Muinez commited on
Commit
8ac2bd6
1 Parent(s): 1821560

artwork score

Browse files
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-base-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: convnextv2-base-22k-384-finetuned-multilabel-test
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # convnextv2-base-22k-384-finetuned-multilabel-test
15
+
16
+ This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 3e-05
36
+ - train_batch_size: 16
37
+ - eval_batch_size: 16
38
+ - seed: 42
39
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
+ - lr_scheduler_type: constant
41
+ - num_epochs: 1
42
+
43
+ ### Training results
44
+
45
+
46
+
47
+ ### Framework versions
48
+
49
+ - Transformers 4.36.2
50
+ - Pytorch 2.0.1+cu118
51
+ - Datasets 2.16.0
52
+ - Tokenizers 0.15.0
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.49472963369333306,
4
+ "train_runtime": 1452.6312,
5
+ "train_samples_per_second": 22.043,
6
+ "train_steps_per_second": 1.378
7
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/convnextv2-base-22k-384",
3
+ "architectures": [
4
+ "ConvNextV2ForImageClassification"
5
+ ],
6
+ "depths": [
7
+ 3,
8
+ 3,
9
+ 27,
10
+ 3
11
+ ],
12
+ "drop_path_rate": 0.0,
13
+ "hidden_act": "gelu",
14
+ "hidden_sizes": [
15
+ 128,
16
+ 256,
17
+ 512,
18
+ 1024
19
+ ],
20
+ "id2label": {
21
+ "0": "score",
22
+ "1": "views"
23
+ },
24
+ "image_size": 224,
25
+ "initializer_range": 0.02,
26
+ "label2id": {
27
+ "score": 0,
28
+ "views": 1
29
+ },
30
+ "layer_norm_eps": 1e-12,
31
+ "model_type": "convnextv2",
32
+ "num_channels": 3,
33
+ "num_stages": 4,
34
+ "out_features": [
35
+ "stage4"
36
+ ],
37
+ "out_indices": [
38
+ 4
39
+ ],
40
+ "patch_size": 4,
41
+ "problem_type": "multi_label_classification",
42
+ "stage_names": [
43
+ "stem",
44
+ "stage1",
45
+ "stage2",
46
+ "stage3",
47
+ "stage4"
48
+ ],
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.36.2"
51
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a391221a94ba29aa1e7bdb50b63ad4abe7ca47c9945e67cfce51a05182756fcb
3
+ size 350825440
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": 0.875,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ConvNextImageProcessor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "shortest_edge": 384
21
+ }
22
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55bdbc5f3b061cce0ec14898ec956e32af01d40adacb093c5f865f37316fa5c9
3
+ size 350977405
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.49472963369333306,
4
+ "train_runtime": 1452.6312,
5
+ "train_samples_per_second": 22.043,
6
+ "train_steps_per_second": 1.378
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,2430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2002,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 3e-05,
14
+ "loss": 0.6862,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 3e-05,
20
+ "loss": 0.6634,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 3e-05,
26
+ "loss": 0.6382,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 3e-05,
32
+ "loss": 0.6214,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3e-05,
38
+ "loss": 0.5948,
39
+ "step": 25
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 3e-05,
44
+ "loss": 0.5716,
45
+ "step": 30
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 3e-05,
50
+ "loss": 0.567,
51
+ "step": 35
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 3e-05,
56
+ "loss": 0.5596,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 3e-05,
62
+ "loss": 0.553,
63
+ "step": 45
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 3e-05,
68
+ "loss": 0.5403,
69
+ "step": 50
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 3e-05,
74
+ "loss": 0.5372,
75
+ "step": 55
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 3e-05,
80
+ "loss": 0.5121,
81
+ "step": 60
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 3e-05,
86
+ "loss": 0.522,
87
+ "step": 65
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 3e-05,
92
+ "loss": 0.5278,
93
+ "step": 70
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 3e-05,
98
+ "loss": 0.5316,
99
+ "step": 75
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 3e-05,
104
+ "loss": 0.5005,
105
+ "step": 80
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 3e-05,
110
+ "loss": 0.5078,
111
+ "step": 85
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 3e-05,
116
+ "loss": 0.503,
117
+ "step": 90
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 3e-05,
122
+ "loss": 0.5166,
123
+ "step": 95
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 3e-05,
128
+ "loss": 0.5025,
129
+ "step": 100
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 3e-05,
134
+ "loss": 0.5147,
135
+ "step": 105
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 3e-05,
140
+ "loss": 0.5096,
141
+ "step": 110
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 3e-05,
146
+ "loss": 0.4717,
147
+ "step": 115
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 3e-05,
152
+ "loss": 0.4894,
153
+ "step": 120
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 3e-05,
158
+ "loss": 0.5086,
159
+ "step": 125
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 3e-05,
164
+ "loss": 0.5157,
165
+ "step": 130
166
+ },
167
+ {
168
+ "epoch": 0.07,
169
+ "learning_rate": 3e-05,
170
+ "loss": 0.5278,
171
+ "step": 135
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 3e-05,
176
+ "loss": 0.5059,
177
+ "step": 140
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 3e-05,
182
+ "loss": 0.5418,
183
+ "step": 145
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 3e-05,
188
+ "loss": 0.5156,
189
+ "step": 150
190
+ },
191
+ {
192
+ "epoch": 0.08,
193
+ "learning_rate": 3e-05,
194
+ "loss": 0.505,
195
+ "step": 155
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 3e-05,
200
+ "loss": 0.4993,
201
+ "step": 160
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 3e-05,
206
+ "loss": 0.5003,
207
+ "step": 165
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 3e-05,
