metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
model-index:
- name: SGPT-2.7B-weightedmean-msmarco-specb-bitfit
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
metrics:
- type: accuracy
value: 67.56716417910448
- type: ap
value: 30.75574629595259
- type: f1
value: 61.805121301858655
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
metrics:
- type: accuracy
value: 71.439575
- type: ap
value: 65.91341330532453
- type: f1
value: 70.90561852619555
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: c379a6705fec24a2493fa68e011692605f44e119
metrics:
- type: accuracy
value: 35.748000000000005
- type: f1
value: 35.48576287186347
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
metrics:
- type: map_at_1
value: 25.96
- type: map_at_10
value: 41.619
- type: map_at_100
value: 42.673
- type: map_at_1000
value: 42.684
- type: map_at_3
value: 36.569
- type: map_at_5
value: 39.397
- type: mrr_at_1
value: 26.316
- type: mrr_at_10
value: 41.772
- type: mrr_at_100
value: 42.82
- type: mrr_at_1000
value: 42.83
- type: mrr_at_3
value: 36.724000000000004
- type: mrr_at_5
value: 39.528999999999996
- type: ndcg_at_1
value: 25.96
- type: ndcg_at_10
value: 50.491
- type: ndcg_at_100
value: 54.864999999999995
- type: ndcg_at_1000
value: 55.10699999999999
- type: ndcg_at_3
value: 40.053
- type: ndcg_at_5
value: 45.134
- type: precision_at_1
value: 25.96
- type: precision_at_10
value: 7.8950000000000005
- type: precision_at_100
value: 0.9780000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.714000000000002
- type: precision_at_5
value: 12.489
- type: recall_at_1
value: 25.96
- type: recall_at_10
value: 78.947
- type: recall_at_100
value: 97.795
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 50.141999999999996
- type: recall_at_5
value: 62.446999999999996
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
metrics:
- type: v_measure
value: 44.72125714642202
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
metrics:
- type: v_measure
value: 35.081451519142064
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
metrics:
- type: map
value: 59.634661990392054
- type: mrr
value: 73.6813525040672
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: 9ee918f184421b6bd48b78f6c714d86546106103
metrics:
- type: cos_sim_pearson
value: 87.42754550496836
- type: cos_sim_spearman
value: 84.84289705838664
- type: euclidean_pearson
value: 85.59331970450859
- type: euclidean_spearman
value: 85.8525586184271
- type: manhattan_pearson
value: 85.41233134466698
- type: manhattan_spearman
value: 85.52303303767404
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
metrics:
- type: accuracy
value: 83.21753246753246
- type: f1
value: 83.15394543120915
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
metrics:
- type: v_measure
value: 34.41414219680629
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
metrics:
- type: v_measure
value: 30.533275862270028
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 30.808999999999997
- type: map_at_10
value: 40.617
- type: map_at_100
value: 41.894999999999996
- type: map_at_1000
value: 42.025
- type: map_at_3
value: 37
- type: map_at_5
value: 38.993
- type: mrr_at_1
value: 37.482
- type: mrr_at_10
value: 46.497
- type: mrr_at_100
value: 47.144000000000005
- type: mrr_at_1000
value: 47.189
- type: mrr_at_3
value: 43.705
- type: mrr_at_5
value: 45.193
- type: ndcg_at_1
value: 37.482
- type: ndcg_at_10
value: 46.688
- type: ndcg_at_100
value: 51.726000000000006
- type: ndcg_at_1000
value: 53.825
- type: ndcg_at_3
value: 41.242000000000004
- type: ndcg_at_5
value: 43.657000000000004
- type: precision_at_1
value: 37.482
- type: precision_at_10
value: 8.827
- type: precision_at_100
value: 1.393
- type: precision_at_1000
value: 0.186
- type: precision_at_3
value: 19.361
- type: precision_at_5
value: 14.106
- type: recall_at_1
value: 30.808999999999997
- type: recall_at_10
value: 58.47
- type: recall_at_100
value: 80.51899999999999
- type: recall_at_1000
value: 93.809
- type: recall_at_3
value: 42.462
- type: recall_at_5
value: 49.385
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 26.962000000000003
- type: map_at_10
value: 36.93
- type: map_at_100
value: 38.102000000000004
- type: map_at_1000
value: 38.22
- type: map_at_3
value: 34.065
- type: map_at_5
value: 35.72
- type: mrr_at_1
value: 33.567
- type: mrr_at_10
value: 42.269
- type: mrr_at_100
value: 42.99
- type: mrr_at_1000
value: 43.033
- type: mrr_at_3
value: 40.064
- type: mrr_at_5
value: 41.258
- type: ndcg_at_1
value: 33.567
- type: ndcg_at_10
value: 42.405
- type: ndcg_at_100
value: 46.847
- type: ndcg_at_1000
value: 48.951
- type: ndcg_at_3
value: 38.312000000000005
- type: ndcg_at_5
value: 40.242
- type: precision_at_1
value: 33.567
- type: precision_at_10
value: 8.032
- type: precision_at_100
value: 1.295
- type: precision_at_1000
value: 0.17600000000000002
- type: precision_at_3
value: 18.662
- type: precision_at_5
value: 13.299
- type: recall_at_1
value: 26.962000000000003
- type: recall_at_10
value: 52.489
- type: recall_at_100
value: 71.635
- type: recall_at_1000
value: 85.141
- type: recall_at_3
value: 40.28
- type: recall_at_5
value: 45.757
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 36.318
- type: map_at_10
value: 47.97
- type: map_at_100
value: 49.003
- type: map_at_1000
value: 49.065999999999995
- type: map_at_3
value: 45.031
