Muennighoff's picture
Update README.md
359fba0
|
raw
history blame
61.6 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: SGPT-2.7B-weightedmean-msmarco-specb-bitfit
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 67.56716417910448
          - type: ap
            value: 30.75574629595259
          - type: f1
            value: 61.805121301858655
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 71.439575
          - type: ap
            value: 65.91341330532453
          - type: f1
            value: 70.90561852619555
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 35.748000000000005
          - type: f1
            value: 35.48576287186347
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 25.96
          - type: map_at_10
            value: 41.619
          - type: map_at_100
            value: 42.673
          - type: map_at_1000
            value: 42.684
          - type: map_at_3
            value: 36.569
          - type: map_at_5
            value: 39.397
          - type: mrr_at_1
            value: 26.316
          - type: mrr_at_10
            value: 41.772
          - type: mrr_at_100
            value: 42.82
          - type: mrr_at_1000
            value: 42.83
          - type: mrr_at_3
            value: 36.724000000000004
          - type: mrr_at_5
            value: 39.528999999999996
          - type: ndcg_at_1
            value: 25.96
          - type: ndcg_at_10
            value: 50.491
          - type: ndcg_at_100
            value: 54.864999999999995
          - type: ndcg_at_1000
            value: 55.10699999999999
          - type: ndcg_at_3
            value: 40.053
          - type: ndcg_at_5
            value: 45.134
          - type: precision_at_1
            value: 25.96
          - type: precision_at_10
            value: 7.8950000000000005
          - type: precision_at_100
            value: 0.9780000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 16.714000000000002
          - type: precision_at_5
            value: 12.489
          - type: recall_at_1
            value: 25.96
          - type: recall_at_10
            value: 78.947
          - type: recall_at_100
            value: 97.795
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 50.141999999999996
          - type: recall_at_5
            value: 62.446999999999996
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 44.72125714642202
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 35.081451519142064
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 59.634661990392054
          - type: mrr
            value: 73.6813525040672
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 87.42754550496836
          - type: cos_sim_spearman
            value: 84.84289705838664
          - type: euclidean_pearson
            value: 85.59331970450859
          - type: euclidean_spearman
            value: 85.8525586184271
          - type: manhattan_pearson
            value: 85.41233134466698
          - type: manhattan_spearman
            value: 85.52303303767404
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 83.21753246753246
          - type: f1
            value: 83.15394543120915
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 34.41414219680629
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 30.533275862270028
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 30.808999999999997
          - type: map_at_10
            value: 40.617
          - type: map_at_100
            value: 41.894999999999996
          - type: map_at_1000
            value: 42.025
          - type: map_at_3
            value: 37
          - type: map_at_5
            value: 38.993
          - type: mrr_at_1
            value: 37.482
          - type: mrr_at_10
            value: 46.497
          - type: mrr_at_100
            value: 47.144000000000005
          - type: mrr_at_1000
            value: 47.189
          - type: mrr_at_3
            value: 43.705
          - type: mrr_at_5
            value: 45.193
          - type: ndcg_at_1
            value: 37.482
          - type: ndcg_at_10
            value: 46.688
          - type: ndcg_at_100
            value: 51.726000000000006
          - type: ndcg_at_1000
            value: 53.825
          - type: ndcg_at_3
            value: 41.242000000000004
          - type: ndcg_at_5
            value: 43.657000000000004
          - type: precision_at_1
            value: 37.482
          - type: precision_at_10
            value: 8.827
          - type: precision_at_100
            value: 1.393
          - type: precision_at_1000
            value: 0.186
          - type: precision_at_3
            value: 19.361
          - type: precision_at_5
            value: 14.106
          - type: recall_at_1
            value: 30.808999999999997
          - type: recall_at_10
            value: 58.47
          - type: recall_at_100
            value: 80.51899999999999
          - type: recall_at_1000
            value: 93.809
          - type: recall_at_3
            value: 42.462
          - type: recall_at_5
            value: 49.385
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 26.962000000000003
          - type: map_at_10
            value: 36.93
          - type: map_at_100
            value: 38.102000000000004
          - type: map_at_1000
            value: 38.22
          - type: map_at_3
            value: 34.065
          - type: map_at_5
            value: 35.72
          - type: mrr_at_1
            value: 33.567
          - type: mrr_at_10
            value: 42.269
          - type: mrr_at_100
            value: 42.99
          - type: mrr_at_1000
            value: 43.033
          - type: mrr_at_3
            value: 40.064
          - type: mrr_at_5
            value: 41.258
          - type: ndcg_at_1
            value: 33.567
          - type: ndcg_at_10
            value: 42.405
          - type: ndcg_at_100
            value: 46.847
          - type: ndcg_at_1000
            value: 48.951
          - type: ndcg_at_3
            value: 38.312000000000005
          - type: ndcg_at_5
            value: 40.242
          - type: precision_at_1
            value: 33.567
          - type: precision_at_10
            value: 8.032
          - type: precision_at_100
            value: 1.295
          - type: precision_at_1000
            value: 0.17600000000000002
          - type: precision_at_3
            value: 18.662
          - type: precision_at_5
            value: 13.299
          - type: recall_at_1
            value: 26.962000000000003
          - type: recall_at_10
            value: 52.489
          - type: recall_at_100
            value: 71.635
          - type: recall_at_1000
            value: 85.141
          - type: recall_at_3
            value: 40.28
          - type: recall_at_5
            value: 45.757
