Update README.md
Browse files
README.md
CHANGED
@@ -113,6 +113,115 @@ _Few-shot is disabled for Jellyfish models._
|
|
113 |
[\INST]]
|
114 |
```
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
## Prompts
|
117 |
|
118 |
We provide the prompts used for both fine-tuning and inference.
|
|
|
113 |
[\INST]]
|
114 |
```
|
115 |
|
116 |
+
## Training Details
|
117 |
+
|
118 |
+
### Training Method
|
119 |
+
|
120 |
+
We used LoRA to speed up the training process, targeting the q_proj, k_proj, v_proj, and o_proj modules.
|
121 |
+
|
122 |
+
## Uses
|
123 |
+
|
124 |
+
To accelerate the inference, we strongly recommend running Jellyfish using [vLLM](https://github.com/vllm-project/vllm).
|
125 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
126 |
+
|
127 |
+
### Python Script
|
128 |
+
We provide two simple Python code examples for inference using the Jellyfish model.
|
129 |
+
|
130 |
+
#### Using Transformers and Torch Modules
|
131 |
+
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
|
132 |
+
|
133 |
+
```python
|
134 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
135 |
+
import torch
|
136 |
+
|
137 |
+
if torch.cuda.is_available():
|
138 |
+
device = "cuda"
|
139 |
+
else:
|
140 |
+
device = "cpu"
|
141 |
+
|
142 |
+
# Model will be automatically downloaded from HuggingFace model hub if not cached.
|
143 |
+
# Model files will be cached in "~/.cache/huggingface/hub/models--NECOUDBFM--Jellyfish/" by default.
|
144 |
+
# You can also download the model manually and replace the model name with the path to the model files.
|
145 |
+
model = AutoModelForCausalLM.from_pretrained(
|
146 |
+
"NECOUDBFM/Jellyfish",
|
147 |
+
torch_dtype=torch.float16,
|
148 |
+
device_map="auto",
|
149 |
+
)
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained("NECOUDBFM/Jellyfish")
|
151 |
+
|
152 |
+
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
|
153 |
+
|
154 |
+
# You need to define the user_message variable based on the task and the data you want to test on.
|
155 |
+
user_message = "Hello, world."
|
156 |
+
|
157 |
+
prompt = f"{system_message}\n\n[INST]:\n\n{user_message}\n\n[\INST]]"
|
158 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
159 |
+
input_ids = inputs["input_ids"].to(device)
|
160 |
+
|
161 |
+
# You can modify the sampling parameters according to your needs.
|
162 |
+
generation_config = GenerationConfig(
|
163 |
+
do_samples=True,
|
164 |
+
temperature=0.35,
|
165 |
+
top_p=0.9,
|
166 |
+
)
|
167 |
+
|
168 |
+
with torch.no_grad():
|
169 |
+
generation_output = model.generate(
|
170 |
+
input_ids=input_ids,
|
171 |
+
generation_config=generation_config,
|
172 |
+
return_dict_in_generate=True,
|
173 |
+
output_scores=True,
|
174 |
+
max_new_tokens=1024,
|
175 |
+
pad_token_id=tokenizer.eos_token_id,
|
176 |
+
repetition_penalty=1.15,
|
177 |
+
)
|
178 |
+
|
179 |
+
output = generation_output[0]
|
180 |
+
response = tokenizer.decode(
|
181 |
+
output[:, input_ids.shape[-1] :][0], skip_special_tokens=True
|
182 |
+
).strip()
|
183 |
+
|
184 |
+
print(response)
|
185 |
+
|
186 |
+
```
|
187 |
+
</div>
|
188 |
+
|
189 |
+
#### Using vLLM
|
190 |
+
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
|
191 |
+
|
192 |
+
```python
|
193 |
+
from vllm import LLM, SamplingParams
|
194 |
+
|
195 |
+
# To use vllm for inference, you need to download the model files either using HuggingFace model hub or manually.
|
196 |
+
# You should modify the path to the model according to your local environment.
|
197 |
+
path_to_model = (
|
198 |
+
"/workspace/models/Jellyfish"
|
199 |
+
)
|
200 |
+
|
201 |
+
model = LLM(model=path_to_model)
|
202 |
+
|
203 |
+
# You can modify the sampling parameters according to your needs.
|
204 |
+
# Caution: The stop parameter should not be changed.
|
205 |
+
sampling_params = SamplingParams(
|
206 |
+
temperature=0.35,
|
207 |
+
top_p=0.9,
|
208 |
+
max_tokens=1024,
|
209 |
+
stop=["[INST]"],
|
210 |
+
)
|
211 |
+
|
212 |
+
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
|
213 |
+
|
214 |
+
# You need to define the user_message variable based on the task and the data you want to test on.
|
215 |
+
user_message = "Hello, world."
|
216 |
+
|
217 |
+
prompt = f"{system_message}\n\n[INST]:\n\n{user_message}\n\n[\INST]]"
|
218 |
+
outputs = model.generate(prompt, sampling_params)
|
219 |
+
response = outputs[0].outputs[0].text.strip()
|
220 |
+
print(response)
|
221 |
+
|
222 |
+
```
|
223 |
+
</div>
|
224 |
+
|
225 |
## Prompts
|
226 |
|
227 |
We provide the prompts used for both fine-tuning and inference.
|