- type: map_at_5
value: 46.633
- type: mrr_at_1
value: 41.504999999999995
- type: mrr_at_10
value: 51.431000000000004
- type: mrr_at_100
value: 52.129000000000005
- type: mrr_at_1000
value: 52.161
- type: mrr_at_3
value: 48.934
- type: mrr_at_5
value: 50.42
- type: ndcg_at_1
value: 41.504999999999995
- type: ndcg_at_10
value: 53.676
- type: ndcg_at_100
value: 57.867000000000004
- type: ndcg_at_1000
value: 59.166
- type: ndcg_at_3
value: 48.516
- type: ndcg_at_5
value: 50.983999999999995
- type: precision_at_1
value: 41.504999999999995
- type: precision_at_10
value: 8.608
- type: precision_at_100
value: 1.1560000000000001
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 21.462999999999997
- type: precision_at_5
value: 14.721
- type: recall_at_1
value: 36.318
- type: recall_at_10
value: 67.066
- type: recall_at_100
value: 85.34
- type: recall_at_1000
value: 94.491
- type: recall_at_3
value: 53.215999999999994
- type: recall_at_5
value: 59.214
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 22.167
- type: map_at_10
value: 29.543999999999997
- type: map_at_100
value: 30.579
- type: map_at_1000
value: 30.669999999999998
- type: map_at_3
value: 26.982
- type: map_at_5
value: 28.474
- type: mrr_at_1
value: 24.068
- type: mrr_at_10
value: 31.237
- type: mrr_at_100
value: 32.222
- type: mrr_at_1000
value: 32.292
- type: mrr_at_3
value: 28.776000000000003
- type: mrr_at_5
value: 30.233999999999998
- type: ndcg_at_1
value: 24.068
- type: ndcg_at_10
value: 33.973
- type: ndcg_at_100
value: 39.135
- type: ndcg_at_1000
value: 41.443999999999996
- type: ndcg_at_3
value: 29.018
- type: ndcg_at_5
value: 31.558999999999997
- type: precision_at_1
value: 24.068
- type: precision_at_10
value: 5.299
- type: precision_at_100
value: 0.823
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 12.166
- type: precision_at_5
value: 8.767999999999999
- type: recall_at_1
value: 22.167
- type: recall_at_10
value: 46.115
- type: recall_at_100
value: 69.867
- type: recall_at_1000
value: 87.234
- type: recall_at_3
value: 32.798
- type: recall_at_5
value: 38.951
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 12.033000000000001
- type: map_at_10
value: 19.314
- type: map_at_100
value: 20.562
- type: map_at_1000
value: 20.695
- type: map_at_3
value: 16.946
- type: map_at_5
value: 18.076999999999998
- type: mrr_at_1
value: 14.801
- type: mrr_at_10
value: 22.74
- type: mrr_at_100
value: 23.876
- type: mrr_at_1000
value: 23.949
- type: mrr_at_3
value: 20.211000000000002
- type: mrr_at_5
value: 21.573
- type: ndcg_at_1
value: 14.801
- type: ndcg_at_10
value: 24.038
- type: ndcg_at_100
value: 30.186
- type: ndcg_at_1000
value: 33.321
- type: ndcg_at_3
value: 19.431
- type: ndcg_at_5
value: 21.34
- type: precision_at_1
value: 14.801
- type: precision_at_10
value: 4.776
- type: precision_at_100
value: 0.897
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 9.66
- type: precision_at_5
value: 7.239
- type: recall_at_1
value: 12.033000000000001
- type: recall_at_10
value: 35.098
- type: recall_at_100
value: 62.175000000000004
- type: recall_at_1000
value: 84.17099999999999
- type: recall_at_3
value: 22.61
- type: recall_at_5
value: 27.278999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 26.651000000000003
- type: map_at_10
value: 36.901
- type: map_at_100
value: 38.249
- type: map_at_1000
value: 38.361000000000004
- type: map_at_3
value: 33.891
- type: map_at_5
value: 35.439
- type: mrr_at_1
value: 32.724
- type: mrr_at_10
value: 42.504
- type: mrr_at_100
value: 43.391999999999996
- type: mrr_at_1000
value: 43.436
- type: mrr_at_3
value: 39.989999999999995
- type: mrr_at_5
value: 41.347
- type: ndcg_at_1
value: 32.724
- type: ndcg_at_10
value: 43.007
- type: ndcg_at_100
value: 48.601
- type: ndcg_at_1000
value: 50.697
- type: ndcg_at_3
value: 37.99
- type: ndcg_at_5
value: 40.083999999999996
- type: precision_at_1
value: 32.724
- type: precision_at_10
value: 7.872999999999999
- type: precision_at_100
value: 1.247
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 18.062
- type: precision_at_5
value: 12.666
- type: recall_at_1
value: 26.651000000000003
- type: recall_at_10
value: 55.674
- type: recall_at_100
value: 78.904
- type: recall_at_1000
value: 92.55799999999999
- type: recall_at_3
value: 41.36
- type: recall_at_5
value: 46.983999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 22.589000000000002
- type: map_at_10
value: 32.244
- type: map_at_100
value: 33.46
- type: map_at_1000
value: 33.593
- type: map_at_3
value: 29.21
- type: map_at_5
value: 31.019999999999996
- type: mrr_at_1
value: 28.425
- type: mrr_at_10
value: 37.282
- type: mrr_at_100
value: 38.187
- type: mrr_at_1000
value: 38.248
- type: mrr_at_3
value: 34.684
- type: mrr_at_5
value: 36.123
- type: ndcg_at_1
value: 28.425
- type: ndcg_at_10
value: 37.942
- type: ndcg_at_100
value: 43.443
- type: ndcg_at_1000
value: 45.995999999999995
- type: ndcg_at_3
value: 32.873999999999995
- type: ndcg_at_5
value: 35.325
- type: precision_at_1
value: 28.425
- type: precision_at_10
value: 7.1
- type: precision_at_100
value: 1.166
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 16.02
- type: precision_at_5
value: 11.644
- type: recall_at_1
value: 22.589000000000002
- type: recall_at_10
value: 50.03999999999999
- type: recall_at_100
value: 73.973
- type: recall_at_1000
value: 91.128
- type: recall_at_3