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 36.318
          - type: map_at_10
            value: 47.97
          - type: map_at_100
            value: 49.003
          - type: map_at_1000
            value: 49.065999999999995
          - type: map_at_3
            value: 45.031
          - type: map_at_5
            value: 46.633
          - type: mrr_at_1
            value: 41.504999999999995
          - type: mrr_at_10
            value: 51.431000000000004
          - type: mrr_at_100
            value: 52.129000000000005
          - type: mrr_at_1000
            value: 52.161
          - type: mrr_at_3
            value: 48.934
          - type: mrr_at_5
            value: 50.42
          - type: ndcg_at_1
            value: 41.504999999999995
          - type: ndcg_at_10
            value: 53.676
          - type: ndcg_at_100
            value: 57.867000000000004
          - type: ndcg_at_1000
            value: 59.166
          - type: ndcg_at_3
            value: 48.516
          - type: ndcg_at_5
            value: 50.983999999999995
          - type: precision_at_1
            value: 41.504999999999995
          - type: precision_at_10
            value: 8.608
          - type: precision_at_100
            value: 1.1560000000000001
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 21.462999999999997
          - type: precision_at_5
            value: 14.721
          - type: recall_at_1
            value: 36.318
          - type: recall_at_10
            value: 67.066
          - type: recall_at_100
            value: 85.34
          - type: recall_at_1000
            value: 94.491
          - type: recall_at_3
            value: 53.215999999999994
          - type: recall_at_5
            value: 59.214
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 22.167
          - type: map_at_10
            value: 29.543999999999997
          - type: map_at_100
            value: 30.579
          - type: map_at_1000
            value: 30.669999999999998
          - type: map_at_3
            value: 26.982
          - type: map_at_5
            value: 28.474
          - type: mrr_at_1
            value: 24.068
          - type: mrr_at_10
            value: 31.237
          - type: mrr_at_100
            value: 32.222
          - type: mrr_at_1000
            value: 32.292
          - type: mrr_at_3
            value: 28.776000000000003
          - type: mrr_at_5
            value: 30.233999999999998
          - type: ndcg_at_1
            value: 24.068
          - type: ndcg_at_10
            value: 33.973
          - type: ndcg_at_100
            value: 39.135
          - type: ndcg_at_1000
            value: 41.443999999999996
          - type: ndcg_at_3
            value: 29.018
          - type: ndcg_at_5
            value: 31.558999999999997
          - type: precision_at_1
            value: 24.068
          - type: precision_at_10
            value: 5.299
          - type: precision_at_100
            value: 0.823
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 12.166
          - type: precision_at_5
            value: 8.767999999999999
          - type: recall_at_1
            value: 22.167
          - type: recall_at_10
            value: 46.115
          - type: recall_at_100
            value: 69.867
          - type: recall_at_1000
            value: 87.234
          - type: recall_at_3
            value: 32.798
          - type: recall_at_5
            value: 38.951
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 12.033000000000001
          - type: map_at_10
            value: 19.314
          - type: map_at_100
            value: 20.562
          - type: map_at_1000
            value: 20.695
          - type: map_at_3
            value: 16.946
          - type: map_at_5
            value: 18.076999999999998
          - type: mrr_at_1
            value: 14.801
          - type: mrr_at_10
            value: 22.74
          - type: mrr_at_100
            value: 23.876
          - type: mrr_at_1000
            value: 23.949
          - type: mrr_at_3
            value: 20.211000000000002
          - type: mrr_at_5
            value: 21.573
          - type: ndcg_at_1
            value: 14.801
          - type: ndcg_at_10
            value: 24.038
          - type: ndcg_at_100
            value: 30.186
          - type: ndcg_at_1000
            value: 33.321
          - type: ndcg_at_3
            value: 19.431
          - type: ndcg_at_5
            value: 21.34
          - type: precision_at_1
            value: 14.801
          - type: precision_at_10
            value: 4.776
          - type: precision_at_100
            value: 0.897
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 9.66
          - type: precision_at_5
            value: 7.239
          - type: recall_at_1
            value: 12.033000000000001
          - type: recall_at_10
            value: 35.098
          - type: recall_at_100
            value: 62.175000000000004
          - type: recall_at_1000
            value: 84.17099999999999
          - type: recall_at_3
            value: 22.61
          - type: recall_at_5
            value: 27.278999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 26.651000000000003
          - type: map_at_10
            value: 36.901
          - type: map_at_100
            value: 38.249
          - type: map_at_1000
            value: 38.361000000000004
          - type: map_at_3
            value: 33.891
          - type: map_at_5
            value: 35.439
          - type: mrr_at_1
            value: 32.724
          - type: mrr_at_10
            value: 42.504
          - type: mrr_at_100
            value: 43.391999999999996
          - type: mrr_at_1000
            value: 43.436
          - type: mrr_at_3
            value: 39.989999999999995
          - type: mrr_at_5
            value: 41.347
          - type: ndcg_at_1
            value: 32.724
          - type: ndcg_at_10
            value: 43.007
          - type: ndcg_at_100
            value: 48.601
          - type: ndcg_at_1000
            value: 50.697
          - type: ndcg_at_3
            value: 37.99
          - type: ndcg_at_5
            value: 40.083999999999996
          - type: precision_at_1
            value: 32.724
          - type: precision_at_10
            value: 7.872999999999999
          - type: precision_at_100
            value: 1.247
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 18.062
          - type: precision_at_5
            value: 12.666
          - type: recall_at_1
            value: 26.651000000000003
          - type: recall_at_10
            value: 55.674
          - type: recall_at_100
            value: 78.904
          - type: recall_at_1000
            value: 92.55799999999999
          - type: recall_at_3
            value: 41.36
          - type: recall_at_5