212
+ "loss": 0.5121,
213
+ "step": 170
214
+ },
215
+ {
216
+ "epoch": 0.09,
217
+ "learning_rate": 3e-05,
218
+ "loss": 0.4802,
219
+ "step": 175
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 3e-05,
224
+ "loss": 0.4893,
225
+ "step": 180
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 3e-05,
230
+ "loss": 0.4967,
231
+ "step": 185
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 3e-05,
236
+ "loss": 0.5016,
237
+ "step": 190
238
+ },
239
+ {
240
+ "epoch": 0.1,
241
+ "learning_rate": 3e-05,
242
+ "loss": 0.4854,
243
+ "step": 195
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 3e-05,
248
+ "loss": 0.5074,
249
+ "step": 200
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 3e-05,
254
+ "loss": 0.5108,
255
+ "step": 205
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 3e-05,
260
+ "loss": 0.484,
261
+ "step": 210
262
+ },
263
+ {
264
+ "epoch": 0.11,
265
+ "learning_rate": 3e-05,
266
+ "loss": 0.5124,
267
+ "step": 215
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 3e-05,
272
+ "loss": 0.5182,
273
+ "step": 220
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 3e-05,
278
+ "loss": 0.5016,
279
+ "step": 225
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 3e-05,
284
+ "loss": 0.4906,
285
+ "step": 230
286
+ },
287
+ {
288
+ "epoch": 0.12,
289
+ "learning_rate": 3e-05,
290
+ "loss": 0.4816,
291
+ "step": 235
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 3e-05,
296
+ "loss": 0.5268,
297
+ "step": 240
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 3e-05,
302
+ "loss": 0.5135,
303
+ "step": 245
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 3e-05,
308
+ "loss": 0.4752,
309
+ "step": 250
310
+ },
311
+ {
312
+ "epoch": 0.13,
313
+ "learning_rate": 3e-05,
314
+ "loss": 0.4995,
315
+ "step": 255
316
+ },
317
+ {
318
+ "epoch": 0.13,
319
+ "learning_rate": 3e-05,
320
+ "loss": 0.4729,
321
+ "step": 260
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 3e-05,
326
+ "loss": 0.5037,
327
+ "step": 265
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 3e-05,
332
+ "loss": 0.4936,
333
+ "step": 270
334
+ },
335
+ {
336
+ "epoch": 0.14,
337
+ "learning_rate": 3e-05,
338
+ "loss": 0.5037,
339
+ "step": 275
340
+ },
341
+ {
342
+ "epoch": 0.14,
343
+ "learning_rate": 3e-05,
344
+ "loss": 0.518,
345
+ "step": 280
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 3e-05,
350
+ "loss": 0.4979,
351
+ "step": 285
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 3e-05,
356
+ "loss": 0.5089,
357
+ "step": 290
358
+ },
359
+ {
360
+ "epoch": 0.15,
361
+ "learning_rate": 3e-05,
362
+ "loss": 0.4839,
363
+ "step": 295
364
+ },
365
+ {
366
+ "epoch": 0.15,
367
+ "learning_rate": 3e-05,
368
+ "loss": 0.468,
369
+ "step": 300
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 3e-05,
374
+ "loss": 0.4933,
375
+ "step": 305
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 3e-05,
380
+ "loss": 0.4932,
381
+ "step": 310
382
+ },
383
+ {
384
+ "epoch": 0.16,
385
+ "learning_rate": 3e-05,
386
+ "loss": 0.5113,
387
+ "step": 315
388
+ },
389
+ {
390
+ "epoch": 0.16,
391
+ "learning_rate": 3e-05,
392
+ "loss": 0.5042,
393
+ "step": 320
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 3e-05,
398
+ "loss": 0.4828,
399
+ "step": 325
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 3e-05,
404
+ "loss": 0.4963,
405
+ "step": 330
406
+ },
407
+ {
408
+ "epoch": 0.17,
409
+ "learning_rate": 3e-05,
410
+ "loss": 0.4928,
411
+ "step": 335
412
+ },
413
+ {
414
+ "epoch": 0.17,
415
+ "learning_rate": 3e-05,
416
+ "loss": 0.4961,
417
+ "step": 340
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 3e-05,
422
+ "loss": 0.4805,
423
+ "step": 345
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 3e-05,
428
+ "loss": 0.4867,
429
+ "step": 350
430
+ },
431
+ {
432
+ "epoch": 0.18,
433
+ "learning_rate": 3e-05,
434
+ "loss": 0.5097,
435
+ "step": 355
436
+ },
437
+ {
438
+ "epoch": 0.18,
439
+ "learning_rate": 3e-05,
440
+ "loss": 0.4972,
441
+ "step": 360
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 3e-05,
446
+ "loss": 0.4881,
447
+ "step": 365
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 3e-05,
452
+ "loss": 0.4917,
453
+ "step": 370
454
+ },
455
+ {
456
+ "epoch": 0.19,
457
+ "learning_rate": 3e-05,
458
+ "loss": 0.5091,
459
+ "step": 375
460
+ },
461
+ {
462
+ "epoch": 0.19,
463
+ "learning_rate": 3e-05,
464
+ "loss": 0.4943,
465
+ "step": 380
466
+ },
467
+ {
468
+ "epoch": 0.19,
469
+ "learning_rate": 3e-05,
470
+ "loss": 0.488,
471
+ "step": 385
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 3e-05,
476
+ "loss": 0.482,
477
+ "step": 390
478
+ },
479
+ {
480
+ "epoch": 0.2,
481
+ "learning_rate": 3e-05,
482
+ "loss": 0.4975,
483
+ "step": 395
484
+ },
485
+ {
486
+ "epoch": 0.2,
487
+ "learning_rate": 3e-05,
488
+ "loss": 0.4749,
489
+ "step": 400
490
+ },
491
+ {
492
+ "epoch": 0.2,
493
+ "learning_rate": 3e-05,
494
+ "loss": 0.483,
495
+ "step": 405
496
+ },
497
+ {
498
+ "epoch": 0.2,
499
+ "learning_rate": 3e-05,
500
+ "loss": 0.5165,
501
+ "step": 410
502
+ },
503
+ {
504
+ "epoch": 0.21,
505
+ "learning_rate": 3e-05,
506
+ "loss": 0.4933,
507
+ "step": 415
508
+ },
509
+ {
510
+ "epoch": 0.21,
511
+ "learning_rate": 3e-05,
512
+ "loss": 0.4923,
513
+ "step": 420
514
+ },
515
+ {
516
+ "epoch": 0.21,
517
+ "learning_rate": 3e-05,
518
+ "loss": 0.5069,
519
+ "step": 425
520
+ },
521
+ {
522
+ "epoch": 0.21,
523
+ "learning_rate": 3e-05,
524
+ "loss": 0.5154,
525
+ "step": 430
526
+ },
527
+ {
528
+ "epoch": 0.22,
529
+ "learning_rate": 3e-05,
530
+ "loss": 0.4937,
531
+ "step": 435
532
+ },
533
+ {
534
+ "epoch": 0.22,
535
+ "learning_rate": 3e-05,
536
+ "loss": 0.5119,
537
+ "step": 440
538
+ },
539
+ {
540
+ "epoch": 0.22,
541
+ "learning_rate": 3e-05,
542
+ "loss": 0.4616,
543
+ "step": 445
544
+ },
545
+ {
546
+ "epoch": 0.22,
547
+ "learning_rate": 3e-05,
548
+ "loss": 0.4819,
549
+ "step": 450
550
+ },
551
+ {
552