value: 35.882999999999996
- type: recall_at_5
value: 42.187999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 23.190833333333334
- type: map_at_10
value: 31.504916666666666
- type: map_at_100
value: 32.64908333333334
- type: map_at_1000
value: 32.77075
- type: map_at_3
value: 28.82575
- type: map_at_5
value: 30.2755
- type: mrr_at_1
value: 27.427499999999995
- type: mrr_at_10
value: 35.36483333333334
- type: mrr_at_100
value: 36.23441666666666
- type: mrr_at_1000
value: 36.297583333333336
- type: mrr_at_3
value: 32.97966666666667
- type: mrr_at_5
value: 34.294583333333335
- type: ndcg_at_1
value: 27.427499999999995
- type: ndcg_at_10
value: 36.53358333333333
- type: ndcg_at_100
value: 41.64508333333333
- type: ndcg_at_1000
value: 44.14499999999999
- type: ndcg_at_3
value: 31.88908333333333
- type: ndcg_at_5
value: 33.98433333333333
- type: precision_at_1
value: 27.427499999999995
- type: precision_at_10
value: 6.481083333333333
- type: precision_at_100
value: 1.0610833333333334
- type: precision_at_1000
value: 0.14691666666666667
- type: precision_at_3
value: 14.656749999999999
- type: precision_at_5
value: 10.493583333333332
- type: recall_at_1
value: 23.190833333333334
- type: recall_at_10
value: 47.65175
- type: recall_at_100
value: 70.41016666666667
- type: recall_at_1000
value: 87.82708333333332
- type: recall_at_3
value: 34.637583333333325
- type: recall_at_5
value: 40.05008333333333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 20.409
- type: map_at_10
value: 26.794
- type: map_at_100
value: 27.682000000000002
- type: map_at_1000
value: 27.783
- type: map_at_3
value: 24.461
- type: map_at_5
value: 25.668000000000003
- type: mrr_at_1
value: 22.853
- type: mrr_at_10
value: 29.296
- type: mrr_at_100
value: 30.103
- type: mrr_at_1000
value: 30.179000000000002
- type: mrr_at_3
value: 27.173000000000002
- type: mrr_at_5
value: 28.223
- type: ndcg_at_1
value: 22.853
- type: ndcg_at_10
value: 31.007
- type: ndcg_at_100
value: 35.581
- type: ndcg_at_1000
value: 38.147
- type: ndcg_at_3
value: 26.590999999999998
- type: ndcg_at_5
value: 28.43
- type: precision_at_1
value: 22.853
- type: precision_at_10
value: 5.031
- type: precision_at_100
value: 0.7939999999999999
- type: precision_at_1000
value: 0.11
- type: precision_at_3
value: 11.401
- type: precision_at_5
value: 8.16
- type: recall_at_1
value: 20.409
- type: recall_at_10
value: 41.766
- type: recall_at_100
value: 62.964
- type: recall_at_1000
value: 81.682
- type: recall_at_3
value: 29.281000000000002
- type: recall_at_5
value: 33.83
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 14.549000000000001
- type: map_at_10
value: 20.315
- type: map_at_100
value: 21.301000000000002
- type: map_at_1000
value: 21.425
- type: map_at_3
value: 18.132
- type: map_at_5
value: 19.429
- type: mrr_at_1
value: 17.86
- type: mrr_at_10
value: 23.860999999999997
- type: mrr_at_100
value: 24.737000000000002
- type: mrr_at_1000
value: 24.82
- type: mrr_at_3
value: 21.685
- type: mrr_at_5
value: 23.008
- type: ndcg_at_1
value: 17.86
- type: ndcg_at_10
value: 24.396
- type: ndcg_at_100
value: 29.328
- type: ndcg_at_1000
value: 32.486
- type: ndcg_at_3
value: 20.375
- type: ndcg_at_5
value: 22.411
- type: precision_at_1
value: 17.86
- type: precision_at_10
value: 4.47
- type: precision_at_100
value: 0.8099999999999999
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 9.475
- type: precision_at_5
value: 7.170999999999999
- type: recall_at_1
value: 14.549000000000001
- type: recall_at_10
value: 33.365
- type: recall_at_100
value: 55.797
- type: recall_at_1000
value: 78.632
- type: recall_at_3
value: 22.229
- type: recall_at_5
value: 27.339000000000002
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 23.286
- type: map_at_10
value: 30.728
- type: map_at_100
value: 31.840000000000003
- type: map_at_1000
value: 31.953
- type: map_at_3
value: 28.302
- type: map_at_5
value: 29.615000000000002
- type: mrr_at_1
value: 27.239
- type: mrr_at_10
value: 34.408
- type: mrr_at_100
value: 35.335
- type: mrr_at_1000
value: 35.405
- type: mrr_at_3
value: 32.151999999999994
- type: mrr_at_5
value: 33.355000000000004
- type: ndcg_at_1
value: 27.239
- type: ndcg_at_10
value: 35.324
- type: ndcg_at_100
value: 40.866
- type: ndcg_at_1000
value: 43.584
- type: ndcg_at_3
value: 30.898999999999997
- type: ndcg_at_5
value: 32.812999999999995
- type: precision_at_1
value: 27.239
- type: precision_at_10
value: 5.896
- type: precision_at_100
value: 0.979
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 13.713000000000001
- type: precision_at_5
value: 9.683
- type: recall_at_1
value: 23.286
- type: recall_at_10
value: 45.711
- type: recall_at_100
value: 70.611
- type: recall_at_1000
value: 90.029
- type: recall_at_3
value: 33.615
- type: recall_at_5
value: 38.41
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 23.962
- type: map_at_10
value: 31.942999999999998
- type: map_at_100
value: 33.384
- type: map_at_1000
value: 33.611000000000004
- type: map_at_3
value: 29.243000000000002
- type: map_at_5
value: 30.446
- type: mrr_at_1
value: 28.458
- type: mrr_at_10
value: 36.157000000000004
- type: mrr_at_100
value: 37.092999999999996
- type: mrr_at_1000
value: 37.163000000000004
- type: mrr_at_3
value: 33.86
- type: mrr_at_5
value: 35.086
- type: ndcg_at_1
value: 28.458
- type: ndcg_at_10
value: 37.201
- type: ndcg_at_100
value: 42.591