            value: 46.983999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 22.589000000000002
          - type: map_at_10
            value: 32.244
          - type: map_at_100
            value: 33.46
          - type: map_at_1000
            value: 33.593
          - type: map_at_3
            value: 29.21
          - type: map_at_5
            value: 31.019999999999996
          - type: mrr_at_1
            value: 28.425
          - type: mrr_at_10
            value: 37.282
          - type: mrr_at_100
            value: 38.187
          - type: mrr_at_1000
            value: 38.248
          - type: mrr_at_3
            value: 34.684
          - type: mrr_at_5
            value: 36.123
          - type: ndcg_at_1
            value: 28.425
          - type: ndcg_at_10
            value: 37.942
          - type: ndcg_at_100
            value: 43.443
          - type: ndcg_at_1000
            value: 45.995999999999995
          - type: ndcg_at_3
            value: 32.873999999999995
          - type: ndcg_at_5
            value: 35.325
          - type: precision_at_1
            value: 28.425
          - type: precision_at_10
            value: 7.1
          - type: precision_at_100
            value: 1.166
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 16.02
          - type: precision_at_5
            value: 11.644
          - type: recall_at_1
            value: 22.589000000000002
          - type: recall_at_10
            value: 50.03999999999999
          - type: recall_at_100
            value: 73.973
          - type: recall_at_1000
            value: 91.128
          - type: recall_at_3
            value: 35.882999999999996
          - type: recall_at_5
            value: 42.187999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.190833333333334
          - type: map_at_10
            value: 31.504916666666666
          - type: map_at_100
            value: 32.64908333333334
          - type: map_at_1000
            value: 32.77075
          - type: map_at_3
            value: 28.82575
          - type: map_at_5
            value: 30.2755
          - type: mrr_at_1
            value: 27.427499999999995
          - type: mrr_at_10
            value: 35.36483333333334
          - type: mrr_at_100
            value: 36.23441666666666
          - type: mrr_at_1000
            value: 36.297583333333336
          - type: mrr_at_3
            value: 32.97966666666667
          - type: mrr_at_5
            value: 34.294583333333335
          - type: ndcg_at_1
            value: 27.427499999999995
          - type: ndcg_at_10
            value: 36.53358333333333
          - type: ndcg_at_100
            value: 41.64508333333333
          - type: ndcg_at_1000
            value: 44.14499999999999
          - type: ndcg_at_3
            value: 31.88908333333333
          - type: ndcg_at_5
            value: 33.98433333333333
          - type: precision_at_1
            value: 27.427499999999995
          - type: precision_at_10
            value: 6.481083333333333
          - type: precision_at_100
            value: 1.0610833333333334
          - type: precision_at_1000
            value: 0.14691666666666667
          - type: precision_at_3
            value: 14.656749999999999
          - type: precision_at_5
            value: 10.493583333333332
          - type: recall_at_1
            value: 23.190833333333334
          - type: recall_at_10
            value: 47.65175
          - type: recall_at_100
            value: 70.41016666666667
          - type: recall_at_1000
            value: 87.82708333333332
          - type: recall_at_3
            value: 34.637583333333325
          - type: recall_at_5
            value: 40.05008333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 20.409
          - type: map_at_10
            value: 26.794
          - type: map_at_100
            value: 27.682000000000002
          - type: map_at_1000
            value: 27.783
          - type: map_at_3
            value: 24.461
          - type: map_at_5
            value: 25.668000000000003
          - type: mrr_at_1
            value: 22.853
          - type: mrr_at_10
            value: 29.296
          - type: mrr_at_100
            value: 30.103
          - type: mrr_at_1000
            value: 30.179000000000002
          - type: mrr_at_3
            value: 27.173000000000002
          - type: mrr_at_5
            value: 28.223
          - type: ndcg_at_1
            value: 22.853
          - type: ndcg_at_10
            value: 31.007
          - type: ndcg_at_100
            value: 35.581
          - type: ndcg_at_1000
            value: 38.147
          - type: ndcg_at_3
            value: 26.590999999999998
          - type: ndcg_at_5
            value: 28.43
          - type: precision_at_1
            value: 22.853
          - type: precision_at_10
            value: 5.031
          - type: precision_at_100
            value: 0.7939999999999999
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 11.401
          - type: precision_at_5
            value: 8.16
          - type: recall_at_1
            value: 20.409
          - type: recall_at_10
            value: 41.766
          - type: recall_at_100
            value: 62.964
          - type: recall_at_1000
            value: 81.682
          - type: recall_at_3
            value: 29.281000000000002
          - type: recall_at_5
            value: 33.83
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 14.549000000000001
          - type: map_at_10
            value: 20.315
          - type: map_at_100
            value: 21.301000000000002
          - type: map_at_1000
            value: 21.425
          - type: map_at_3
            value: 18.132
          - type: map_at_5
            value: 19.429
          - type: mrr_at_1
            value: 17.86
          - type: mrr_at_10
            value: 23.860999999999997
          - type: mrr_at_100
            value: 24.737000000000002
          - type: mrr_at_1000
            value: 24.82
          - type: mrr_at_3
            value: 21.685
          - type: mrr_at_5
            value: 23.008
          - type: ndcg_at_1
            value: 17.86
          - type: ndcg_at_10
            value: 24.396
          - type: ndcg_at_100
            value: 29.328
          - type: ndcg_at_1000
            value: 32.486
          - type: ndcg_at_3
            value: 20.375
          - type: ndcg_at_5
            value: 22.411
          - type: precision_at_1
            value: 17.86
          - type: precision_at_10
            value: 4.47
          - type: precision_at_100
            value: 0.8099999999999999
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 9.475
          - type: precision_at_5
            value: 7.170999999999999
          - type: recall_at_1
            value: 14.549000000000001
          - type: recall_at_10
