model / convert_sd3.py
ND911's picture
Upload 2 files
455acc7 verified
raw
history blame
8.95 kB
import os
import torch
import numpy as np
import gguf # This needs to be the llama.cpp one specifically!
import argparse
from tqdm import tqdm
from safetensors.torch import load_file
QUANTIZATION_THRESHOLD = 1024
REARRANGE_THRESHOLD = 512
MAX_TENSOR_NAME_LENGTH = 127
class QuantError(Exception):
pass
class quants:
@staticmethod
def quantize(data, data_qtype):
# Implement quantization logic here
if data_qtype == GGMLQuantizationType.F16:
return data.astype(np.float16)
elif data_qtype == GGMLQuantizationType.BF16:
return data.astype(np.float32) # BF16 is not supported by NumPy, so use float32 instead
else:
raise QuantError("Unsupported quantization type")
class ModelTemplate:
arch = "invalid" # string describing architecture
shape_fix = False # whether to reshape tensors
keys_detect = [] # list of lists to match in state dict
keys_banned = [] # list of keys that should mark model as invalid for conversion
class ModelFlux(ModelTemplate):
arch = "fluxz"
keys_detect = [
("transformer_blocks.0.attn.norm_added_k.weight",),
("double_blocks.0.img_attn.proj.weight",),
]
keys_banned = ["transformer_blocks.0.attn.norm_added_k.weight",]
class ModelSD3(ModelTemplate):
arch = "sd3"
keys_detect = [
("transformer_blocks.0.attn.add_q_proj.weight",),
("joint_blocks.0.x_block.attn.qkv.weight",),
]
keys_banned = ["transformer_blocks.0.attn.add_q_proj.weight",]
class ModelSDXL(ModelTemplate):
arch = "sdxl"
shape_fix = True
keys_detect = [
("down_blocks.0.downsamplers.0.conv.weight", "add_embedding.linear_1.weight",),
(
"input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight",
"output_blocks.2.2.conv.weight", "output_blocks.5.2.conv.weight",
), # Non-diffusers
("label_emb.0.0.weight",),
]
class ModelSD1(ModelTemplate):
arch = "sd1"
shape_fix = False
keys_detect = [
("down_blocks.0.downsamplers.0.conv.weight",),
(
"input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", "input_blocks.9.0.op.weight",
"output_blocks.2.1.conv.weight", "output_blocks.5.2.conv.weight", "output_blocks.8.2.conv.weight"
), # Non-diffusers
]
# Prioritize ModelSD3 over ModelFlux
arch_list = [ModelSD3, ModelFlux, ModelSDXL, ModelSD1]
def is_model_arch(model, state_dict):
# check if model is correct
matched = False
invalid = False
for match_list in model.keys_detect:
if all(key in state_dict for key in match_list):
matched = True
invalid = any(key in state_dict for key in model.keys_banned)
break
assert not invalid, "Model architecture not allowed for conversion! (i.e. reference VS diffusers format)"
return matched
def detect_arch(state_dict):
model_arch = None
for arch in arch_list:
if is_model_arch(arch, state_dict):
model_arch = arch
break
assert model_arch is not None, "Unknown model architecture!"
return model_arch
def parse_args():
parser = argparse.ArgumentParser(description="Generate F16 GGUF files from single UNET")
parser.add_argument("--src", required=True, help="Source model ckpt file.")
parser.add_argument("--dst", help="Output unet gguf file.")
args = parser.parse_args()
if not os.path.isfile(args.src):
parser.error("No input provided!")
return args
def load_state_dict(path):
if any(path.endswith(x) for x in [".ckpt", ".pt", ".bin", ".pth"]):
state_dict = torch.load(path, map_location="cpu", weights_only=True)
state_dict = state_dict.get("model", state_dict)
else:
state_dict = load_file(path)