+ "epoch": 0.23,
553
+ "learning_rate": 3e-05,
554
+ "loss": 0.472,
555
+ "step": 455
556
+ },
557
+ {
558
+ "epoch": 0.23,
559
+ "learning_rate": 3e-05,
560
+ "loss": 0.4761,
561
+ "step": 460
562
+ },
563
+ {
564
+ "epoch": 0.23,
565
+ "learning_rate": 3e-05,
566
+ "loss": 0.4957,
567
+ "step": 465
568
+ },
569
+ {
570
+ "epoch": 0.23,
571
+ "learning_rate": 3e-05,
572
+ "loss": 0.5135,
573
+ "step": 470
574
+ },
575
+ {
576
+ "epoch": 0.24,
577
+ "learning_rate": 3e-05,
578
+ "loss": 0.5026,
579
+ "step": 475
580
+ },
581
+ {
582
+ "epoch": 0.24,
583
+ "learning_rate": 3e-05,
584
+ "loss": 0.4959,
585
+ "step": 480
586
+ },
587
+ {
588
+ "epoch": 0.24,
589
+ "learning_rate": 3e-05,
590
+ "loss": 0.5016,
591
+ "step": 485
592
+ },
593
+ {
594
+ "epoch": 0.24,
595
+ "learning_rate": 3e-05,
596
+ "loss": 0.5108,
597
+ "step": 490
598
+ },
599
+ {
600
+ "epoch": 0.25,
601
+ "learning_rate": 3e-05,
602
+ "loss": 0.5108,
603
+ "step": 495
604
+ },
605
+ {
606
+ "epoch": 0.25,
607
+ "learning_rate": 3e-05,
608
+ "loss": 0.5137,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 0.25,
613
+ "learning_rate": 3e-05,
614
+ "loss": 0.4952,
615
+ "step": 505
616
+ },
617
+ {
618
+ "epoch": 0.25,
619
+ "learning_rate": 3e-05,
620
+ "loss": 0.5081,
621
+ "step": 510
622
+ },
623
+ {
624
+ "epoch": 0.26,
625
+ "learning_rate": 3e-05,
626
+ "loss": 0.5127,
627
+ "step": 515
628
+ },
629
+ {
630
+ "epoch": 0.26,
631
+ "learning_rate": 3e-05,
632
+ "loss": 0.502,
633
+ "step": 520
634
+ },
635
+ {
636
+ "epoch": 0.26,
637
+ "learning_rate": 3e-05,
638
+ "loss": 0.505,
639
+ "step": 525
640
+ },
641
+ {
642
+ "epoch": 0.26,
643
+ "learning_rate": 3e-05,
644
+ "loss": 0.4954,
645
+ "step": 530
646
+ },
647
+ {
648
+ "epoch": 0.27,
649
+ "learning_rate": 3e-05,
650
+ "loss": 0.4866,
651
+ "step": 535
652
+ },
653
+ {
654
+ "epoch": 0.27,
655
+ "learning_rate": 3e-05,
656
+ "loss": 0.4988,
657
+ "step": 540
658
+ },
659
+ {
660
+ "epoch": 0.27,
661
+ "learning_rate": 3e-05,
662
+ "loss": 0.5086,
663
+ "step": 545
664
+ },
665
+ {
666
+ "epoch": 0.27,
667
+ "learning_rate": 3e-05,
668
+ "loss": 0.4809,
669
+ "step": 550
670
+ },
671
+ {
672
+ "epoch": 0.28,
673
+ "learning_rate": 3e-05,
674
+ "loss": 0.4864,
675
+ "step": 555
676
+ },
677
+ {
678
+ "epoch": 0.28,
679
+ "learning_rate": 3e-05,
680
+ "loss": 0.4824,
681
+ "step": 560
682
+ },
683
+ {
684
+ "epoch": 0.28,
685
+ "learning_rate": 3e-05,
686
+ "loss": 0.5376,
687
+ "step": 565
688
+ },
689
+ {
690
+ "epoch": 0.28,
691
+ "learning_rate": 3e-05,
692
+ "loss": 0.4987,
693
+ "step": 570
694
+ },
695
+ {
696
+ "epoch": 0.29,
697
+ "learning_rate": 3e-05,
698
+ "loss": 0.4944,
699
+ "step": 575
700
+ },
701
+ {
702
+ "epoch": 0.29,
703
+ "learning_rate": 3e-05,
704
+ "loss": 0.5306,
705
+ "step": 580
706
+ },
707
+ {
708
+ "epoch": 0.29,
709
+ "learning_rate": 3e-05,
710
+ "loss": 0.4995,
711
+ "step": 585
712
+ },
713
+ {
714
+ "epoch": 0.29,
715
+ "learning_rate": 3e-05,
716
+ "loss": 0.4892,
717
+ "step": 590
718
+ },
719
+ {
720
+ "epoch": 0.3,
721
+ "learning_rate": 3e-05,
722
+ "loss": 0.5356,
723
+ "step": 595
724
+ },
725
+ {
726
+ "epoch": 0.3,
727
+ "learning_rate": 3e-05,
728
+ "loss": 0.4931,
729
+ "step": 600
730
+ },
731
+ {
732
+ "epoch": 0.3,
733
+ "learning_rate": 3e-05,
734
+ "loss": 0.5032,
735
+ "step": 605
736
+ },
737
+ {
738
+ "epoch": 0.3,
739
+ "learning_rate": 3e-05,
740
+ "loss": 0.4911,
741
+ "step": 610
742
+ },
743
+ {
744
+ "epoch": 0.31,
745
+ "learning_rate": 3e-05,
746
+ "loss": 0.4989,
747
+ "step": 615
748
+ },
749
+ {
750
+ "epoch": 0.31,
751
+ "learning_rate": 3e-05,
752
+ "loss": 0.4995,
753
+ "step": 620
754
+ },
755
+ {
756
+ "epoch": 0.31,
757
+ "learning_rate": 3e-05,
758
+ "loss": 0.4907,
759
+ "step": 625
760
+ },
761
+ {
762
+ "epoch": 0.31,
763
+ "learning_rate": 3e-05,
764
+ "loss": 0.4982,
765
+ "step": 630
766
+ },
767
+ {
768
+ "epoch": 0.32,
769
+ "learning_rate": 3e-05,
770
+ "loss": 0.4569,
771
+ "step": 635
772
+ },
773
+ {
774
+ "epoch": 0.32,
775
+ "learning_rate": 3e-05,
776
+ "loss": 0.4932,
777
+ "step": 640
778
+ },
779
+ {
780
+ "epoch": 0.32,
781
+ "learning_rate": 3e-05,
782
+ "loss": 0.4795,
783
+ "step": 645
784
+ },
785
+ {
786
+ "epoch": 0.32,
787
+ "learning_rate": 3e-05,
788
+ "loss": 0.4873,
789
+ "step": 650
790
+ },
791
+ {
792
+ "epoch": 0.33,
793
+ "learning_rate": 3e-05,
794
+ "loss": 0.4743,
795
+ "step": 655
796
+ },
797
+ {
798
+ "epoch": 0.33,
799
+ "learning_rate": 3e-05,
800
+ "loss": 0.5099,
801
+ "step": 660
802
+ },
803
+ {
804
+ "epoch": 0.33,
805
+ "learning_rate": 3e-05,
806
+ "loss": 0.5015,
807
+ "step": 665
808
+ },
809
+ {
810
+ "epoch": 0.33,
811
+ "learning_rate": 3e-05,
812
+ "loss": 0.49,
813
+ "step": 670
814
+ },
815
+ {
816
+ "epoch": 0.34,
817
+ "learning_rate": 3e-05,
818
+ "loss": 0.4901,
819
+ "step": 675
820
+ },
821
+ {
822
+ "epoch": 0.34,
823
+ "learning_rate": 3e-05,
824
+ "loss": 0.5034,
825
+ "step": 680
826
+ },
827
+ {
828
+ "epoch": 0.34,
829
+ "learning_rate": 3e-05,
830
+ "loss": 0.4973,
831
+ "step": 685
832
+ },
833
+ {
834
+ "epoch": 0.34,
835
+ "learning_rate": 3e-05,
836
+ "loss": 0.4769,
837
+ "step": 690
838
+ },
839
+ {
840
+ "epoch": 0.35,
841
+ "learning_rate": 3e-05,
842
+ "loss": 0.4844,
843
+ "step": 695
844
+ },
845
+ {
846
+ "epoch": 0.35,
847
+ "learning_rate": 3e-05,
848
+ "loss": 0.5038,
849
+ "step": 700
850
+ },
851
+ {
852
+ "epoch": 0.35,
853
+ "learning_rate": 3e-05,
854
+ "loss": 0.4849,
855
+ "step": 705
856
+ },
857
+ {
858
+ "epoch": 0.35,
859
+ "learning_rate": 3e-05,
860
+ "loss": 0.4698,
861
+ "step": 710
862
+ },
863
+ {
864
+ "epoch": 0.36,
865
+ "learning_rate": 3e-05,
866
+ "loss": 0.4789,
867
+ "step": 715
868
+ },
869
+ {
870
+ "epoch": 0.36,
871
+ "learning_rate": 3e-05,
872
+ "loss": 0.5255,
873
+ "step": 720
874
+ },
875
+ {
876
+ "epoch": 0.36,
877
+ "learning_rate": 3e-05,
878
+ "loss": 0.5074,
879
+ "step": 725
880
+ },
881
+ {
882
+ "epoch": 0.36,
883