            value: 33.365
          - type: recall_at_100
            value: 55.797
          - type: recall_at_1000
            value: 78.632
          - type: recall_at_3
            value: 22.229
          - type: recall_at_5
            value: 27.339000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.286
          - type: map_at_10
            value: 30.728
          - type: map_at_100
            value: 31.840000000000003
          - type: map_at_1000
            value: 31.953
          - type: map_at_3
            value: 28.302
          - type: map_at_5
            value: 29.615000000000002
          - type: mrr_at_1
            value: 27.239
          - type: mrr_at_10
            value: 34.408
          - type: mrr_at_100
            value: 35.335
          - type: mrr_at_1000
            value: 35.405
          - type: mrr_at_3
            value: 32.151999999999994
          - type: mrr_at_5
            value: 33.355000000000004
          - type: ndcg_at_1
            value: 27.239
          - type: ndcg_at_10
            value: 35.324
          - type: ndcg_at_100
            value: 40.866
          - type: ndcg_at_1000
            value: 43.584
          - type: ndcg_at_3
            value: 30.898999999999997
          - type: ndcg_at_5
            value: 32.812999999999995
          - type: precision_at_1
            value: 27.239
          - type: precision_at_10
            value: 5.896
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 13.713000000000001
          - type: precision_at_5
            value: 9.683
          - type: recall_at_1
            value: 23.286
          - type: recall_at_10
            value: 45.711
          - type: recall_at_100
            value: 70.611
          - type: recall_at_1000
            value: 90.029
          - type: recall_at_3
            value: 33.615
          - type: recall_at_5
            value: 38.41
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.962
          - type: map_at_10
            value: 31.942999999999998
          - type: map_at_100
            value: 33.384
          - type: map_at_1000
            value: 33.611000000000004
          - type: map_at_3
            value: 29.243000000000002
          - type: map_at_5
            value: 30.446
          - type: mrr_at_1
            value: 28.458
          - type: mrr_at_10
            value: 36.157000000000004
          - type: mrr_at_100
            value: 37.092999999999996
          - type: mrr_at_1000
            value: 37.163000000000004
          - type: mrr_at_3
            value: 33.86
          - type: mrr_at_5
            value: 35.086
          - type: ndcg_at_1
            value: 28.458
          - type: ndcg_at_10
            value: 37.201
          - type: ndcg_at_100
            value: 42.591
          - type: ndcg_at_1000
            value: 45.539
          - type: ndcg_at_3
            value: 32.889
          - type: ndcg_at_5
            value: 34.483000000000004
          - type: precision_at_1
            value: 28.458
          - type: precision_at_10
            value: 7.332
          - type: precision_at_100
            value: 1.437
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_3
            value: 15.547
          - type: precision_at_5
            value: 11.146
          - type: recall_at_1
            value: 23.962
          - type: recall_at_10
            value: 46.751
          - type: recall_at_100
            value: 71.626
          - type: recall_at_1000
            value: 90.93900000000001
          - type: recall_at_3
            value: 34.138000000000005
          - type: recall_at_5
            value: 38.673
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 18.555
          - type: map_at_10
            value: 24.759
          - type: map_at_100
            value: 25.732
          - type: map_at_1000
            value: 25.846999999999998
          - type: map_at_3
            value: 22.646
          - type: map_at_5
            value: 23.791999999999998
          - type: mrr_at_1
            value: 20.148
          - type: mrr_at_10
            value: 26.695999999999998
          - type: mrr_at_100
            value: 27.605
          - type: mrr_at_1000
            value: 27.695999999999998
          - type: mrr_at_3
            value: 24.522
          - type: mrr_at_5
            value: 25.715
          - type: ndcg_at_1
            value: 20.148
          - type: ndcg_at_10
            value: 28.746
          - type: ndcg_at_100
            value: 33.57
          - type: ndcg_at_1000
            value: 36.584
          - type: ndcg_at_3
            value: 24.532
          - type: ndcg_at_5
            value: 26.484
          - type: precision_at_1
            value: 20.148
          - type: precision_at_10
            value: 4.529
          - type: precision_at_100
            value: 0.736
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 10.351
          - type: precision_at_5
            value: 7.32
          - type: recall_at_1
            value: 18.555
          - type: recall_at_10
            value: 39.275999999999996
          - type: recall_at_100
            value: 61.511
          - type: recall_at_1000
            value: 84.111
          - type: recall_at_3
            value: 27.778999999999996
          - type: recall_at_5
            value: 32.591
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 10.366999999999999
          - type: map_at_10
            value: 18.953999999999997
          - type: map_at_100
            value: 20.674999999999997
          - type: map_at_1000
            value: 20.868000000000002
          - type: map_at_3
            value: 15.486
          - type: map_at_5
            value: 17.347
          - type: mrr_at_1
            value: 23.257
          - type: mrr_at_10
            value: 35.419
          - type: mrr_at_100
            value: 36.361
          - type: mrr_at_1000
            value: 36.403
          - type: mrr_at_3
            value: 31.747999999999998
          - type: mrr_at_5
            value: 34.077
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 27.11
          - type: ndcg_at_100
            value: 33.981
          - type: ndcg_at_1000
            value: 37.444
          - type: ndcg_at_3
            value: 21.471999999999998
          - type: ndcg_at_5
            value: 23.769000000000002
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 8.704
          - type: precision_at_100
            value: 1.606
          - type: precision_at_1000
            value: 0.22499999999999998
          - type: precision_at_3
            value: 16.287
          - type: precision_at_5
            value: 13.068
          - type: recall_at_1
            value: 10.366999999999999
          - type: recall_at_10
            value: 33.706
          - type: recall_at_100
