Mungert commited on
Commit
f2ba2bb
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ AceMath-7B-Instruct-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ AceMath-7B-Instruct-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ AceMath-7B-Instruct-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ AceMath-7B-Instruct-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ AceMath-7B-Instruct-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ AceMath-7B-Instruct-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ AceMath-7B-Instruct-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ AceMath-7B-Instruct-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ AceMath-7B-Instruct-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ AceMath-7B-Instruct-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ AceMath-7B-Instruct-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ AceMath-7B-Instruct-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ AceMath-7B-Instruct-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ AceMath-7B-Instruct-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ AceMath-7B-Instruct-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ AceMath-7B-Instruct-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ AceMath-7B-Instruct-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ AceMath-7B-Instruct-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ AceMath-7B-Instruct-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ AceMath-7B-Instruct-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ AceMath-7B-Instruct-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ AceMath-7B-Instruct-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ AceMath-7B-Instruct-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ AceMath-7B-Instruct-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ AceMath-7B-Instruct-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ AceMath-7B-Instruct-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ AceMath-7B-Instruct-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ AceMath-7B-Instruct-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ AceMath-7B-Instruct-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ AceMath-7B-Instruct-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ AceMath-7B-Instruct-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
67
+ AceMath-7B-Instruct-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ AceMath-7B-Instruct-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ AceMath-7B-Instruct-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ AceMath-7B-Instruct-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ AceMath-7B-Instruct-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ AceMath-7B-Instruct-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ AceMath-7B-Instruct-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ AceMath-7B-Instruct-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ AceMath-7B-Instruct-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
76
+ AceMath-7B-Instruct.imatrix filter=lfs diff=lfs merge=lfs -text
77
+ AceMath-7B-Instruct-bf16.gguf filter=lfs diff=lfs merge=lfs -text
AceMath-7B-Instruct-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bd8dda636e9ef3fe4f7bba31dc9bae7663e82c7139d19ecdcf9414628b0629f
3
+ size 15237851328
AceMath-7B-Instruct-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a8d626c0f472df983a843a368de0569cbcf942423381ce757c221725a767a1
3
+ size 11287996608
AceMath-7B-Instruct-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37c263f092493c6fff497dd5af2ebec959e476872aea1d10727c8904f6541f15
3
+ size 11287996608
AceMath-7B-Instruct-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0343a150280e512d2913145480b881499a3d6ac0036d25b33668fe6a60e1d2
3
+ size 3039119872
AceMath-7B-Instruct-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ad83fc3b70154ec97b5add13b035d5b02b3a2d0d12db6226cbb09e2b307770
3
+ size 2912963072
AceMath-7B-Instruct-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a428a3813c86e7ad7a11154afc7e99d322e5253de81a6b4f16f667b257c63213
3
+ size 2839333376
AceMath-7B-Instruct-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30dffa5692cf3d5a80d62c4cfbe836aa69ec5ffc9aef80ba5bade8da6876c997
3
+ size 2650900992
AceMath-7B-Instruct-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1752895928f61b04f367630620d4252631889d642c47a585ddad7d22adebf1
3
+ size 3779688960
AceMath-7B-Instruct-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:126380323d57ab92fea718b848f62cc5548eac7b350a5139ca5476991393bb13
3
+ size 3779688960
AceMath-7B-Instruct-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0686b8a6dfe8849ec8ef7af6594ba34994f5f5d09ea32338c68f0c5307fa965
3
+ size 3450046976
AceMath-7B-Instruct-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd469742962be779d6a76b16fff921be3b4fa3d38daf792928de9a843d4f3173
3
+ size 3379800576
AceMath-7B-Instruct-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a444402f13d97c1cecc0139356087ae4ba62552588ba9062ed6001ee5e22d88