- type: ndcg_at_1000
value: 45.539
- type: ndcg_at_3
value: 32.889
- type: ndcg_at_5
value: 34.483000000000004
- type: precision_at_1
value: 28.458
- type: precision_at_10
value: 7.332
- type: precision_at_100
value: 1.437
- type: precision_at_1000
value: 0.233
- type: precision_at_3
value: 15.547
- type: precision_at_5
value: 11.146
- type: recall_at_1
value: 23.962
- type: recall_at_10
value: 46.751
- type: recall_at_100
value: 71.626
- type: recall_at_1000
value: 90.93900000000001
- type: recall_at_3
value: 34.138000000000005
- type: recall_at_5
value: 38.673
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
metrics:
- type: map_at_1
value: 18.555
- type: map_at_10
value: 24.759
- type: map_at_100
value: 25.732
- type: map_at_1000
value: 25.846999999999998
- type: map_at_3
value: 22.646
- type: map_at_5
value: 23.791999999999998
- type: mrr_at_1
value: 20.148
- type: mrr_at_10
value: 26.695999999999998
- type: mrr_at_100
value: 27.605
- type: mrr_at_1000
value: 27.695999999999998
- type: mrr_at_3
value: 24.522
- type: mrr_at_5
value: 25.715
- type: ndcg_at_1
value: 20.148
- type: ndcg_at_10
value: 28.746
- type: ndcg_at_100
value: 33.57
- type: ndcg_at_1000
value: 36.584
- type: ndcg_at_3
value: 24.532
- type: ndcg_at_5
value: 26.484
- type: precision_at_1
value: 20.148
- type: precision_at_10
value: 4.529
- type: precision_at_100
value: 0.736
- type: precision_at_1000
value: 0.108
- type: precision_at_3
value: 10.351
- type: precision_at_5
value: 7.32
- type: recall_at_1
value: 18.555
- type: recall_at_10
value: 39.275999999999996
- type: recall_at_100
value: 61.511
- type: recall_at_1000
value: 84.111
- type: recall_at_3
value: 27.778999999999996
- type: recall_at_5
value: 32.591
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
metrics:
- type: map_at_1
value: 10.366999999999999
- type: map_at_10
value: 18.953999999999997
- type: map_at_100
value: 20.674999999999997
- type: map_at_1000
value: 20.868000000000002
- type: map_at_3
value: 15.486
- type: map_at_5
value: 17.347
- type: mrr_at_1
value: 23.257
- type: mrr_at_10
value: 35.419
- type: mrr_at_100
value: 36.361
- type: mrr_at_1000
value: 36.403
- type: mrr_at_3
value: 31.747999999999998
- type: mrr_at_5
value: 34.077
- type: ndcg_at_1
value: 23.257
- type: ndcg_at_10
value: 27.11
- type: ndcg_at_100
value: 33.981
- type: ndcg_at_1000
value: 37.444
- type: ndcg_at_3
value: 21.471999999999998
- type: ndcg_at_5
value: 23.769000000000002
- type: precision_at_1
value: 23.257
- type: precision_at_10
value: 8.704
- type: precision_at_100
value: 1.606
- type: precision_at_1000
value: 0.22499999999999998
- type: precision_at_3
value: 16.287
- type: precision_at_5
value: 13.068
- type: recall_at_1
value: 10.366999999999999
- type: recall_at_10
value: 33.706
- type: recall_at_100
value: 57.375
- type: recall_at_1000
value: 76.79
- type: recall_at_3
value: 20.18
- type: recall_at_5
value: 26.215
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: f097057d03ed98220bc7309ddb10b71a54d667d6
metrics:
- type: map_at_1
value: 8.246
- type: map_at_10
value: 15.979
- type: map_at_100
value: 21.025
- type: map_at_1000
value: 22.189999999999998
- type: map_at_3
value: 11.997
- type: map_at_5
value: 13.697000000000001
- type: mrr_at_1
value: 60.75000000000001
- type: mrr_at_10
value: 68.70100000000001
- type: mrr_at_100
value: 69.1
- type: mrr_at_1000
value: 69.111
- type: mrr_at_3
value: 66.583
- type: mrr_at_5
value: 67.87100000000001
- type: ndcg_at_1
value: 49.75
- type: ndcg_at_10
value: 34.702
- type: ndcg_at_100
value: 37.607
- type: ndcg_at_1000
value: 44.322
- type: ndcg_at_3
value: 39.555
- type: ndcg_at_5
value: 36.684
- type: precision_at_1
value: 60.75000000000001
- type: precision_at_10
value: 26.625
- type: precision_at_100
value: 7.969999999999999
- type: precision_at_1000
value: 1.678
- type: precision_at_3
value: 41.833
- type: precision_at_5
value: 34.5
- type: recall_at_1
value: 8.246
- type: recall_at_10
value: 20.968
- type: recall_at_100
value: 42.065000000000005
- type: recall_at_1000
value: 63.671
- type: recall_at_3
value: 13.039000000000001
- type: recall_at_5
value: 16.042
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 829147f8f75a25f005913200eb5ed41fae320aa1
metrics:
- type: accuracy
value: 49.214999999999996
- type: f1
value: 44.85952451163755
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
metrics:
- type: map_at_1
value: 56.769000000000005
- type: map_at_10
value: 67.30199999999999
- type: map_at_100
value: 67.692
- type: map_at_1000
value: 67.712
- type: map_at_3
value: 65.346
- type: map_at_5
value: 66.574
- type: mrr_at_1
value: 61.370999999999995
- type: mrr_at_10
value: 71.875
- type: mrr_at_100
value: 72.195
- type: mrr_at_1000
value: 72.206
- type: mrr_at_3
value: 70.04
- type: mrr_at_5
value: 71.224
- type: ndcg_at_1
value: 61.370999999999995
- type: ndcg_at_10
value: 72.731
- type: ndcg_at_100
value: 74.468
- type: ndcg_at_1000
value: 74.91600000000001
- type: ndcg_at_3
value: 69.077
- type: ndcg_at_5
value: 71.111
- type: precision_at_1
value: 61.370999999999995
- type: precision_at_10
value: 9.325999999999999
- type: precision_at_100
value: 1.03
- type: precision_at_1000
value: 0.108
- type: precision_at_3
value: 27.303
- type: precision_at_5
value: 17.525
- type: recall_at_1
value: 56.769000000000005
- type: recall_at_10
value: 85.06