            value: 57.375
          - type: recall_at_1000
            value: 76.79
          - type: recall_at_3
            value: 20.18
          - type: recall_at_5
            value: 26.215
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 8.246
          - type: map_at_10
            value: 15.979
          - type: map_at_100
            value: 21.025
          - type: map_at_1000
            value: 22.189999999999998
          - type: map_at_3
            value: 11.997
          - type: map_at_5
            value: 13.697000000000001
          - type: mrr_at_1
            value: 60.75000000000001
          - type: mrr_at_10
            value: 68.70100000000001
          - type: mrr_at_100
            value: 69.1
          - type: mrr_at_1000
            value: 69.111
          - type: mrr_at_3
            value: 66.583
          - type: mrr_at_5
            value: 67.87100000000001
          - type: ndcg_at_1
            value: 49.75
          - type: ndcg_at_10
            value: 34.702
          - type: ndcg_at_100
            value: 37.607
          - type: ndcg_at_1000
            value: 44.322
          - type: ndcg_at_3
            value: 39.555
          - type: ndcg_at_5
            value: 36.684
          - type: precision_at_1
            value: 60.75000000000001
          - type: precision_at_10
            value: 26.625
          - type: precision_at_100
            value: 7.969999999999999
          - type: precision_at_1000
            value: 1.678
          - type: precision_at_3
            value: 41.833
          - type: precision_at_5
            value: 34.5
          - type: recall_at_1
            value: 8.246
          - type: recall_at_10
            value: 20.968
          - type: recall_at_100
            value: 42.065000000000005
          - type: recall_at_1000
            value: 63.671
          - type: recall_at_3
            value: 13.039000000000001
          - type: recall_at_5
            value: 16.042
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 49.214999999999996
          - type: f1
            value: 44.85952451163755
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 56.769000000000005
          - type: map_at_10
            value: 67.30199999999999
          - type: map_at_100
            value: 67.692
          - type: map_at_1000
            value: 67.712
          - type: map_at_3
            value: 65.346
          - type: map_at_5
            value: 66.574
          - type: mrr_at_1
            value: 61.370999999999995
          - type: mrr_at_10
            value: 71.875
          - type: mrr_at_100
            value: 72.195
          - type: mrr_at_1000
            value: 72.206
          - type: mrr_at_3
            value: 70.04
          - type: mrr_at_5
            value: 71.224
          - type: ndcg_at_1
            value: 61.370999999999995
          - type: ndcg_at_10
            value: 72.731
          - type: ndcg_at_100
            value: 74.468
          - type: ndcg_at_1000
            value: 74.91600000000001
          - type: ndcg_at_3
            value: 69.077
          - type: ndcg_at_5
            value: 71.111
          - type: precision_at_1
            value: 61.370999999999995
          - type: precision_at_10
            value: 9.325999999999999
          - type: precision_at_100
            value: 1.03
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 27.303
          - type: precision_at_5
            value: 17.525
          - type: recall_at_1
            value: 56.769000000000005
          - type: recall_at_10
            value: 85.06
          - type: recall_at_100
            value: 92.767
          - type: recall_at_1000
            value: 95.933
          - type: recall_at_3
            value: 75.131
          - type: recall_at_5
            value: 80.17
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 15.753
          - type: map_at_10
            value: 25.875999999999998
          - type: map_at_100
            value: 27.415
          - type: map_at_1000
            value: 27.590999999999998
          - type: map_at_3
            value: 22.17
          - type: map_at_5
            value: 24.236
          - type: mrr_at_1
            value: 31.019000000000002
          - type: mrr_at_10
            value: 39.977000000000004
          - type: mrr_at_100
            value: 40.788999999999994
          - type: mrr_at_1000
            value: 40.832
          - type: mrr_at_3
            value: 37.088
          - type: mrr_at_5
            value: 38.655
          - type: ndcg_at_1
            value: 31.019000000000002
          - type: ndcg_at_10
            value: 33.286
          - type: ndcg_at_100
            value: 39.528999999999996
          - type: ndcg_at_1000
            value: 42.934
          - type: ndcg_at_3
            value: 29.29
          - type: ndcg_at_5
            value: 30.615
          - type: precision_at_1
            value: 31.019000000000002
          - type: precision_at_10
            value: 9.383
          - type: precision_at_100
            value: 1.6019999999999999
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 19.753
          - type: precision_at_5
            value: 14.815000000000001
          - type: recall_at_1
            value: 15.753
          - type: recall_at_10
            value: 40.896
          - type: recall_at_100
            value: 64.443
          - type: recall_at_1000
            value: 85.218
          - type: recall_at_3
            value: 26.526
          - type: recall_at_5
            value: 32.452999999999996
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 32.153999999999996
          - type: map_at_10
            value: 43.651
          - type: map_at_100
            value: 44.41
          - type: map_at_1000
            value: 44.487
          - type: map_at_3
            value: 41.239
          - type: map_at_5
            value: 42.659000000000006
          - type: mrr_at_1
            value: 64.30799999999999
          - type: mrr_at_10
            value: 71.22500000000001
          - type: mrr_at_100
            value: 71.57
          - type: mrr_at_1000
            value: 71.59100000000001
          - type: mrr_at_3
            value: 69.95
          - type: mrr_at_5
            value: 70.738
          - type: ndcg_at_1
            value: 64.30799999999999
          - type: ndcg_at_10
            value: 52.835
          - type: ndcg_at_100
            value: 55.840999999999994
          - type: ndcg_at_1000
            value: 57.484
          - type: ndcg_at_3
            value: 49.014
          - type: ndcg_at_5
            value: 51.01599999999999
          - type: precision_at_1
            value: 64.30799999999999
          - type: precision_at_10
            value: 10.77
          - type: precision_at_100
            value: 1.315