+ "learning_rate": 3e-05,
884
+ "loss": 0.5016,
885
+ "step": 730
886
+ },
887
+ {
888
+ "epoch": 0.37,
889
+ "learning_rate": 3e-05,
890
+ "loss": 0.5089,
891
+ "step": 735
892
+ },
893
+ {
894
+ "epoch": 0.37,
895
+ "learning_rate": 3e-05,
896
+ "loss": 0.5036,
897
+ "step": 740
898
+ },
899
+ {
900
+ "epoch": 0.37,
901
+ "learning_rate": 3e-05,
902
+ "loss": 0.4816,
903
+ "step": 745
904
+ },
905
+ {
906
+ "epoch": 0.37,
907
+ "learning_rate": 3e-05,
908
+ "loss": 0.4777,
909
+ "step": 750
910
+ },
911
+ {
912
+ "epoch": 0.38,
913
+ "learning_rate": 3e-05,
914
+ "loss": 0.4713,
915
+ "step": 755
916
+ },
917
+ {
918
+ "epoch": 0.38,
919
+ "learning_rate": 3e-05,
920
+ "loss": 0.4929,
921
+ "step": 760
922
+ },
923
+ {
924
+ "epoch": 0.38,
925
+ "learning_rate": 3e-05,
926
+ "loss": 0.5038,
927
+ "step": 765
928
+ },
929
+ {
930
+ "epoch": 0.38,
931
+ "learning_rate": 3e-05,
932
+ "loss": 0.4729,
933
+ "step": 770
934
+ },
935
+ {
936
+ "epoch": 0.39,
937
+ "learning_rate": 3e-05,
938
+ "loss": 0.5002,
939
+ "step": 775
940
+ },
941
+ {
942
+ "epoch": 0.39,
943
+ "learning_rate": 3e-05,
944
+ "loss": 0.5151,
945
+ "step": 780
946
+ },
947
+ {
948
+ "epoch": 0.39,
949
+ "learning_rate": 3e-05,
950
+ "loss": 0.5039,
951
+ "step": 785
952
+ },
953
+ {
954
+ "epoch": 0.39,
955
+ "learning_rate": 3e-05,
956
+ "loss": 0.4866,
957
+ "step": 790
958
+ },
959
+ {
960
+ "epoch": 0.4,
961
+ "learning_rate": 3e-05,
962
+ "loss": 0.484,
963
+ "step": 795
964
+ },
965
+ {
966
+ "epoch": 0.4,
967
+ "learning_rate": 3e-05,
968
+ "loss": 0.5007,
969
+ "step": 800
970
+ },
971
+ {
972
+ "epoch": 0.4,
973
+ "learning_rate": 3e-05,
974
+ "loss": 0.5001,
975
+ "step": 805
976
+ },
977
+ {
978
+ "epoch": 0.4,
979
+ "learning_rate": 3e-05,
980
+ "loss": 0.508,
981
+ "step": 810
982
+ },
983
+ {
984
+ "epoch": 0.41,
985
+ "learning_rate": 3e-05,
986
+ "loss": 0.4831,
987
+ "step": 815
988
+ },
989
+ {
990
+ "epoch": 0.41,
991
+ "learning_rate": 3e-05,
992
+ "loss": 0.5185,
993
+ "step": 820
994
+ },
995
+ {
996
+ "epoch": 0.41,
997
+ "learning_rate": 3e-05,
998
+ "loss": 0.5131,
999
+ "step": 825
1000
+ },
1001
+ {
1002
+ "epoch": 0.41,
1003
+ "learning_rate": 3e-05,
1004
+ "loss": 0.4893,
1005
+ "step": 830
1006
+ },
1007
+ {
1008
+ "epoch": 0.42,
1009
+ "learning_rate": 3e-05,
1010
+ "loss": 0.4797,
1011
+ "step": 835
1012
+ },
1013
+ {
1014
+ "epoch": 0.42,
1015
+ "learning_rate": 3e-05,
1016
+ "loss": 0.4935,
1017
+ "step": 840
1018
+ },
1019
+ {
1020
+ "epoch": 0.42,
1021
+ "learning_rate": 3e-05,
1022
+ "loss": 0.4896,
1023
+ "step": 845
1024
+ },
1025
+ {
1026
+ "epoch": 0.42,
1027
+ "learning_rate": 3e-05,
1028
+ "loss": 0.4897,
1029
+ "step": 850
1030
+ },
1031
+ {
1032
+ "epoch": 0.43,
1033
+ "learning_rate": 3e-05,
1034
+ "loss": 0.4805,
1035
+ "step": 855
1036
+ },
1037
+ {
1038
+ "epoch": 0.43,
1039
+ "learning_rate": 3e-05,
1040
+ "loss": 0.4933,
1041
+ "step": 860
1042
+ },
1043
+ {
1044
+ "epoch": 0.43,
1045
+ "learning_rate": 3e-05,
1046
+ "loss": 0.4978,
1047
+ "step": 865
1048
+ },
1049
+ {
1050
+ "epoch": 0.43,
1051
+ "learning_rate": 3e-05,
1052
+ "loss": 0.4755,
1053
+ "step": 870
1054
+ },
1055
+ {
1056
+ "epoch": 0.44,
1057
+ "learning_rate": 3e-05,
1058
+ "loss": 0.5159,
1059
+ "step": 875
1060
+ },
1061
+ {
1062
+ "epoch": 0.44,
1063
+ "learning_rate": 3e-05,
1064
+ "loss": 0.5054,
1065
+ "step": 880
1066
+ },
1067
+ {
1068
+ "epoch": 0.44,
1069
+ "learning_rate": 3e-05,
1070
+ "loss": 0.495,
1071
+ "step": 885
1072
+ },
1073
+ {
1074
+ "epoch": 0.44,
1075
+ "learning_rate": 3e-05,
1076
+ "loss": 0.4791,
1077
+ "step": 890
1078
+ },
1079
+ {
1080
+ "epoch": 0.45,
1081
+ "learning_rate": 3e-05,
1082
+ "loss": 0.474,
1083
+ "step": 895
1084
+ },
1085
+ {
1086
+ "epoch": 0.45,
1087
+ "learning_rate": 3e-05,
1088
+ "loss": 0.4795,
1089
+ "step": 900
1090
+ },
1091
+ {
1092
+ "epoch": 0.45,
1093
+ "learning_rate": 3e-05,
1094
+ "loss": 0.4826,
1095
+ "step": 905
1096
+ },
1097
+ {
1098
+ "epoch": 0.45,
1099
+ "learning_rate": 3e-05,
1100
+ "loss": 0.5009,
1101
+ "step": 910
1102
+ },
1103
+ {
1104
+ "epoch": 0.46,
1105
+ "learning_rate": 3e-05,
1106
+ "loss": 0.4823,
1107
+ "step": 915
1108
+ },
1109
+ {
1110
+ "epoch": 0.46,
1111
+ "learning_rate": 3e-05,
1112
+ "loss": 0.5183,
1113
+ "step": 920
1114
+ },
1115
+ {
1116
+ "epoch": 0.46,
1117
+ "learning_rate": 3e-05,
1118
+ "loss": 0.4707,
1119
+ "step": 925
1120
+ },
1121
+ {
1122
+ "epoch": 0.46,
1123
+ "learning_rate": 3e-05,
1124
+ "loss": 0.5133,
1125
+ "step": 930
1126
+ },
1127
+ {
1128
+ "epoch": 0.47,
1129
+ "learning_rate": 3e-05,
1130
+ "loss": 0.4967,
1131
+ "step": 935
1132
+ },
1133
+ {
1134
+ "epoch": 0.47,
1135
+ "learning_rate": 3e-05,
1136
+ "loss": 0.4843,
1137
+ "step": 940
1138
+ },
1139
+ {
1140
+ "epoch": 0.47,
1141
+ "learning_rate": 3e-05,
1142
+ "loss": 0.4693,
1143
+ "step": 945
1144
+ },
1145
+ {
1146
+ "epoch": 0.47,
1147
+ "learning_rate": 3e-05,
1148
+ "loss": 0.4671,
1149
+ "step": 950
1150
+ },
1151
+ {
1152
+ "epoch": 0.48,
1153
+ "learning_rate": 3e-05,
1154
+ "loss": 0.4949,
1155
+ "step": 955
1156
+ },
1157
+ {
1158
+ "epoch": 0.48,
1159
+ "learning_rate": 3e-05,
1160
+ "loss": 0.5138,
1161
+ "step": 960
1162
+ },
1163
+ {
1164
+ "epoch": 0.48,
1165
+ "learning_rate": 3e-05,
1166
+ "loss": 0.4853,
1167
+ "step": 965
1168
+ },
1169
+ {
1170
+ "epoch": 0.48,
1171
+ "learning_rate": 3e-05,
1172
+ "loss": 0.4916,
1173
+ "step": 970
1174
+ },
1175
+ {
1176
+ "epoch": 0.49,
1177
+ "learning_rate": 3e-05,
1178
+ "loss": 0.5141,
1179
+ "step": 975
1180
+ },
1181
+ {
1182
+ "epoch": 0.49,
1183
+ "learning_rate": 3e-05,
1184
+ "loss": 0.4842,
1185
+ "step": 980
1186
+ },
1187
+ {
1188
+ "epoch": 0.49,
1189
+ "learning_rate": 3e-05,
1190
+ "loss": 0.4933,
1191
+ "step": 985
1192
+ },
1193
+ {
1194
+ "epoch": 0.49,
1195
+ "learning_rate": 3e-05,
1196
+ "loss": 0.5022,
1197
+ "step": 990
1198
+ },
1199
+ {
1200
+ "epoch": 0.5,
1201
+ "learning_rate": 3e-05,
1202