# only keep unet with no prefix!
sd = {}
has_prefix = any(["model.diffusion_model." in x for x in state_dict.keys()])
for k, v in state_dict.items():
if has_prefix and "model.diffusion_model." not in k:
continue
if has_prefix:
k = k.replace("model.diffusion_model.", "")
sd[k] = v
return sd
def load_model(path):
state_dict = load_state_dict(path)
model_arch = detect_arch(state_dict)
print(f"* Architecture detected from input: {model_arch.arch}")
writer = gguf.GGUFWriter(path=None, arch=model_arch.arch)
return (writer, state_dict, model_arch)
def handle_tensors(args, writer, state_dict, model_arch):
name_lengths = tuple(sorted(
((key, len(key)) for key in state_dict.keys()),
key=lambda item: item[1],
reverse=True,
))
if not name_lengths:
return
max_name_len = name_lengths[0][1]
if max_name_len > MAX_TENSOR_NAME_LENGTH:
bad_list = ", ".join(f"{key!r} ({namelen})" for key, namelen in name_lengths if namelen > MAX_TENSOR_NAME_LENGTH)
raise ValueError(f"Can only handle tensor names up to {MAX_TENSOR_NAME_LENGTH} characters. Tensors exceeding the limit: {bad_list}")
for key, data in tqdm(state_dict.items()):
old_dtype = data.dtype
if data.dtype == torch.bfloat16:
data = data.to(torch.float32).numpy()
# this is so we don't break torch 2.0.X
elif data.dtype in [getattr(torch, "float8_e4m3fn", "_invalid"), getattr(torch, "float8_e5m2", "_invalid")]:
data = data.to(torch.float16).numpy()
else:
data = data.numpy()
n_dims = len(data.shape)
data_shape = data.shape
data_qtype = getattr(
gguf.GGMLQuantizationType,
"BF16" if old_dtype == torch.bfloat16 else "F16"
)
# get number of parameters (AKA elements) in this tensor
n_params = 1
for dim_size in data_shape:
n_params *= dim_size
# keys to keep as max precision
blacklist = {
"time_embedding.",
"add_embedding.",
"time_in.",
"txt_in.",
"vector_in.",
"img_in.",
"guidance_in.",
"final_layer.",
}
if old_dtype in (torch.float32, torch.bfloat16):
if n_dims == 1:
# one-dimensional tensors should be kept in F32
# also speeds up inference due to not dequantizing
data_qtype = gguf.GGMLQuantizationType.F32
elif n_params <= QUANTIZATION_THRESHOLD:
# very small tensors
data_qtype = gguf.GGMLQuantizationType.F32
elif ".weight" in key and any(x in key for x in blacklist):
data_qtype = gguf.GGMLQuantizationType.F32
if (model_arch.shape_fix # NEVER reshape for models such as flux
and n_dims > 1 # Skip one-dimensional tensors
and n_params >= REARRANGE_THRESHOLD # Only rearrange tensors meeting the size requirement
and (n_params / 256).is_integer() # Rearranging only makes sense if total elements is divisible by 256
and not (data.shape[-1] / 256).is_integer() # Only need to rearrange if the last dimension is not divisible by 256
):
orig_shape = data.shape
data = data.reshape(n_params // 256, 256)
writer.add_array(f"comfy.gguf.orig_shape.{key}", tuple(int(dim) for dim in orig_shape))
new_name = key # do we need to rename?
shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
tqdm.write(f"{f'%-{max_name_len + 4}s' % f'{new_name}'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
writer.add_tensor(new_name, data, raw_dtype=data_qtype)
def load_model(path):
state_dict = load_state_dict(path)
model_arch = detect_arch(state_dict)
print(f"* Architecture detected from input: {model_arch.arch}")
return state_dict, model_arch
...
if __name__ == "__main__":
args = parse_args()
path = args.src
state_dict, model_arch = load_model(path)
if next(iter(state_dict.values())).dtype == torch.bfloat16:
out_path = f"{os.path.splitext(path)[0]}-BF16.gguf"
else:
out_path = f"{os.path.splitext(path)[0]}-F16.gguf"
out_path = args.dst or out_path
if os.path.isfile(out_path):
input("Output exists enter to continue or ctrl+c to abort!")
writer = gguf.GGUFWriter(path=out_path, arch=model_arch.arch)
writer.add_quantization_version(1)
handle_tensors(args, writer, state_dict, model_arch)
writer.write_header_to_file()
writer.write_kv_data_to_file()
writer.write_tensors_to_file()
writer.close()