          - type: precision_at_1000
            value: 0.153
          - type: precision_at_3
            value: 30.223
          - type: precision_at_5
            value: 19.716
          - type: recall_at_1
            value: 32.153999999999996
          - type: recall_at_10
            value: 53.849000000000004
          - type: recall_at_100
            value: 65.75999999999999
          - type: recall_at_1000
            value: 76.705
          - type: recall_at_3
            value: 45.334
          - type: recall_at_5
            value: 49.291000000000004
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 63.5316
          - type: ap
            value: 58.90084300359825
          - type: f1
            value: 63.35727889030892
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: validation
        metrics:
          - type: map_at_1
            value: 20.566000000000003
          - type: map_at_10
            value: 32.229
          - type: map_at_100
            value: 33.445
          - type: map_at_1000
            value: 33.501
          - type: map_at_3
            value: 28.504
          - type: map_at_5
            value: 30.681000000000004
          - type: mrr_at_1
            value: 21.218
          - type: mrr_at_10
            value: 32.816
          - type: mrr_at_100
            value: 33.986
          - type: mrr_at_1000
            value: 34.035
          - type: mrr_at_3
            value: 29.15
          - type: mrr_at_5
            value: 31.290000000000003
          - type: ndcg_at_1
            value: 21.218
          - type: ndcg_at_10
            value: 38.832
          - type: ndcg_at_100
            value: 44.743
          - type: ndcg_at_1000
            value: 46.138
          - type: ndcg_at_3
            value: 31.232
          - type: ndcg_at_5
            value: 35.099999999999994
          - type: precision_at_1
            value: 21.218
          - type: precision_at_10
            value: 6.186
          - type: precision_at_100
            value: 0.914
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 13.314
          - type: precision_at_5
            value: 9.943
          - type: recall_at_1
            value: 20.566000000000003
          - type: recall_at_10
            value: 59.192
          - type: recall_at_100
            value: 86.626
          - type: recall_at_1000
            value: 97.283
          - type: recall_at_3
            value: 38.492
          - type: recall_at_5
            value: 47.760000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 92.56269949840402
          - type: f1
            value: 92.1020975473988
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 71.8467852257182
          - type: f1
            value: 53.652719348592015
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 69.00806993947546
          - type: f1
            value: 67.41429618885515
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 75.90114324142569
          - type: f1
            value: 76.25183590651454
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 31.350109978273395
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 28.768923695767327
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
        metrics:
          - type: map
            value: 31.716396735210754
          - type: mrr
            value: 32.88970538547634
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 5.604
          - type: map_at_10
            value: 12.379999999999999
          - type: map_at_100
            value: 15.791
          - type: map_at_1000
            value: 17.327
          - type: map_at_3
            value: 9.15
          - type: map_at_5
            value: 10.599
          - type: mrr_at_1
            value: 45.201
          - type: mrr_at_10
            value: 53.374
          - type: mrr_at_100
            value: 54.089
          - type: mrr_at_1000
            value: 54.123
          - type: mrr_at_3
            value: 51.44499999999999
          - type: mrr_at_5
            value: 52.59
          - type: ndcg_at_1
            value: 42.879
          - type: ndcg_at_10
            value: 33.891
          - type: ndcg_at_100
            value: 31.391999999999996
          - type: ndcg_at_1000
            value: 40.36
          - type: ndcg_at_3
            value: 39.076
          - type: ndcg_at_5
            value: 37.047000000000004
          - type: precision_at_1
            value: 44.582
          - type: precision_at_10
            value: 25.294
          - type: precision_at_100
            value: 8.285
          - type: precision_at_1000
            value: 2.1479999999999997
          - type: precision_at_3
            value: 36.120000000000005
          - type: precision_at_5
            value: 31.95
          - type: recall_at_1
            value: 5.604
          - type: recall_at_10
            value: 16.239
          - type: recall_at_100
            value: 32.16
          - type: recall_at_1000
            value: 64.513
          - type: recall_at_3
            value: 10.406
          - type: recall_at_5
            value: 12.684999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 25.881
          - type: map_at_10
            value: 39.501
          - type: map_at_100
            value: 40.615
          - type: map_at_1000
            value: 40.661
          - type: map_at_3
            value: 35.559000000000005
          - type: map_at_5
            value: 37.773
          - type: mrr_at_1
            value: 29.229
          - type: mrr_at_10
            value: 41.955999999999996
          - type: mrr_at_100
            value: 42.86
          - type: mrr_at_1000
            value: 42.893
          - type: mrr_at_3
            value: 38.562000000000005
          - type: mrr_at_5
            value: 40.542
          - type: ndcg_at_1
            value: 29.2
          - type: ndcg_at_10
            value: 46.703
          - type: ndcg_at_100
            value: 51.644
          - type: ndcg_at_1000
            value: 52.771
          - type: ndcg_at_3
            value: 39.141999999999996
          - type: ndcg_at_5
            value: 42.892
          - type: precision_at_1
            value: 29.2
          - type: precision_at_10
            value: 7.920000000000001
          - type: precision_at_100
            value: 1.0659999999999998
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 18.105
          - type: precision_at_5
            value: 13.036
          - type: recall_at_1
            value: 25.881
          - type: recall_at_10
            value: 66.266
          - type: recall_at_100
            value: 88.116
          - type: recall_at_1000
            value: 96.58200000000001
          - type: recall_at_3
            value: 46.526
          - type: recall_at_5
            value: 55.154
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 67.553
