JiHyeSung commited on
Commit
2637e65
·
verified ·
1 Parent(s): 89d3c0c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -3
README.md CHANGED
@@ -1,3 +1,76 @@
1
- ---
2
- license: llama3.1
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: llama3.1
5
+ tags:
6
+ - llama-3.1
7
+ - ncsoft
8
+ - varco
9
+ base_model:
10
+ - meta-llama/Meta-Llama-3.1-8B-Instruct
11
+ ---
12
+
13
+ ## Llama-3.1-Varco-8B-Instruct
14
+
15
+ ### About the Model
16
+
17
+ **Llama-3.1-Varco-8B-Instruct** is a *generative model* based on Meta-Llama-3.1-8B, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.
18
+
19
+ - **Developed by:** NC Research, Language Model Team
20
+ - **Languages (NLP):** Korean, English
21
+ - **License:** LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
22
+ - **Base model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)
23
+
24
+ ## Uses
25
+
26
+ ### Direct Use
27
+
28
+ We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1.
29
+
30
+ ```python
31
+ from transformers import AutoTokenizer, AutoModelForCausalLM
32
+ import torch
33
+
34
+ model = AutoModelForCausalLM.from_pretrained(
35
+ "NCSOFT/Llama-3.1-Varco-8B-Instruct",
36
+ torch_dtype=torch.bfloat16,
37
+ device_map="auto"
38
+ )
39
+ tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-3.1-Varco-8B-Instruct")
40
+
41
+ messages = [
42
+ {"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."},
43
+ {"role": "user", "content": "안녕하세요."}
44
+ ]
45
+
46
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
47
+
48
+ eos_token_id = [
49
+ tokenizer.eos_token_id,
50
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
51
+ ]
52
+
53
+ outputs = model.generate(
54
+ inputs,
55
+ eos_token_id=eos_token_id,
56
+ max_length=8192
57
+ )
58
+
59
+ print(tokenizer.decode(outputs[0]))
60
+ ```
61
+
62
+ ## Evaluation
63
+
64
+ ### LogicKor
65
+
66
+ We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure performance. For the judge model, we used the officially recommended gpt-4-1106-preview. The score includes only the 0-shot evaluation provided in the default.
67
+
68
+ | Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall |
69
+ |--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------|
70
+ | [Llama-3.1-Varco-8B-Instruct](https://huggingface.co/NCSOFT/Llama-3.1-Varco-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 |
71
+ | [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 |
72
+ | [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 |
73
+ | [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98
74
+ | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |
75
+
76
+