- type: recall_at_100
value: 92.767
- type: recall_at_1000
value: 95.933
- type: recall_at_3
value: 75.131
- type: recall_at_5
value: 80.17
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
metrics:
- type: map_at_1
value: 15.753
- type: map_at_10
value: 25.875999999999998
- type: map_at_100
value: 27.415
- type: map_at_1000
value: 27.590999999999998
- type: map_at_3
value: 22.17
- type: map_at_5
value: 24.236
- type: mrr_at_1
value: 31.019000000000002
- type: mrr_at_10
value: 39.977000000000004
- type: mrr_at_100
value: 40.788999999999994
- type: mrr_at_1000
value: 40.832
- type: mrr_at_3
value: 37.088
- type: mrr_at_5
value: 38.655
- type: ndcg_at_1
value: 31.019000000000002
- type: ndcg_at_10
value: 33.286
- type: ndcg_at_100
value: 39.528999999999996
- type: ndcg_at_1000
value: 42.934
- type: ndcg_at_3
value: 29.29
- type: ndcg_at_5
value: 30.615
- type: precision_at_1
value: 31.019000000000002
- type: precision_at_10
value: 9.383
- type: precision_at_100
value: 1.6019999999999999
- type: precision_at_1000
value: 0.22200000000000003
- type: precision_at_3
value: 19.753
- type: precision_at_5
value: 14.815000000000001
- type: recall_at_1
value: 15.753
- type: recall_at_10
value: 40.896
- type: recall_at_100
value: 64.443
- type: recall_at_1000
value: 85.218
- type: recall_at_3
value: 26.526
- type: recall_at_5
value: 32.452999999999996
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
metrics:
- type: map_at_1
value: 32.153999999999996
- type: map_at_10
value: 43.651
- type: map_at_100
value: 44.41
- type: map_at_1000
value: 44.487
- type: map_at_3
value: 41.239
- type: map_at_5
value: 42.659000000000006
- type: mrr_at_1
value: 64.30799999999999
- type: mrr_at_10
value: 71.22500000000001
- type: mrr_at_100
value: 71.57
- type: mrr_at_1000
value: 71.59100000000001
- type: mrr_at_3
value: 69.95
- type: mrr_at_5
value: 70.738
- type: ndcg_at_1
value: 64.30799999999999
- type: ndcg_at_10
value: 52.835
- type: ndcg_at_100
value: 55.840999999999994
- type: ndcg_at_1000
value: 57.484
- type: ndcg_at_3
value: 49.014
- type: ndcg_at_5
value: 51.01599999999999
- type: precision_at_1
value: 64.30799999999999
- type: precision_at_10
value: 10.77
- type: precision_at_100
value: 1.315
- type: precision_at_1000
value: 0.153
- type: precision_at_3
value: 30.223
- type: precision_at_5
value: 19.716
- type: recall_at_1
value: 32.153999999999996
- type: recall_at_10
value: 53.849000000000004
- type: recall_at_100
value: 65.75999999999999
- type: recall_at_1000
value: 76.705
- type: recall_at_3
value: 45.334
- type: recall_at_5
value: 49.291000000000004
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
metrics:
- type: accuracy
value: 63.5316
- type: ap
value: 58.90084300359825
- type: f1
value: 63.35727889030892
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: validation
revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
metrics:
- type: map_at_1
value: 20.566000000000003
- type: map_at_10
value: 32.229
- type: map_at_100
value: 33.445
- type: map_at_1000
value: 33.501
- type: map_at_3
value: 28.504
- type: map_at_5
value: 30.681000000000004
- type: mrr_at_1
value: 21.218
- type: mrr_at_10
value: 32.816
- type: mrr_at_100
value: 33.986
- type: mrr_at_1000
value: 34.035
- type: mrr_at_3
value: 29.15
- type: mrr_at_5
value: 31.290000000000003
- type: ndcg_at_1
value: 21.218
- type: ndcg_at_10
value: 38.832
- type: ndcg_at_100
value: 44.743
- type: ndcg_at_1000
value: 46.138
- type: ndcg_at_3
value: 31.232
- type: ndcg_at_5
value: 35.099999999999994
- type: precision_at_1
value: 21.218
- type: precision_at_10
value: 6.186
- type: precision_at_100
value: 0.914
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 13.314
- type: precision_at_5
value: 9.943
- type: recall_at_1
value: 20.566000000000003
- type: recall_at_10
value: 59.192
- type: recall_at_100
value: 86.626
- type: recall_at_1000
value: 97.283
- type: recall_at_3
value: 38.492
- type: recall_at_5
value: 47.760000000000005
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
metrics:
- type: accuracy
value: 92.56269949840402
- type: f1
value: 92.1020975473988
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: 6299947a7777084cc2d4b64235bf7190381ce755
metrics:
- type: accuracy
value: 71.8467852257182
- type: f1
value: 53.652719348592015
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
metrics:
- type: accuracy
value: 69.00806993947546
- type: f1
value: 67.41429618885515
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.90114324142569
- type: f1
value: 76.25183590651454
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: dcefc037ef84348e49b0d29109e891c01067226b
metrics:
- type: v_measure
value: 31.350109978273395
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
metrics:
- type: v_measure
value: 28.768923695767327
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.716396735210754
- type: mrr
value: 32.88970538547634
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
metrics:
- type: map_at_1
value: 5.604
- type: map_at_10
value: 12.379999999999999
- type: map_at_100
value: 15.791
- type: map_at_1000
value: 17.327
- type: map_at_3
value: 9.15
- type: map_at_5
value: 10.599
- type: mrr_at_1
value: 45.201
- type: mrr_at_10
value: 53.374
- type: mrr_at_100
value: 54.089
- type: mrr_at_1000
value: 54.123
- type: mrr_at_3
value: 51.44499999999999
- type: mrr_at_5
value: 52.59