+ "loss": 0.4879,
1203
+ "step": 995
1204
+ },
1205
+ {
1206
+ "epoch": 0.5,
1207
+ "learning_rate": 3e-05,
1208
+ "loss": 0.5193,
1209
+ "step": 1000
1210
+ },
1211
+ {
1212
+ "epoch": 0.5,
1213
+ "learning_rate": 3e-05,
1214
+ "loss": 0.473,
1215
+ "step": 1005
1216
+ },
1217
+ {
1218
+ "epoch": 0.5,
1219
+ "learning_rate": 3e-05,
1220
+ "loss": 0.4785,
1221
+ "step": 1010
1222
+ },
1223
+ {
1224
+ "epoch": 0.51,
1225
+ "learning_rate": 3e-05,
1226
+ "loss": 0.485,
1227
+ "step": 1015
1228
+ },
1229
+ {
1230
+ "epoch": 0.51,
1231
+ "learning_rate": 3e-05,
1232
+ "loss": 0.4803,
1233
+ "step": 1020
1234
+ },
1235
+ {
1236
+ "epoch": 0.51,
1237
+ "learning_rate": 3e-05,
1238
+ "loss": 0.4773,
1239
+ "step": 1025
1240
+ },
1241
+ {
1242
+ "epoch": 0.51,
1243
+ "learning_rate": 3e-05,
1244
+ "loss": 0.4771,
1245
+ "step": 1030
1246
+ },
1247
+ {
1248
+ "epoch": 0.52,
1249
+ "learning_rate": 3e-05,
1250
+ "loss": 0.5051,
1251
+ "step": 1035
1252
+ },
1253
+ {
1254
+ "epoch": 0.52,
1255
+ "learning_rate": 3e-05,
1256
+ "loss": 0.4433,
1257
+ "step": 1040
1258
+ },
1259
+ {
1260
+ "epoch": 0.52,
1261
+ "learning_rate": 3e-05,
1262
+ "loss": 0.4708,
1263
+ "step": 1045
1264
+ },
1265
+ {
1266
+ "epoch": 0.52,
1267
+ "learning_rate": 3e-05,
1268
+ "loss": 0.5028,
1269
+ "step": 1050
1270
+ },
1271
+ {
1272
+ "epoch": 0.53,
1273
+ "learning_rate": 3e-05,
1274
+ "loss": 0.5053,
1275
+ "step": 1055
1276
+ },
1277
+ {
1278
+ "epoch": 0.53,
1279
+ "learning_rate": 3e-05,
1280
+ "loss": 0.45,
1281
+ "step": 1060
1282
+ },
1283
+ {
1284
+ "epoch": 0.53,
1285
+ "learning_rate": 3e-05,
1286
+ "loss": 0.5022,
1287
+ "step": 1065
1288
+ },
1289
+ {
1290
+ "epoch": 0.53,
1291
+ "learning_rate": 3e-05,
1292
+ "loss": 0.4668,
1293
+ "step": 1070
1294
+ },
1295
+ {
1296
+ "epoch": 0.54,
1297
+ "learning_rate": 3e-05,
1298
+ "loss": 0.5334,
1299
+ "step": 1075
1300
+ },
1301
+ {
1302
+ "epoch": 0.54,
1303
+ "learning_rate": 3e-05,
1304
+ "loss": 0.4898,
1305
+ "step": 1080
1306
+ },
1307
+ {
1308
+ "epoch": 0.54,
1309
+ "learning_rate": 3e-05,
1310
+ "loss": 0.4664,
1311
+ "step": 1085
1312
+ },
1313
+ {
1314
+ "epoch": 0.54,
1315
+ "learning_rate": 3e-05,
1316
+ "loss": 0.4657,
1317
+ "step": 1090
1318
+ },
1319
+ {
1320
+ "epoch": 0.55,
1321
+ "learning_rate": 3e-05,
1322
+ "loss": 0.4598,
1323
+ "step": 1095
1324
+ },
1325
+ {
1326
+ "epoch": 0.55,
1327
+ "learning_rate": 3e-05,
1328
+ "loss": 0.48,
1329
+ "step": 1100
1330
+ },
1331
+ {
1332
+ "epoch": 0.55,
1333
+ "learning_rate": 3e-05,
1334
+ "loss": 0.4838,
1335
+ "step": 1105
1336
+ },
1337
+ {
1338
+ "epoch": 0.55,
1339
+ "learning_rate": 3e-05,
1340
+ "loss": 0.5101,
1341
+ "step": 1110
1342
+ },
1343
+ {
1344
+ "epoch": 0.56,
1345
+ "learning_rate": 3e-05,
1346
+ "loss": 0.5332,
1347
+ "step": 1115
1348
+ },
1349
+ {
1350
+ "epoch": 0.56,
1351
+ "learning_rate": 3e-05,
1352
+ "loss": 0.4935,
1353
+ "step": 1120
1354
+ },
1355
+ {
1356
+ "epoch": 0.56,
1357
+ "learning_rate": 3e-05,
1358
+ "loss": 0.4861,
1359
+ "step": 1125
1360
+ },
1361
+ {
1362
+ "epoch": 0.56,
1363
+ "learning_rate": 3e-05,
1364
+ "loss": 0.4654,
1365
+ "step": 1130
1366
+ },
1367
+ {
1368
+ "epoch": 0.57,
1369
+ "learning_rate": 3e-05,
1370
+ "loss": 0.4708,
1371
+ "step": 1135
1372
+ },
1373
+ {
1374
+ "epoch": 0.57,
1375
+ "learning_rate": 3e-05,
1376
+ "loss": 0.49,
1377
+ "step": 1140
1378
+ },
1379
+ {
1380
+ "epoch": 0.57,
1381
+ "learning_rate": 3e-05,
1382
+ "loss": 0.4992,
1383
+ "step": 1145
1384
+ },
1385
+ {
1386
+ "epoch": 0.57,
1387
+ "learning_rate": 3e-05,
1388
+ "loss": 0.501,
1389
+ "step": 1150
1390
+ },
1391
+ {
1392
+ "epoch": 0.58,
1393
+ "learning_rate": 3e-05,
1394
+ "loss": 0.507,
1395
+ "step": 1155
1396
+ },
1397
+ {
1398
+ "epoch": 0.58,
1399
+ "learning_rate": 3e-05,
1400
+ "loss": 0.4858,
1401
+ "step": 1160
1402
+ },
1403
+ {
1404
+ "epoch": 0.58,
1405
+ "learning_rate": 3e-05,
1406
+ "loss": 0.5118,
1407
+ "step": 1165
1408
+ },
1409
+ {
1410
+ "epoch": 0.58,
1411
+ "learning_rate": 3e-05,
1412
+ "loss": 0.4985,
1413
+ "step": 1170
1414
+ },
1415
+ {
1416
+ "epoch": 0.59,
1417
+ "learning_rate": 3e-05,
1418
+ "loss": 0.4821,
1419
+ "step": 1175
1420
+ },
1421
+ {
1422
+ "epoch": 0.59,
1423
+ "learning_rate": 3e-05,
1424
+ "loss": 0.4957,
1425
+ "step": 1180
1426
+ },
1427
+ {
1428
+ "epoch": 0.59,
1429
+ "learning_rate": 3e-05,
1430
+ "loss": 0.4722,
1431
+ "step": 1185
1432
+ },
1433
+ {
1434
+ "epoch": 0.59,
1435
+ "learning_rate": 3e-05,
1436
+ "loss": 0.5096,
1437
+ "step": 1190
1438
+ },
1439
+ {
1440
+ "epoch": 0.6,
1441
+ "learning_rate": 3e-05,
1442
+ "loss": 0.4748,
1443
+ "step": 1195
1444
+ },
1445
+ {
1446
+ "epoch": 0.6,
1447
+ "learning_rate": 3e-05,
1448
+ "loss": 0.5074,
1449
+ "step": 1200
1450
+ },
1451
+ {
1452
+ "epoch": 0.6,
1453
+ "learning_rate": 3e-05,
1454
+ "loss": 0.4901,
1455
+ "step": 1205
1456
+ },
1457
+ {
1458
+ "epoch": 0.6,
1459
+ "learning_rate": 3e-05,
1460
+ "loss": 0.4931,
1461
+ "step": 1210
1462
+ },
1463
+ {
1464
+ "epoch": 0.61,
1465
+ "learning_rate": 3e-05,
1466
+ "loss": 0.489,
1467
+ "step": 1215
1468
+ },
1469
+ {
1470
+ "epoch": 0.61,
1471
+ "learning_rate": 3e-05,
1472
+ "loss": 0.48,
1473
+ "step": 1220
1474
+ },
1475
+ {
1476
+ "epoch": 0.61,
1477
+ "learning_rate": 3e-05,
1478
+ "loss": 0.5009,
1479
+ "step": 1225
1480
+ },
1481
+ {
1482
+ "epoch": 0.61,
1483
+ "learning_rate": 3e-05,
1484
+ "loss": 0.4795,
1485
+ "step": 1230
1486
+ },
1487
+ {
1488
+ "epoch": 0.62,
1489
+ "learning_rate": 3e-05,
1490
+ "loss": 0.515,
1491
+ "step": 1235
1492
+ },
1493
+ {
1494
+ "epoch": 0.62,
1495
+ "learning_rate": 3e-05,
1496
+ "loss": 0.488,
1497
+ "step": 1240
1498
+ },
1499
+ {
1500
+ "epoch": 0.62,
1501
+ "learning_rate": 3e-05,
1502
+ "loss": 0.484,
1503
+ "step": 1245
1504
+ },
1505
+ {
1506
+ "epoch": 0.62,
1507
+ "learning_rate": 3e-05,
1508
+ "loss": 0.4764,
1509
+ "step": 1250
1510
+ },
1511
+ {
1512
+ "epoch": 0.63,
1513
+ "learning_rate": 3e-05,