          - type: map_at_10
            value: 81.34
          - type: map_at_100
            value: 82.002
          - type: map_at_1000
            value: 82.027
          - type: map_at_3
            value: 78.281
          - type: map_at_5
            value: 80.149
          - type: mrr_at_1
            value: 77.72
          - type: mrr_at_10
            value: 84.733
          - type: mrr_at_100
            value: 84.878
          - type: mrr_at_1000
            value: 84.879
          - type: mrr_at_3
            value: 83.587
          - type: mrr_at_5
            value: 84.32600000000001
          - type: ndcg_at_1
            value: 77.75
          - type: ndcg_at_10
            value: 85.603
          - type: ndcg_at_100
            value: 87.069
          - type: ndcg_at_1000
            value: 87.25
          - type: ndcg_at_3
            value: 82.303
          - type: ndcg_at_5
            value: 84.03699999999999
          - type: precision_at_1
            value: 77.75
          - type: precision_at_10
            value: 13.04
          - type: precision_at_100
            value: 1.5070000000000001
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 35.903
          - type: precision_at_5
            value: 23.738
          - type: recall_at_1
            value: 67.553
          - type: recall_at_10
            value: 93.903
          - type: recall_at_100
            value: 99.062
          - type: recall_at_1000
            value: 99.935
          - type: recall_at_3
            value: 84.58099999999999
          - type: recall_at_5
            value: 89.316
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 46.46887711230235
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 54.166876298246926
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 4.053
          - type: map_at_10
            value: 9.693999999999999
          - type: map_at_100
            value: 11.387
          - type: map_at_1000
            value: 11.654
          - type: map_at_3
            value: 7.053
          - type: map_at_5
            value: 8.439
          - type: mrr_at_1
            value: 19.900000000000002
          - type: mrr_at_10
            value: 29.359
          - type: mrr_at_100
            value: 30.484
          - type: mrr_at_1000
            value: 30.553
          - type: mrr_at_3
            value: 26.200000000000003
          - type: mrr_at_5
            value: 28.115000000000002
          - type: ndcg_at_1
            value: 19.900000000000002
          - type: ndcg_at_10
            value: 16.575
          - type: ndcg_at_100
            value: 23.655
          - type: ndcg_at_1000
            value: 28.853
          - type: ndcg_at_3
            value: 15.848
          - type: ndcg_at_5
            value: 14.026
          - type: precision_at_1
            value: 19.900000000000002
          - type: precision_at_10
            value: 8.450000000000001
          - type: precision_at_100
            value: 1.872
          - type: precision_at_1000
            value: 0.313
          - type: precision_at_3
            value: 14.667
          - type: precision_at_5
            value: 12.32
          - type: recall_at_1
            value: 4.053
          - type: recall_at_10
            value: 17.169999999999998
          - type: recall_at_100
            value: 38.025
          - type: recall_at_1000
            value: 63.571999999999996
          - type: recall_at_3
            value: 8.903
          - type: recall_at_5
            value: 12.477
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 77.7548748519677
          - type: cos_sim_spearman
            value: 68.19926431966059
          - type: euclidean_pearson
            value: 71.69016204991725
          - type: euclidean_spearman
            value: 66.98099673026834
          - type: manhattan_pearson
            value: 71.62994072488664
          - type: manhattan_spearman
            value: 67.03435950744577
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 75.91051402657887
          - type: cos_sim_spearman
            value: 66.99390786191645
          - type: euclidean_pearson
            value: 71.54128036454578
          - type: euclidean_spearman
            value: 69.25605675649068
          - type: manhattan_pearson
            value: 71.60981030780171
          - type: manhattan_spearman
            value: 69.27513670128046
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 77.23835466417793
          - type: cos_sim_spearman
            value: 77.57623085766706
          - type: euclidean_pearson
            value: 77.5090992200725
          - type: euclidean_spearman
            value: 77.88601688144924
          - type: manhattan_pearson
            value: 77.39045060647423
          - type: manhattan_spearman
            value: 77.77552718279098
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 77.91692485139602
          - type: cos_sim_spearman
            value: 72.78258293483495
          - type: euclidean_pearson
            value: 74.64773017077789
          - type: euclidean_spearman
            value: 71.81662299104619
          - type: manhattan_pearson
            value: 74.71043337995533
          - type: manhattan_spearman
            value: 71.83960860845646
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 82.13422113617578
          - type: cos_sim_spearman
            value: 82.61707296911949
          - type: euclidean_pearson
            value: 81.42487480400861
          - type: euclidean_spearman
            value: 82.17970991273835
          - type: manhattan_pearson
            value: 81.41985055477845
          - type: manhattan_spearman
            value: 82.15823204362937
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 79.07989542843826
          - type: cos_sim_spearman
            value: 80.09839524406284
          - type: euclidean_pearson
            value: 76.43186028364195
          - type: euclidean_spearman
            value: 76.76720323266471
          - type: manhattan_pearson
            value: 76.4674747409161
          - type: manhattan_spearman
            value: 76.81797407068667
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 87.0420983224933
          - type: cos_sim_spearman
            value: 87.25017540413702
          - type: euclidean_pearson
            value: 84.56384596473421
          - type: euclidean_spearman
            value: 84.72557417564886
          - type: manhattan_pearson
            value: 84.7329954474549
          - type: manhattan_spearman
            value: 84.75071371008909
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 68.47031320016424
          - type: cos_sim_spearman
            value: 68.7486910762485
          - type: euclidean_pearson
            value: 71.30330985913915