- type: ndcg_at_1
value: 42.879
- type: ndcg_at_10
value: 33.891
- type: ndcg_at_100
value: 31.391999999999996
- type: ndcg_at_1000
value: 40.36
- type: ndcg_at_3
value: 39.076
- type: ndcg_at_5
value: 37.047000000000004
- type: precision_at_1
value: 44.582
- type: precision_at_10
value: 25.294
- type: precision_at_100
value: 8.285
- type: precision_at_1000
value: 2.1479999999999997
- type: precision_at_3
value: 36.120000000000005
- type: precision_at_5
value: 31.95
- type: recall_at_1
value: 5.604
- type: recall_at_10
value: 16.239
- type: recall_at_100
value: 32.16
- type: recall_at_1000
value: 64.513
- type: recall_at_3
value: 10.406
- type: recall_at_5
value: 12.684999999999999
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
metrics:
- type: map_at_1
value: 25.881
- type: map_at_10
value: 39.501
- type: map_at_100
value: 40.615
- type: map_at_1000
value: 40.661
- type: map_at_3
value: 35.559000000000005
- type: map_at_5
value: 37.773
- type: mrr_at_1
value: 29.229
- type: mrr_at_10
value: 41.955999999999996
- type: mrr_at_100
value: 42.86
- type: mrr_at_1000
value: 42.893
- type: mrr_at_3
value: 38.562000000000005
- type: mrr_at_5
value: 40.542
- type: ndcg_at_1
value: 29.2
- type: ndcg_at_10
value: 46.703
- type: ndcg_at_100
value: 51.644
- type: ndcg_at_1000
value: 52.771
- type: ndcg_at_3
value: 39.141999999999996
- type: ndcg_at_5
value: 42.892
- type: precision_at_1
value: 29.2
- type: precision_at_10
value: 7.920000000000001
- type: precision_at_100
value: 1.0659999999999998
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 18.105
- type: precision_at_5
value: 13.036
- type: recall_at_1
value: 25.881
- type: recall_at_10
value: 66.266
- type: recall_at_100
value: 88.116
- type: recall_at_1000
value: 96.58200000000001
- type: recall_at_3
value: 46.526
- type: recall_at_5
value: 55.154
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
metrics:
- type: map_at_1
value: 67.553
- type: map_at_10
value: 81.34
- type: map_at_100
value: 82.002
- type: map_at_1000
value: 82.027
- type: map_at_3
value: 78.281
- type: map_at_5
value: 80.149
- type: mrr_at_1
value: 77.72
- type: mrr_at_10
value: 84.733
- type: mrr_at_100
value: 84.878
- type: mrr_at_1000
value: 84.879
- type: mrr_at_3
value: 83.587
- type: mrr_at_5
value: 84.32600000000001
- type: ndcg_at_1
value: 77.75
- type: ndcg_at_10
value: 85.603
- type: ndcg_at_100
value: 87.069
- type: ndcg_at_1000
value: 87.25
- type: ndcg_at_3
value: 82.303
- type: ndcg_at_5
value: 84.03699999999999
- type: precision_at_1
value: 77.75
- type: precision_at_10
value: 13.04
- type: precision_at_100
value: 1.5070000000000001
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 35.903
- type: precision_at_5
value: 23.738
- type: recall_at_1
value: 67.553
- type: recall_at_10
value: 93.903
- type: recall_at_100
value: 99.062
- type: recall_at_1000
value: 99.935
- type: recall_at_3
value: 84.58099999999999
- type: recall_at_5
value: 89.316
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: b2805658ae38990172679479369a78b86de8c390
metrics:
- type: v_measure
value: 46.46887711230235
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 54.166876298246926
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
metrics:
- type: map_at_1
value: 4.053
- type: map_at_10
value: 9.693999999999999
- type: map_at_100
value: 11.387
- type: map_at_1000
value: 11.654
- type: map_at_3
value: 7.053
- type: map_at_5
value: 8.439
- type: mrr_at_1
value: 19.900000000000002
- type: mrr_at_10
value: 29.359
- type: mrr_at_100
value: 30.484
- type: mrr_at_1000
value: 30.553
- type: mrr_at_3
value: 26.200000000000003
- type: mrr_at_5
value: 28.115000000000002
- type: ndcg_at_1
value: 19.900000000000002
- type: ndcg_at_10
value: 16.575
- type: ndcg_at_100
value: 23.655
- type: ndcg_at_1000
value: 28.853
- type: ndcg_at_3
value: 15.848
- type: ndcg_at_5
value: 14.026
- type: precision_at_1
value: 19.900000000000002
- type: precision_at_10
value: 8.450000000000001
- type: precision_at_100
value: 1.872
- type: precision_at_1000
value: 0.313
- type: precision_at_3
value: 14.667
- type: precision_at_5
value: 12.32
- type: recall_at_1
value: 4.053
- type: recall_at_10
value: 17.169999999999998
- type: recall_at_100
value: 38.025
- type: recall_at_1000
value: 63.571999999999996
- type: recall_at_3
value: 8.903
- type: recall_at_5
value: 12.477
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 77.7548748519677
- type: cos_sim_spearman
value: 68.19926431966059
- type: euclidean_pearson
value: 71.69016204991725
- type: euclidean_spearman
value: 66.98099673026834
- type: manhattan_pearson
value: 71.62994072488664
- type: manhattan_spearman
value: 67.03435950744577
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
metrics:
- type: cos_sim_pearson
value: 75.91051402657887
- type: cos_sim_spearman
value: 66.99390786191645
- type: euclidean_pearson
value: 71.54128036454578
- type: euclidean_spearman
value: 69.25605675649068
- type: manhattan_pearson
value: 71.60981030780171
- type: manhattan_spearman
value: 69.27513670128046
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
metrics:
- type: cos_sim_pearson
value: 77.23835466417793
- type: cos_sim_spearman
value: 77.57623085766706
- type: euclidean_pearson
value: 77.5090992200725
- type: euclidean_spearman
value: 77.88601688144924
- type: manhattan_pearson
value: 77.39045060647423