1514
+ "loss": 0.4849,
1515
+ "step": 1255
1516
+ },
1517
+ {
1518
+ "epoch": 0.63,
1519
+ "learning_rate": 3e-05,
1520
+ "loss": 0.487,
1521
+ "step": 1260
1522
+ },
1523
+ {
1524
+ "epoch": 0.63,
1525
+ "learning_rate": 3e-05,
1526
+ "loss": 0.4801,
1527
+ "step": 1265
1528
+ },
1529
+ {
1530
+ "epoch": 0.63,
1531
+ "learning_rate": 3e-05,
1532
+ "loss": 0.4574,
1533
+ "step": 1270
1534
+ },
1535
+ {
1536
+ "epoch": 0.64,
1537
+ "learning_rate": 3e-05,
1538
+ "loss": 0.4595,
1539
+ "step": 1275
1540
+ },
1541
+ {
1542
+ "epoch": 0.64,
1543
+ "learning_rate": 3e-05,
1544
+ "loss": 0.5119,
1545
+ "step": 1280
1546
+ },
1547
+ {
1548
+ "epoch": 0.64,
1549
+ "learning_rate": 3e-05,
1550
+ "loss": 0.5091,
1551
+ "step": 1285
1552
+ },
1553
+ {
1554
+ "epoch": 0.64,
1555
+ "learning_rate": 3e-05,
1556
+ "loss": 0.4992,
1557
+ "step": 1290
1558
+ },
1559
+ {
1560
+ "epoch": 0.65,
1561
+ "learning_rate": 3e-05,
1562
+ "loss": 0.4997,
1563
+ "step": 1295
1564
+ },
1565
+ {
1566
+ "epoch": 0.65,
1567
+ "learning_rate": 3e-05,
1568
+ "loss": 0.4899,
1569
+ "step": 1300
1570
+ },
1571
+ {
1572
+ "epoch": 0.65,
1573
+ "learning_rate": 3e-05,
1574
+ "loss": 0.4852,
1575
+ "step": 1305
1576
+ },
1577
+ {
1578
+ "epoch": 0.65,
1579
+ "learning_rate": 3e-05,
1580
+ "loss": 0.5055,
1581
+ "step": 1310
1582
+ },
1583
+ {
1584
+ "epoch": 0.66,
1585
+ "learning_rate": 3e-05,
1586
+ "loss": 0.5298,
1587
+ "step": 1315
1588
+ },
1589
+ {
1590
+ "epoch": 0.66,
1591
+ "learning_rate": 3e-05,
1592
+ "loss": 0.4985,
1593
+ "step": 1320
1594
+ },
1595
+ {
1596
+ "epoch": 0.66,
1597
+ "learning_rate": 3e-05,
1598
+ "loss": 0.5047,
1599
+ "step": 1325
1600
+ },
1601
+ {
1602
+ "epoch": 0.66,
1603
+ "learning_rate": 3e-05,
1604
+ "loss": 0.4877,
1605
+ "step": 1330
1606
+ },
1607
+ {
1608
+ "epoch": 0.67,
1609
+ "learning_rate": 3e-05,
1610
+ "loss": 0.4611,
1611
+ "step": 1335
1612
+ },
1613
+ {
1614
+ "epoch": 0.67,
1615
+ "learning_rate": 3e-05,
1616
+ "loss": 0.505,
1617
+ "step": 1340
1618
+ },
1619
+ {
1620
+ "epoch": 0.67,
1621
+ "learning_rate": 3e-05,
1622
+ "loss": 0.5215,
1623
+ "step": 1345
1624
+ },
1625
+ {
1626
+ "epoch": 0.67,
1627
+ "learning_rate": 3e-05,
1628
+ "loss": 0.4831,
1629
+ "step": 1350
1630
+ },
1631
+ {
1632
+ "epoch": 0.68,
1633
+ "learning_rate": 3e-05,
1634
+ "loss": 0.5026,
1635
+ "step": 1355
1636
+ },
1637
+ {
1638
+ "epoch": 0.68,
1639
+ "learning_rate": 3e-05,
1640
+ "loss": 0.4686,
1641
+ "step": 1360
1642
+ },
1643
+ {
1644
+ "epoch": 0.68,
1645
+ "learning_rate": 3e-05,
1646
+ "loss": 0.4784,
1647
+ "step": 1365
1648
+ },
1649
+ {
1650
+ "epoch": 0.68,
1651
+ "learning_rate": 3e-05,
1652
+ "loss": 0.487,
1653
+ "step": 1370
1654
+ },
1655
+ {
1656
+ "epoch": 0.69,
1657
+ "learning_rate": 3e-05,
1658
+ "loss": 0.4702,
1659
+ "step": 1375
1660
+ },
1661
+ {
1662
+ "epoch": 0.69,
1663
+ "learning_rate": 3e-05,
1664
+ "loss": 0.4865,
1665
+ "step": 1380
1666
+ },
1667
+ {
1668
+ "epoch": 0.69,
1669
+ "learning_rate": 3e-05,
1670
+ "loss": 0.5031,
1671
+ "step": 1385
1672
+ },
1673
+ {
1674
+ "epoch": 0.69,
1675
+ "learning_rate": 3e-05,
1676
+ "loss": 0.5097,
1677
+ "step": 1390
1678
+ },
1679
+ {
1680
+ "epoch": 0.7,
1681
+ "learning_rate": 3e-05,
1682
+ "loss": 0.4828,
1683
+ "step": 1395
1684
+ },
1685
+ {
1686
+ "epoch": 0.7,
1687
+ "learning_rate": 3e-05,
1688
+ "loss": 0.5069,
1689
+ "step": 1400
1690
+ },
1691
+ {
1692
+ "epoch": 0.7,
1693
+ "learning_rate": 3e-05,
1694
+ "loss": 0.4758,
1695
+ "step": 1405
1696
+ },
1697
+ {
1698
+ "epoch": 0.7,
1699
+ "learning_rate": 3e-05,
1700
+ "loss": 0.4799,
1701
+ "step": 1410
1702
+ },
1703
+ {
1704
+ "epoch": 0.71,
1705
+ "learning_rate": 3e-05,
1706
+ "loss": 0.5066,
1707
+ "step": 1415
1708
+ },
1709
+ {
1710
+ "epoch": 0.71,
1711
+ "learning_rate": 3e-05,
1712
+ "loss": 0.4946,
1713
+ "step": 1420
1714
+ },
1715
+ {
1716
+ "epoch": 0.71,
1717
+ "learning_rate": 3e-05,
1718
+ "loss": 0.5126,
1719
+ "step": 1425
1720
+ },
1721
+ {
1722
+ "epoch": 0.71,
1723
+ "learning_rate": 3e-05,
1724
+ "loss": 0.484,
1725
+ "step": 1430
1726
+ },
1727
+ {
1728
+ "epoch": 0.72,
1729
+ "learning_rate": 3e-05,
1730
+ "loss": 0.5277,
1731
+ "step": 1435
1732
+ },
1733
+ {
1734
+ "epoch": 0.72,
1735
+ "learning_rate": 3e-05,
1736
+ "loss": 0.4852,
1737
+ "step": 1440
1738
+ },
1739
+ {
1740
+ "epoch": 0.72,
1741
+ "learning_rate": 3e-05,
1742
+ "loss": 0.4911,
1743
+ "step": 1445
1744
+ },
1745
+ {
1746
+ "epoch": 0.72,
1747
+ "learning_rate": 3e-05,
1748
+ "loss": 0.4712,
1749
+ "step": 1450
1750
+ },
1751
+ {
1752
+ "epoch": 0.73,
1753
+ "learning_rate": 3e-05,
1754
+ "loss": 0.4782,
1755
+ "step": 1455
1756
+ },
1757
+ {
1758
+ "epoch": 0.73,
1759
+ "learning_rate": 3e-05,
1760
+ "loss": 0.4826,
1761
+ "step": 1460
1762
+ },
1763
+ {
1764
+ "epoch": 0.73,
1765
+ "learning_rate": 3e-05,
1766
+ "loss": 0.4877,
1767
+ "step": 1465
1768
+ },
1769
+ {
1770
+ "epoch": 0.73,
1771
+ "learning_rate": 3e-05,
1772
+ "loss": 0.4867,
1773
+ "step": 1470
1774
+ },
1775
+ {
1776
+ "epoch": 0.74,
1777
+ "learning_rate": 3e-05,
1778
+ "loss": 0.4997,
1779
+ "step": 1475
1780
+ },
1781
+ {
1782
+ "epoch": 0.74,
1783
+ "learning_rate": 3e-05,
1784
+ "loss": 0.478,
1785
+ "step": 1480
1786
+ },
1787
+ {
1788
+ "epoch": 0.74,
1789
+ "learning_rate": 3e-05,
1790
+ "loss": 0.4662,
1791
+ "step": 1485
1792
+ },
1793
+ {
1794
+ "epoch": 0.74,
1795
+ "learning_rate": 3e-05,
1796
+ "loss": 0.4942,
1797
+ "step": 1490
1798
+ },
1799
+ {
1800
+ "epoch": 0.75,
1801
+ "learning_rate": 3e-05,
1802
+ "loss": 0.4547,
1803
+ "step": 1495
1804
+ },
1805
+ {
1806
+ "epoch": 0.75,
1807
+ "learning_rate": 3e-05,
1808
+ "loss": 0.4829,
1809
+ "step": 1500
1810
+ },
1811
+ {
1812
+ "epoch": 0.75,
1813
+ "learning_rate": 3e-05,
1814
+ "loss": 0.4711,
1815
+ "step": 1505
1816
+ },
1817
+ {
1818
+ "epoch": 0.75,
1819
+ "learning_rate": 3e-05,
1820
+ "loss": 0.5094,
1821
+ "step": 1510
1822
+ },
1823
+ {
1824
+ "epoch": 0.76,
1825