3
+ size 4437811712
AceMath-7B-Instruct-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72aa62baf0b6b8423a377e53e4c082f9a5183fcae05ce99c1986ec8496c33308
3
+ size 4218470912
AceMath-7B-Instruct-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d35e31115fcb38357c9215f85feaaec8e16a3c66fdc633f57072d70aa6b208
3
+ size 3264109056
AceMath-7B-Instruct-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78318176b987c155d34636616130530d39c064212ded31e6e38dc4ae098dab51
3
+ size 3119344128
AceMath-7B-Instruct-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a88c6c30fff6f28b9cb02a40b64f192badb56e5aacbcf5d1df5fa50e065bb127
3
+ size 4003502592
AceMath-7B-Instruct-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b5da3f7f4b851d99be374d3e2a1c9a74711e7defd6a01d9c915a0dc33905c5
3
+ size 3858737664
AceMath-7B-Instruct-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c77b7be4d536cfba9fc6e8d3cdc3a684e172b90748bba43bff9d05f7dbe9022
3
+ size 4290882048
AceMath-7B-Instruct-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a277de0aa1c5249ab69364c9fe605637a8d728928bb2190b205f7a9e2ab9b6af
3
+ size 4766837248
AceMath-7B-Instruct-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7947f787d0621dedaf56764cf39a31ff0e9fb2a594d5ddb90f52275dcb12300
3
+ size 4777646592
AceMath-7B-Instruct-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987818a7635e596a55122361b3e7c08d589301b72af00519976c05ca6e2a8b4d
3
+ size 4634057216
AceMath-7B-Instruct-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a6d00a578395251c4d91374cf2a499b4cb74ef15c83e47414e65d7864142f13
3
+ size 5242792448
AceMath-7B-Instruct-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:016fae1099ad0b9ca1b32b12ec19dd21bf3904dab3287a38b401137655773463
3
+ size 5718747648
AceMath-7B-Instruct-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5163ad275f6d124c2fd2348547bd62051b3aeaba2a037ab5700bffd14052b232
3
+ size 5527448064
AceMath-7B-Instruct-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b511c6126565cf547d975e6a1cb48439057b8e42ea734da5437023377e9a78b
3
+ size 5453359616
AceMath-7B-Instruct-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d02d61d96b5fc6c1795163d96dae063bbc48225d362f20c23f74ce7d91a8b41
3
+ size 6254197248
AceMath-7B-Instruct-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65ed5fc7e941655a99104fbced163f37314f228fb83343a992a46cc075c80605
3
+ size 8098523328
AceMath-7B-Instruct.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d52d4a63def883e40e3e1e219e4ff98bffff3c24dc054e691c95668c8f255a36
3
+ size 4536712
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - nvidia
8
+ - AceMath
9
+ - math
10
+ - CoT
11
+ - pytorch
12
+ ---
13
+
14
+ # <span style="color: #7FFF7F;">AceMath-7B-Instruct GGUF Models</span>
15
+
16
+
17
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
18
+
19
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`e743cddb`](https://github.com/ggerganov/llama.cpp/commit/e743cddb60dc3a8815b9de7dd7d5c491e61b2259).
20
+
21
+
22
+
23
+
24
+
25
+ ---
26
+
27
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
28
+
29
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
30
+
31
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
32
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
33
+
34
+ While this does increase model file size, it significantly improves precision for a given quantization level.
35
+
36
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
37
+
38
+
39
+
40
+
41
+ ---
42
+
43
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
44
+ Click here to get info on choosing the right GGUF model format
45
+ </a>
46
+
47
+ ---
48
+
49
+
50
+
51
+ <!--Begin Original Model Card-->
52
+
53
+
54
+
55
+ ## Introduction
56
+ We introduce AceMath, a family of frontier models designed for mathematical reasoning. The models in AceMath family, including AceMath-1.5B/7B/72B-Instruct and AceMath-7B/72B-RM, are <b>Improved using Qwen</b>.
57
+ The AceMath-1.5B/7B/72B-Instruct models excel at solving English mathematical problems using Chain-of-Thought (CoT) reasoning, while the AceMath-7B/72B-RM models, as outcome reward models, specialize in evaluating and scoring mathematical solutions.
58
+
59
+ The AceMath-1.5B/7B/72B-Instruct models are developed from the Qwen2.5-Math-1.5B/7B/72B-Base models, leveraging a multi-stage supervised fine-tuning (SFT) process: first with general-purpose SFT data, followed by math-specific SFT data. We are releasing all training data to support further research in this field.
60
+
61
+ We only recommend using the AceMath models for solving math problems. To support other tasks, we also release AceInstruct-1.5B/7B/72B, a series of general-purpose SFT models designed to handle code, math, and general knowledge tasks. These models are built upon the Qwen2.5-1.5B/7B/72B-Base.
62
+
63
+ For more information about AceMath, check our [website](https://research.nvidia.com/labs/adlr/acemath/) and [paper](https://arxiv.org/abs/2412.15084).
