NumAdd-v2.0 / README.md
MultivexAI's picture
Update README.md
5edc085 verified
metadata
tags:
  - regression
  - pytorch
license: mit

Model Description

NumAdd-v2.0 is an optimized feed-forward neural network (FNN) in PyTorch for numerical sum prediction. Architecture: 2-input, 1-output, with two hidden layers (32, 64 neurons) and ReLU activations. Parameters: 2,273 trainable. Precision: Requires torch.float64 (double precision). Training Config: Optimal batch size: 2048, Final tuning learning rate: 1.0e-12.

Evaluation

Benchmarked on 120,000 samples across six input magnitude ranges. Metrics: MAE, MSE, RMSE, R2.

Range (Input Max) MAE MSE RMSE R2
0-50 0.004 0.000 0.004 1.000
51-500 0.003 0.000 0.004 1.000
501-5000 0.004 0.000 0.004 1.000
5001-50000 0.004 0.000 0.005 1.000
50001-500000 0.010 0.001 0.028 1.000
500001-50000000 0.706 6.333 2.517 1.000

Limitations

Precision degrades for extremely large magnitude inputs (e.g., >500,000), indicated by increased MAE/MSE, although R2 remains high.