+ "learning_rate": 3e-05,
1826
+ "loss": 0.4734,
1827
+ "step": 1515
1828
+ },
1829
+ {
1830
+ "epoch": 0.76,
1831
+ "learning_rate": 3e-05,
1832
+ "loss": 0.5037,
1833
+ "step": 1520
1834
+ },
1835
+ {
1836
+ "epoch": 0.76,
1837
+ "learning_rate": 3e-05,
1838
+ "loss": 0.4871,
1839
+ "step": 1525
1840
+ },
1841
+ {
1842
+ "epoch": 0.76,
1843
+ "learning_rate": 3e-05,
1844
+ "loss": 0.5062,
1845
+ "step": 1530
1846
+ },
1847
+ {
1848
+ "epoch": 0.77,
1849
+ "learning_rate": 3e-05,
1850
+ "loss": 0.4767,
1851
+ "step": 1535
1852
+ },
1853
+ {
1854
+ "epoch": 0.77,
1855
+ "learning_rate": 3e-05,
1856
+ "loss": 0.4845,
1857
+ "step": 1540
1858
+ },
1859
+ {
1860
+ "epoch": 0.77,
1861
+ "learning_rate": 3e-05,
1862
+ "loss": 0.4631,
1863
+ "step": 1545
1864
+ },
1865
+ {
1866
+ "epoch": 0.77,
1867
+ "learning_rate": 3e-05,
1868
+ "loss": 0.4955,
1869
+ "step": 1550
1870
+ },
1871
+ {
1872
+ "epoch": 0.78,
1873
+ "learning_rate": 3e-05,
1874
+ "loss": 0.4818,
1875
+ "step": 1555
1876
+ },
1877
+ {
1878
+ "epoch": 0.78,
1879
+ "learning_rate": 3e-05,
1880
+ "loss": 0.471,
1881
+ "step": 1560
1882
+ },
1883
+ {
1884
+ "epoch": 0.78,
1885
+ "learning_rate": 3e-05,
1886
+ "loss": 0.5047,
1887
+ "step": 1565
1888
+ },
1889
+ {
1890
+ "epoch": 0.78,
1891
+ "learning_rate": 3e-05,
1892
+ "loss": 0.4794,
1893
+ "step": 1570
1894
+ },
1895
+ {
1896
+ "epoch": 0.79,
1897
+ "learning_rate": 3e-05,
1898
+ "loss": 0.4887,
1899
+ "step": 1575
1900
+ },
1901
+ {
1902
+ "epoch": 0.79,
1903
+ "learning_rate": 3e-05,
1904
+ "loss": 0.5055,
1905
+ "step": 1580
1906
+ },
1907
+ {
1908
+ "epoch": 0.79,
1909
+ "learning_rate": 3e-05,
1910
+ "loss": 0.4965,
1911
+ "step": 1585
1912
+ },
1913
+ {
1914
+ "epoch": 0.79,
1915
+ "learning_rate": 3e-05,
1916
+ "loss": 0.4712,
1917
+ "step": 1590
1918
+ },
1919
+ {
1920
+ "epoch": 0.8,
1921
+ "learning_rate": 3e-05,
1922
+ "loss": 0.4827,
1923
+ "step": 1595
1924
+ },
1925
+ {
1926
+ "epoch": 0.8,
1927
+ "learning_rate": 3e-05,
1928
+ "loss": 0.4702,
1929
+ "step": 1600
1930
+ },
1931
+ {
1932
+ "epoch": 0.8,
1933
+ "learning_rate": 3e-05,
1934
+ "loss": 0.4725,
1935
+ "step": 1605
1936
+ },
1937
+ {
1938
+ "epoch": 0.8,
1939
+ "learning_rate": 3e-05,
1940
+ "loss": 0.4634,
1941
+ "step": 1610
1942
+ },
1943
+ {
1944
+ "epoch": 0.81,
1945
+ "learning_rate": 3e-05,
1946
+ "loss": 0.4701,
1947
+ "step": 1615
1948
+ },
1949
+ {
1950
+ "epoch": 0.81,
1951
+ "learning_rate": 3e-05,
1952
+ "loss": 0.5085,
1953
+ "step": 1620
1954
+ },
1955
+ {
1956
+ "epoch": 0.81,
1957
+ "learning_rate": 3e-05,
1958
+ "loss": 0.4937,
1959
+ "step": 1625
1960
+ },
1961
+ {
1962
+ "epoch": 0.81,
1963
+ "learning_rate": 3e-05,
1964
+ "loss": 0.4974,
1965
+ "step": 1630
1966
+ },
1967
+ {
1968
+ "epoch": 0.82,
1969
+ "learning_rate": 3e-05,
1970
+ "loss": 0.4722,
1971
+ "step": 1635
1972
+ },
1973
+ {
1974
+ "epoch": 0.82,
1975
+ "learning_rate": 3e-05,
1976
+ "loss": 0.4689,
1977
+ "step": 1640
1978
+ },
1979
+ {
1980
+ "epoch": 0.82,
1981
+ "learning_rate": 3e-05,
1982
+ "loss": 0.5093,
1983
+ "step": 1645
1984
+ },
1985
+ {
1986
+ "epoch": 0.82,
1987
+ "learning_rate": 3e-05,
1988
+ "loss": 0.5012,
1989
+ "step": 1650
1990
+ },
1991
+ {
1992
+ "epoch": 0.83,
1993
+ "learning_rate": 3e-05,
1994
+ "loss": 0.4917,
1995
+ "step": 1655
1996
+ },
1997
+ {
1998
+ "epoch": 0.83,
1999
+ "learning_rate": 3e-05,
2000
+ "loss": 0.4931,
2001
+ "step": 1660
2002
+ },
2003
+ {
2004
+ "epoch": 0.83,
2005
+ "learning_rate": 3e-05,
2006
+ "loss": 0.4939,
2007
+ "step": 1665
2008
+ },
2009
+ {
2010
+ "epoch": 0.83,
2011
+ "learning_rate": 3e-05,
2012
+ "loss": 0.5113,
2013
+ "step": 1670
2014
+ },
2015
+ {
2016
+ "epoch": 0.84,
2017
+ "learning_rate": 3e-05,
2018
+ "loss": 0.4847,
2019
+ "step": 1675
2020
+ },
2021
+ {
2022
+ "epoch": 0.84,
2023
+ "learning_rate": 3e-05,
2024
+ "loss": 0.4815,
2025
+ "step": 1680
2026
+ },
2027
+ {
2028
+ "epoch": 0.84,
2029
+ "learning_rate": 3e-05,
2030
+ "loss": 0.5155,
2031
+ "step": 1685
2032
+ },
2033
+ {
2034
+ "epoch": 0.84,
2035
+ "learning_rate": 3e-05,
2036
+ "loss": 0.4896,
2037
+ "step": 1690
2038
+ },
2039
+ {
2040
+ "epoch": 0.85,
2041
+ "learning_rate": 3e-05,
2042
+ "loss": 0.4801,
2043
+ "step": 1695
2044
+ },
2045
+ {
2046
+ "epoch": 0.85,
2047
+ "learning_rate": 3e-05,
2048
+ "loss": 0.48,
2049
+ "step": 1700
2050
+ },
2051
+ {
2052
+ "epoch": 0.85,
2053
+ "learning_rate": 3e-05,
2054
+ "loss": 0.4849,
2055
+ "step": 1705
2056
+ },
2057
+ {
2058
+ "epoch": 0.85,
2059
+ "learning_rate": 3e-05,
2060
+ "loss": 0.4625,
2061
+ "step": 1710
2062
+ },
2063
+ {
2064
+ "epoch": 0.86,
2065
+ "learning_rate": 3e-05,
2066
+ "loss": 0.4715,
2067
+ "step": 1715
2068
+ },
2069
+ {
2070
+ "epoch": 0.86,
2071
+ "learning_rate": 3e-05,
2072
+ "loss": 0.4905,
2073
+ "step": 1720
2074
+ },
2075
+ {
2076
+ "epoch": 0.86,
2077
+ "learning_rate": 3e-05,
2078
+ "loss": 0.4877,
2079
+ "step": 1725
2080
+ },
2081
+ {
2082
+ "epoch": 0.86,
2083
+ "learning_rate": 3e-05,
2084
+ "loss": 0.4724,
2085
+ "step": 1730
2086
+ },
2087
+ {
2088
+ "epoch": 0.87,
2089
+ "learning_rate": 3e-05,
2090
+ "loss": 0.4941,
2091
+ "step": 1735
2092
+ },
2093
+ {
2094
+ "epoch": 0.87,
2095
+ "learning_rate": 3e-05,
2096
+ "loss": 0.4744,
2097
+ "step": 1740
2098
+ },
2099
+ {
2100
+ "epoch": 0.87,
2101
+ "learning_rate": 3e-05,
2102
+ "loss": 0.4943,
2103
+ "step": 1745
2104
+ },
2105
+ {
2106
+ "epoch": 0.87,
2107
+ "learning_rate": 3e-05,
2108
+ "loss": 0.4974,
2109
+ "step": 1750
2110
+ },
2111
+ {
2112
+ "epoch": 0.88,
2113
+ "learning_rate": 3e-05,
2114
+ "loss": 0.5005,
2115
+ "step": 1755
2116
+ },
2117
+ {
2118
+ "epoch": 0.88,
2119
+ "learning_rate": 3e-05,
2120
+ "loss": 0.5023,
2121
+ "step": 1760
2122
+ },
2123
+ {
2124
+ "epoch": 0.88,
2125
+ "learning_rate": 3e-05,
2126
+ "loss": 0.5012,
2127
+ "step": 1765
2128
+ },
2129
+ {
2130
+ "epoch": 0.88,
2131
+ "learning_rate": 3e-05,
2132
+ "loss": 0.4434,
2133
+ "step": 1770
2134
+ },
2135
+ {