64
+
65
+
66
+ ## All Resources
67
+ ### AceMath Instruction Models
68
+ - [AceMath-1.5B-Instruct](https://huggingface.co/nvidia/AceMath-1.5B-Instruct), [AceMath-7B-Instruct](https://huggingface.co/nvidia/AceMath-7B-Instruct), [AceMath-72B-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct)
69
+
70
+ ### AceMath Reward Models
71
+ - [AceMath-7B-RM](https://huggingface.co/nvidia/AceMath-7B-RM), [AceMath-72B-RM](https://huggingface.co/nvidia/AceMath-72B-RM)
72
+
73
+ ### Evaluation & Training Data
74
+ - [AceMath-RewardBench](https://huggingface.co/datasets/nvidia/AceMath-RewardBench), [AceMath-Instruct Training Data](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data), [AceMath-RM Training Data](https://huggingface.co/datasets/nvidia/AceMath-RM-Training-Data)
75
+
76
+ ### General Instruction Models
77
+ - [AceInstruct-1.5B](https://huggingface.co/nvidia/AceInstruct-1.5B), [AceInstruct-7B](https://huggingface.co/nvidia/AceInstruct-7B), [AceInstruct-72B](https://huggingface.co/nvidia/AceInstruct-72B)
78
+
79
+
80
+ ## Benchmark Results (AceMath-Instruct + AceMath-72B-RM)
81
+
82
+ <p align="center">
83
+ <img src="./acemath-pic.png" alt="AceMath Benchmark Results" width="800">
84
+ </p>
85
+
86
+
87
+ We compare AceMath to leading proprietary and open-access math models in above Table. Our AceMath-7B-Instruct, largely outperforms the previous best-in-class Qwen2.5-Math-7B-Instruct (Average pass@1: 67.2 vs. 62.9) on a variety of math reasoning benchmarks, while coming close to the performance of 10× larger Qwen2.5-Math-72B-Instruct (67.2 vs. 68.2). Notably, our AceMath-72B-Instruct outperforms the state-of-the-art Qwen2.5-Math-72B-Instruct (71.8 vs. 68.2), GPT-4o (67.4) and Claude 3.5 Sonnet (65.6) by a margin. We also report the rm@8 accuracy (best of 8) achieved by our reward model, AceMath-72B-RM, which sets a new record on these reasoning benchmarks. This excludes OpenAI’s o1 model, which relies on scaled inference computation.
88
+
89
+
90
+ ## How to use
91
+ ```python
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+
94
+ model_name = "nvidia/AceMath-7B-Instruct"
95
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
96
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
97
+
98
+ prompt = "Jen enters a lottery by picking $4$ distinct numbers from $S=\\{1,2,3,\\cdots,9,10\\}.$ $4$ numbers are randomly chosen from $S.$ She wins a prize if at least two of her numbers were $2$ of the randomly chosen numbers, and wins the grand prize if all four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she won a prize is $\\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$."
99
+ messages = [{"role": "user", "content": prompt}]
100
+
101
+ text = tokenizer.apply_chat_template(
102
+ messages,
103
+ tokenize=False,
104
+ add_generation_prompt=True
105
+ )
106
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
107
+
108
+ generated_ids = model.generate(
109
+ **model_inputs,
110
+ max_new_tokens=2048
111
+ )
112
+ generated_ids = [
113
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
114
+ ]
115
+
116
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
117
+ ```
118
+
119
+
120
+ ## Correspondence to
121
+ Zihan Liu (zihanl@nvidia.com), Yang Chen (yachen@nvidia.com), Wei Ping (wping@nvidia.com)
122
+
123
+
124
+ ## Citation
125
+ If you find our work helpful, we’d appreciate it if you could cite us.
126
+ <pre>
127
+ @article{acemath2024,
128
+ title={AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling},
129
+ author={Liu, Zihan and Chen, Yang and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
130
+ journal={arXiv preprint},
131
+ year={2024}
132
+ }
133
+ </pre>
134
+
135
+
136
+ ## License
137
+ All models in the AceMath family are for non-commercial use only, subject to [Terms of Use](https://openai.com/policies/row-terms-of-use/) of the data generated by OpenAI. We put the AceMath models under the license of [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0).
138
+
139
+ <!--End Original Model Card-->
140
+
141
+ ---
142
+
143
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
144
+
145
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
146
+
147
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
148
+
149
+
150
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
151
+
152
+ 💬 **How to test**:
153
+ Choose an **AI assistant type**:
154
+ - `TurboLLM` (GPT-4.1-mini)
155
+ - `HugLLM` (Hugginface Open-source models)
156
+ - `TestLLM` (Experimental CPU-only)
157
+
158
+ ### **What I’m Testing**
159
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
160
+ - **Function calling** against live network services
161
+ - **How small can a model go** while still handling:
162
+ - Automated **Nmap security scans**
163
+ - **Quantum-readiness checks**
164
+ - **Network Monitoring tasks**
165
+
166
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
167
+ - ✅ **Zero-configuration setup**
168
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
169
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
170
+
171
+ ### **Other Assistants**
172
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
173
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
174
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
175
+ - **Real-time network diagnostics and monitoring**
176
+ - **Security Audits**
177
+ - **Penetration testing** (Nmap/Metasploit)
178
+
179
+ 🔵 **HugLLM** – Latest Open-source models:
180
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
181
+
182
+ ### 💡 **Example commands you could test**:
183
+ 1. `"Give me info on my websites SSL certificate"`
184
+ 2. `"Check if my server is using quantum safe encyption for communication"`
185
+ 3. `"Run a comprehensive security audit on my server"`
186
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
187
+
188
+ ### Final Word
189
+
190
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
191
+
192
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
193
+
194
+ I'm also open to job opportunities or sponsorship.
195
+
196
+ Thank you! 😊