- type: manhattan_spearman
value: 77.77552718279098
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
metrics:
- type: cos_sim_pearson
value: 77.91692485139602
- type: cos_sim_spearman
value: 72.78258293483495
- type: euclidean_pearson
value: 74.64773017077789
- type: euclidean_spearman
value: 71.81662299104619
- type: manhattan_pearson
value: 74.71043337995533
- type: manhattan_spearman
value: 71.83960860845646
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
metrics:
- type: cos_sim_pearson
value: 82.13422113617578
- type: cos_sim_spearman
value: 82.61707296911949
- type: euclidean_pearson
value: 81.42487480400861
- type: euclidean_spearman
value: 82.17970991273835
- type: manhattan_pearson
value: 81.41985055477845
- type: manhattan_spearman
value: 82.15823204362937
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
metrics:
- type: cos_sim_pearson
value: 79.07989542843826
- type: cos_sim_spearman
value: 80.09839524406284
- type: euclidean_pearson
value: 76.43186028364195
- type: euclidean_spearman
value: 76.76720323266471
- type: manhattan_pearson
value: 76.4674747409161
- type: manhattan_spearman
value: 76.81797407068667
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
metrics:
- type: cos_sim_pearson
value: 87.0420983224933
- type: cos_sim_spearman
value: 87.25017540413702
- type: euclidean_pearson
value: 84.56384596473421
- type: euclidean_spearman
value: 84.72557417564886
- type: manhattan_pearson
value: 84.7329954474549
- type: manhattan_spearman
value: 84.75071371008909
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
metrics:
- type: cos_sim_pearson
value: 68.47031320016424
- type: cos_sim_spearman
value: 68.7486910762485
- type: euclidean_pearson
value: 71.30330985913915
- type: euclidean_spearman
value: 71.59666258520735
- type: manhattan_pearson
value: 71.4423884279027
- type: manhattan_spearman
value: 71.67460706861044
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: 8913289635987208e6e7c72789e4be2fe94b6abd
metrics:
- type: cos_sim_pearson
value: 80.79514366062675
- type: cos_sim_spearman
value: 79.20585637461048
- type: euclidean_pearson
value: 78.6591557395699
- type: euclidean_spearman
value: 77.86455794285718
- type: manhattan_pearson
value: 78.67754806486865
- type: manhattan_spearman
value: 77.88178687200732
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: 56a6d0140cf6356659e2a7c1413286a774468d44
metrics:
- type: map
value: 77.71580844366375
- type: mrr
value: 93.04215845882513
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: a75ae049398addde9b70f6b268875f5cbce99089
metrics:
- type: map_at_1
value: 56.39999999999999
- type: map_at_10
value: 65.701
- type: map_at_100
value: 66.32000000000001
- type: map_at_1000
value: 66.34100000000001
- type: map_at_3
value: 62.641999999999996
- type: map_at_5
value: 64.342
- type: mrr_at_1
value: 58.667
- type: mrr_at_10
value: 66.45299999999999
- type: mrr_at_100
value: 66.967
- type: mrr_at_1000
value: 66.988
- type: mrr_at_3
value: 64.11099999999999
- type: mrr_at_5
value: 65.411
- type: ndcg_at_1
value: 58.667
- type: ndcg_at_10
value: 70.165
- type: ndcg_at_100
value: 72.938
- type: ndcg_at_1000
value: 73.456
- type: ndcg_at_3
value: 64.79
- type: ndcg_at_5
value: 67.28
- type: precision_at_1
value: 58.667
- type: precision_at_10
value: 9.4
- type: precision_at_100
value: 1.087
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 24.889
- type: precision_at_5
value: 16.667
- type: recall_at_1
value: 56.39999999999999
- type: recall_at_10
value: 83.122
- type: recall_at_100
value: 95.667
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 68.378
- type: recall_at_5
value: 74.68299999999999
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
metrics:
- type: cos_sim_accuracy
value: 99.76831683168317
- type: cos_sim_ap
value: 93.47124923047998
- type: cos_sim_f1
value: 88.06122448979592
- type: cos_sim_precision
value: 89.89583333333333
- type: cos_sim_recall
value: 86.3
- type: dot_accuracy
value: 99.57326732673268
- type: dot_ap
value: 84.06577868167207
- type: dot_f1
value: 77.82629791363416
- type: dot_precision
value: 75.58906691800189
- type: dot_recall
value: 80.2
- type: euclidean_accuracy
value: 99.74257425742574
- type: euclidean_ap
value: 92.1904681653555
- type: euclidean_f1
value: 86.74821610601427
- type: euclidean_precision
value: 88.46153846153845
- type: euclidean_recall
value: 85.1
- type: manhattan_accuracy
value: 99.74554455445545
- type: manhattan_ap
value: 92.4337790809948
- type: manhattan_f1
value: 86.86765457332653
- type: manhattan_precision
value: 88.81922675026124
- type: manhattan_recall
value: 85
- type: max_accuracy
value: 99.76831683168317
- type: max_ap
value: 93.47124923047998
- type: max_f1
value: 88.06122448979592
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
metrics:
- type: v_measure
value: 59.194098673976484
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
metrics:
- type: v_measure
value: 32.5744032578115
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
metrics:
- type: map
value: 49.61186384154483
- type: mrr
value: 50.55424253034547
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
metrics:
- type: cos_sim_pearson
value: 26.047224542079068
- type: cos_sim_spearman
value: 27.870478281195467
- type: dot_pearson
value: 25.182420685701217
- type: dot_spearman
value: 25.116243491984985