2136
+ "epoch": 0.89,
2137
+ "learning_rate": 3e-05,
2138
+ "loss": 0.501,
2139
+ "step": 1775
2140
+ },
2141
+ {
2142
+ "epoch": 0.89,
2143
+ "learning_rate": 3e-05,
2144
+ "loss": 0.4699,
2145
+ "step": 1780
2146
+ },
2147
+ {
2148
+ "epoch": 0.89,
2149
+ "learning_rate": 3e-05,
2150
+ "loss": 0.4846,
2151
+ "step": 1785
2152
+ },
2153
+ {
2154
+ "epoch": 0.89,
2155
+ "learning_rate": 3e-05,
2156
+ "loss": 0.463,
2157
+ "step": 1790
2158
+ },
2159
+ {
2160
+ "epoch": 0.9,
2161
+ "learning_rate": 3e-05,
2162
+ "loss": 0.4612,
2163
+ "step": 1795
2164
+ },
2165
+ {
2166
+ "epoch": 0.9,
2167
+ "learning_rate": 3e-05,
2168
+ "loss": 0.484,
2169
+ "step": 1800
2170
+ },
2171
+ {
2172
+ "epoch": 0.9,
2173
+ "learning_rate": 3e-05,
2174
+ "loss": 0.4848,
2175
+ "step": 1805
2176
+ },
2177
+ {
2178
+ "epoch": 0.9,
2179
+ "learning_rate": 3e-05,
2180
+ "loss": 0.4762,
2181
+ "step": 1810
2182
+ },
2183
+ {
2184
+ "epoch": 0.91,
2185
+ "learning_rate": 3e-05,
2186
+ "loss": 0.4905,
2187
+ "step": 1815
2188
+ },
2189
+ {
2190
+ "epoch": 0.91,
2191
+ "learning_rate": 3e-05,
2192
+ "loss": 0.462,
2193
+ "step": 1820
2194
+ },
2195
+ {
2196
+ "epoch": 0.91,
2197
+ "learning_rate": 3e-05,
2198
+ "loss": 0.4988,
2199
+ "step": 1825
2200
+ },
2201
+ {
2202
+ "epoch": 0.91,
2203
+ "learning_rate": 3e-05,
2204
+ "loss": 0.4629,
2205
+ "step": 1830
2206
+ },
2207
+ {
2208
+ "epoch": 0.92,
2209
+ "learning_rate": 3e-05,
2210
+ "loss": 0.4971,
2211
+ "step": 1835
2212
+ },
2213
+ {
2214
+ "epoch": 0.92,
2215
+ "learning_rate": 3e-05,
2216
+ "loss": 0.4702,
2217
+ "step": 1840
2218
+ },
2219
+ {
2220
+ "epoch": 0.92,
2221
+ "learning_rate": 3e-05,
2222
+ "loss": 0.5022,
2223
+ "step": 1845
2224
+ },
2225
+ {
2226
+ "epoch": 0.92,
2227
+ "learning_rate": 3e-05,
2228
+ "loss": 0.4857,
2229
+ "step": 1850
2230
+ },
2231
+ {
2232
+ "epoch": 0.93,
2233
+ "learning_rate": 3e-05,
2234
+ "loss": 0.4779,
2235
+ "step": 1855
2236
+ },
2237
+ {
2238
+ "epoch": 0.93,
2239
+ "learning_rate": 3e-05,
2240
+ "loss": 0.5093,
2241
+ "step": 1860
2242
+ },
2243
+ {
2244
+ "epoch": 0.93,
2245
+ "learning_rate": 3e-05,
2246
+ "loss": 0.501,
2247
+ "step": 1865
2248
+ },
2249
+ {
2250
+ "epoch": 0.93,
2251
+ "learning_rate": 3e-05,
2252
+ "loss": 0.4836,
2253
+ "step": 1870
2254
+ },
2255
+ {
2256
+ "epoch": 0.94,
2257
+ "learning_rate": 3e-05,
2258
+ "loss": 0.5167,
2259
+ "step": 1875
2260
+ },
2261
+ {
2262
+ "epoch": 0.94,
2263
+ "learning_rate": 3e-05,
2264
+ "loss": 0.4801,
2265
+ "step": 1880
2266
+ },
2267
+ {
2268
+ "epoch": 0.94,
2269
+ "learning_rate": 3e-05,
2270
+ "loss": 0.4531,
2271
+ "step": 1885
2272
+ },
2273
+ {
2274
+ "epoch": 0.94,
2275
+ "learning_rate": 3e-05,
2276
+ "loss": 0.4929,
2277
+ "step": 1890
2278
+ },
2279
+ {
2280
+ "epoch": 0.95,
2281
+ "learning_rate": 3e-05,
2282
+ "loss": 0.4888,
2283
+ "step": 1895
2284
+ },
2285
+ {
2286
+ "epoch": 0.95,
2287
+ "learning_rate": 3e-05,
2288
+ "loss": 0.4919,
2289
+ "step": 1900
2290
+ },
2291
+ {
2292
+ "epoch": 0.95,
2293
+ "learning_rate": 3e-05,
2294
+ "loss": 0.4596,
2295
+ "step": 1905
2296
+ },
2297
+ {
2298
+ "epoch": 0.95,
2299
+ "learning_rate": 3e-05,
2300
+ "loss": 0.4869,
2301
+ "step": 1910
2302
+ },
2303
+ {
2304
+ "epoch": 0.96,
2305
+ "learning_rate": 3e-05,
2306
+ "loss": 0.4825,
2307
+ "step": 1915
2308
+ },
2309
+ {
2310
+ "epoch": 0.96,
2311
+ "learning_rate": 3e-05,
2312
+ "loss": 0.513,
2313
+ "step": 1920
2314
+ },
2315
+ {
2316
+ "epoch": 0.96,
2317
+ "learning_rate": 3e-05,
2318
+ "loss": 0.4972,
2319
+ "step": 1925
2320
+ },
2321
+ {
2322
+ "epoch": 0.96,
2323
+ "learning_rate": 3e-05,
2324
+ "loss": 0.4663,
2325
+ "step": 1930
2326
+ },
2327
+ {
2328
+ "epoch": 0.97,
2329
+ "learning_rate": 3e-05,
2330
+ "loss": 0.4654,
2331
+ "step": 1935
2332
+ },
2333
+ {
2334
+ "epoch": 0.97,
2335
+ "learning_rate": 3e-05,
2336
+ "loss": 0.4889,
2337
+ "step": 1940
2338
+ },
2339
+ {
2340
+ "epoch": 0.97,
2341
+ "learning_rate": 3e-05,
2342
+ "loss": 0.5205,
2343
+ "step": 1945
2344
+ },
2345
+ {
2346
+ "epoch": 0.97,
2347
+ "learning_rate": 3e-05,
2348
+ "loss": 0.4829,
2349
+ "step": 1950
2350
+ },
2351
+ {
2352
+ "epoch": 0.98,
2353
+ "learning_rate": 3e-05,
2354
+ "loss": 0.4809,
2355
+ "step": 1955
2356
+ },
2357
+ {
2358
+ "epoch": 0.98,
2359
+ "learning_rate": 3e-05,
2360
+ "loss": 0.4788,
2361
+ "step": 1960
2362
+ },
2363
+ {
2364
+ "epoch": 0.98,
2365
+ "learning_rate": 3e-05,
2366
+ "loss": 0.4946,
2367
+ "step": 1965
2368
+ },
2369
+ {
2370
+ "epoch": 0.98,
2371
+ "learning_rate": 3e-05,
2372
+ "loss": 0.4888,
2373
+ "step": 1970
2374
+ },
2375
+ {
2376
+ "epoch": 0.99,
2377
+ "learning_rate": 3e-05,
2378
+ "loss": 0.4633,
2379
+ "step": 1975
2380
+ },
2381
+ {
2382
+ "epoch": 0.99,
2383
+ "learning_rate": 3e-05,
2384
+ "loss": 0.465,
2385
+ "step": 1980
2386
+ },
2387
+ {
2388
+ "epoch": 0.99,
2389
+ "learning_rate": 3e-05,
2390
+ "loss": 0.4588,
2391
+ "step": 1985
2392
+ },
2393
+ {
2394
+ "epoch": 0.99,
2395
+ "learning_rate": 3e-05,
2396
+ "loss": 0.4724,
2397
+ "step": 1990
2398
+ },
2399
+ {
2400
+ "epoch": 1.0,
2401
+ "learning_rate": 3e-05,
2402
+ "loss": 0.5044,
2403
+ "step": 1995
2404
+ },
2405
+ {
2406
+ "epoch": 1.0,
2407
+ "learning_rate": 3e-05,
2408
+ "loss": 0.5002,
2409
+ "step": 2000
2410
+ },
2411
+ {
2412
+ "epoch": 1.0,
2413
+ "step": 2002,
2414
+ "total_flos": 7.452987125170176e+18,
2415
+ "train_loss": 0.49472963369333306,
2416
+ "train_runtime": 1452.6312,
2417
+ "train_samples_per_second": 22.043,
2418
+ "train_steps_per_second": 1.378
2419
+ }
2420
+ ],
2421
+ "logging_steps": 5,
2422
+ "max_steps": 2002,
2423
+ "num_input_tokens_seen": 0,
2424
+ "num_train_epochs": 1,
2425
+ "save_steps": 500,
2426
+ "total_flos": 7.452987125170176e+18,
2427
+ "train_batch_size": 16,
2428
+ "trial_name": null,
2429
+ "trial_params": null
2430
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c66173b787eae44633e5de940a78caa142d42fbda7d6ffb85cccbfcd36b3c52
3
+ size 4347