ru_text = f2.read()
```
In the following section define auxillary functions for parallel sentence comparison:
```python
def embed(text):
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
with torch.inference_mode():
model_output = model(**encoded_input.to(model.device))
embeddings = model_output.pooler_output
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
def get_top_mean_by_row(x, k=5):
m, n = x.shape
k = min(k, n)
topk_indices = np.argpartition(x, -k, axis=1)[:, -k:]
rows, _ = np.indices((m, k))
return x[rows, topk_indices].mean(1)
def align3(sims):
rewards = np.zeros_like(sims)
choices = np.zeros_like(sims).astype(int) # 1: choose this pair, 2: decrease i, 3: decrease j
# алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность
for i in range(sims.shape[0]):
for j in range(0, sims.shape[1]):
# вариант первый: выровнять i-тое предложение с j-тым
score_add = sims[i, j]
if i > 0 and j > 0: # вот как тогда выровняются предыдущие
score_add += rewards[i-1, j-1]
choices[i, j] = 1
best = score_add
if i > 0 and rewards[i-1, j] > best:
best = rewards[i-1, j]
choices[i, j] = 2
if j > 0 and rewards[i, j-1] > best:
best = rewards[i, j-1]
choices[i, j] = 3
rewards[i, j] = best
alignment = []
i = sims.shape[0] - 1
j = sims.shape[1] - 1
while i > 0 and j > 0:
if choices[i, j] == 1:
alignment.append([i, j])
i -= 1
j -= 1
elif choices[i, j] == 2:
i -= 1
else:
j -= 1
return alignment[::-1]
def make_sents(text):
sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)]
sents = [s for s in sents if s]
return sents
```
Firstly split your texts into sentences:
```python
sents_nm = make_sents(nm_text)
sents_ru = make_sents(ru_text)
```
Then embed all the chunks:
```python
emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)])
emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)])
```
Now compare sentenses' semanics vectors and build correlation heatmap:
```python
pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru])
sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen
alpha = 0.2
penalty = 0.2
sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty
alignment = align3(sims_rel)
print(sum(sims[i, j] for i, j in alignment) / min(sims.shape))
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(sims_rel)
plt.subplot(1, 2, 2)
plt.scatter(*list(zip(*alignment)), s=5);
```
Finally, save the parallel corpus into a json file:
```python
nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]})
corpus_filename = 'nm_ru_corpus.json'
with open(corpus_filename, 'w') as f:
nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4)
```