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
metrics:
- type: map_at_1
value: 0.22300000000000003
- type: map_at_10
value: 1.762
- type: map_at_100
value: 9.984
- type: map_at_1000
value: 24.265
- type: map_at_3
value: 0.631
- type: map_at_5
value: 0.9950000000000001
- type: mrr_at_1
value: 88
- type: mrr_at_10
value: 92.833
- type: mrr_at_100
value: 92.833
- type: mrr_at_1000
value: 92.833
- type: mrr_at_3
value: 92.333
- type: mrr_at_5
value: 92.833
- type: ndcg_at_1
value: 83
- type: ndcg_at_10
value: 75.17
- type: ndcg_at_100
value: 55.432
- type: ndcg_at_1000
value: 49.482
- type: ndcg_at_3
value: 82.184
- type: ndcg_at_5
value: 79.712
- type: precision_at_1
value: 88
- type: precision_at_10
value: 78.60000000000001
- type: precision_at_100
value: 56.56
- type: precision_at_1000
value: 22.334
- type: precision_at_3
value: 86.667
- type: precision_at_5
value: 83.6
- type: recall_at_1
value: 0.22300000000000003
- type: recall_at_10
value: 1.9879999999999998
- type: recall_at_100
value: 13.300999999999998
- type: recall_at_1000
value: 46.587
- type: recall_at_3
value: 0.6629999999999999
- type: recall_at_5
value: 1.079
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
metrics:
- type: map_at_1
value: 3.047
- type: map_at_10
value: 8.792
- type: map_at_100
value: 14.631
- type: map_at_1000
value: 16.127
- type: map_at_3
value: 4.673
- type: map_at_5
value: 5.897
- type: mrr_at_1
value: 38.775999999999996
- type: mrr_at_10
value: 49.271
- type: mrr_at_100
value: 50.181
- type: mrr_at_1000
value: 50.2
- type: mrr_at_3
value: 44.558
- type: mrr_at_5
value: 47.925000000000004
- type: ndcg_at_1
value: 35.714
- type: ndcg_at_10
value: 23.44
- type: ndcg_at_100
value: 35.345
- type: ndcg_at_1000
value: 46.495
- type: ndcg_at_3
value: 26.146
- type: ndcg_at_5
value: 24.878
- type: precision_at_1
value: 38.775999999999996
- type: precision_at_10
value: 20.816000000000003
- type: precision_at_100
value: 7.428999999999999
- type: precision_at_1000
value: 1.494
- type: precision_at_3
value: 25.85
- type: precision_at_5
value: 24.082
- type: recall_at_1
value: 3.047
- type: recall_at_10
value: 14.975
- type: recall_at_100
value: 45.943
- type: recall_at_1000
value: 80.31099999999999
- type: recall_at_3
value: 5.478000000000001
- type: recall_at_5
value: 8.294
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 68.84080000000002
- type: ap
value: 13.135219251019848
- type: f1
value: 52.849999421995506
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: 62146448f05be9e52a36b8ee9936447ea787eede
metrics:
- type: accuracy
value: 56.68647425014149
- type: f1
value: 56.97981427365949
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
metrics:
- type: v_measure
value: 40.8911707239219
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 83.04226023722954
- type: cos_sim_ap
value: 63.681339908301325
- type: cos_sim_f1
value: 60.349184470480125
- type: cos_sim_precision
value: 53.437754271765655
- type: cos_sim_recall
value: 69.31398416886545
- type: dot_accuracy
value: 81.46271681468677
- type: dot_ap
value: 57.78072296265885
- type: dot_f1
value: 56.28769265132901
- type: dot_precision
value: 48.7993803253292
- type: dot_recall
value: 66.49076517150397
- type: euclidean_accuracy
value: 82.16606067830959
- type: euclidean_ap
value: 59.974530371203514
- type: euclidean_f1
value: 56.856023506366306
- type: euclidean_precision
value: 53.037916857012334
- type: euclidean_recall
value: 61.2664907651715
- type: manhattan_accuracy
value: 82.16606067830959
- type: manhattan_ap
value: 59.98962379571767
- type: manhattan_f1
value: 56.98153158451947
- type: manhattan_precision
value: 51.41158989598811
- type: manhattan_recall
value: 63.90501319261214
- type: max_accuracy
value: 83.04226023722954
- type: max_ap
value: 63.681339908301325
- type: max_f1
value: 60.349184470480125
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.56871191834517
- type: cos_sim_ap
value: 84.80240716354544
- type: cos_sim_f1
value: 77.07765285922385
- type: cos_sim_precision
value: 74.84947406601378
- type: cos_sim_recall
value: 79.44256236526024
- type: dot_accuracy
value: 86.00923662048356
- type: dot_ap
value: 78.6556459012073
- type: dot_f1
value: 72.7583749109052
- type: dot_precision
value: 67.72823779193206
- type: dot_recall
value: 78.59562673236834
- type: euclidean_accuracy
value: 87.84103698529127
- type: euclidean_ap
value: 83.50424424952834
- type: euclidean_f1
value: 75.74496544549307
- type: euclidean_precision
value: 73.19402556369381
- type: euclidean_recall
value: 78.48013550970127
- type: manhattan_accuracy
value: 87.9225365777933
- type: manhattan_ap
value: 83.49479248597825
- type: manhattan_f1
value: 75.67748162447101
- type: manhattan_precision
value: 73.06810035842294
- type: manhattan_recall
value: 78.48013550970127
- type: max_accuracy
value: 88.56871191834517
- type: max_ap
value: 84.80240716354544
- type: max_f1
value: 77.07765285922385
SGPT-2.7B-weightedmean-msmarco-specb-bitfit
Usage
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt
Evaluation Results
For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 124796 with parameters:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 7.5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel
(1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
Citing & Authors
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}