          - type: euclidean_spearman
            value: 71.59666258520735
          - type: manhattan_pearson
            value: 71.4423884279027
          - type: manhattan_spearman
            value: 71.67460706861044
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 80.79514366062675
          - type: cos_sim_spearman
            value: 79.20585637461048
          - type: euclidean_pearson
            value: 78.6591557395699
          - type: euclidean_spearman
            value: 77.86455794285718
          - type: manhattan_pearson
            value: 78.67754806486865
          - type: manhattan_spearman
            value: 77.88178687200732
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
        metrics:
          - type: map
            value: 77.71580844366375
          - type: mrr
            value: 93.04215845882513
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 56.39999999999999
          - type: map_at_10
            value: 65.701
          - type: map_at_100
            value: 66.32000000000001
          - type: map_at_1000
            value: 66.34100000000001
          - type: map_at_3
            value: 62.641999999999996
          - type: map_at_5
            value: 64.342
          - type: mrr_at_1
            value: 58.667
          - type: mrr_at_10
            value: 66.45299999999999
          - type: mrr_at_100
            value: 66.967
          - type: mrr_at_1000
            value: 66.988
          - type: mrr_at_3
            value: 64.11099999999999
          - type: mrr_at_5
            value: 65.411
          - type: ndcg_at_1
            value: 58.667
          - type: ndcg_at_10
            value: 70.165
          - type: ndcg_at_100
            value: 72.938
          - type: ndcg_at_1000
            value: 73.456
          - type: ndcg_at_3
            value: 64.79
          - type: ndcg_at_5
            value: 67.28
          - type: precision_at_1
            value: 58.667
          - type: precision_at_10
            value: 9.4
          - type: precision_at_100
            value: 1.087
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 24.889
          - type: precision_at_5
            value: 16.667
          - type: recall_at_1
            value: 56.39999999999999
          - type: recall_at_10
            value: 83.122
          - type: recall_at_100
            value: 95.667
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 68.378
          - type: recall_at_5
            value: 74.68299999999999
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 99.76831683168317
          - type: cos_sim_ap
            value: 93.47124923047998
          - type: cos_sim_f1
            value: 88.06122448979592
          - type: cos_sim_precision
            value: 89.89583333333333
          - type: cos_sim_recall
            value: 86.3
          - type: dot_accuracy
            value: 99.57326732673268
          - type: dot_ap
            value: 84.06577868167207
          - type: dot_f1
            value: 77.82629791363416
          - type: dot_precision
            value: 75.58906691800189
          - type: dot_recall
            value: 80.2
          - type: euclidean_accuracy
            value: 99.74257425742574
          - type: euclidean_ap
            value: 92.1904681653555
          - type: euclidean_f1
            value: 86.74821610601427
          - type: euclidean_precision
            value: 88.46153846153845
          - type: euclidean_recall
            value: 85.1
          - type: manhattan_accuracy
            value: 99.74554455445545
          - type: manhattan_ap
            value: 92.4337790809948
          - type: manhattan_f1
            value: 86.86765457332653
          - type: manhattan_precision
            value: 88.81922675026124
          - type: manhattan_recall
            value: 85
          - type: max_accuracy
            value: 99.76831683168317
          - type: max_ap
            value: 93.47124923047998
          - type: max_f1
            value: 88.06122448979592
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 59.194098673976484
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 32.5744032578115
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 49.61186384154483
          - type: mrr
            value: 50.55424253034547
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 26.047224542079068
          - type: cos_sim_spearman
            value: 27.870478281195467
          - type: dot_pearson
            value: 25.182420685701217
          - type: dot_spearman
            value: 25.116243491984985
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.22300000000000003
          - type: map_at_10
            value: 1.762
          - type: map_at_100
            value: 9.984
          - type: map_at_1000
            value: 24.265
          - type: map_at_3
            value: 0.631
          - type: map_at_5
            value: 0.9950000000000001
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 92.833
          - type: mrr_at_100
            value: 92.833
          - type: mrr_at_1000
            value: 92.833
          - type: mrr_at_3
            value: 92.333
          - type: mrr_at_5
            value: 92.833
          - type: ndcg_at_1
            value: 83
          - type: ndcg_at_10
            value: 75.17
          - type: ndcg_at_100
            value: 55.432
          - type: ndcg_at_1000
            value: 49.482
          - type: ndcg_at_3
            value: 82.184
          - type: ndcg_at_5
            value: 79.712
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 78.60000000000001
          - type: precision_at_100
            value: 56.56
          - type: precision_at_1000
            value: 22.334
          - type: precision_at_3
            value: 86.667
          - type: precision_at_5
            value: 83.6
          - type: recall_at_1
            value: 0.22300000000000003
          - type: recall_at_10
            value: 1.9879999999999998
          - type: recall_at_100
            value: 13.300999999999998
          - type: recall_at_1000
            value: 46.587
          - type: recall_at_3
            value: 0.6629999999999999
          - type: recall_at_5
            value: 1.079
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 3.047
          - type: map_at_10
            value: 8.792
          - type: map_at_100
            value: 14.631
          - type: map_at_1000
            value: 16.127
          - type: map_at_3
            value: 4.673
          - type: map_at_5
            value: 5.897
          - type: mrr_at_1
            value: 38.775999999999996
          - type: mrr_at_10
            value: 49.271
          - type: mrr_at_100
            value: 50.181
          - type: mrr_at_1000
            value: 50.2
          - type: mrr_at_3
            value: 44.558
          - type: mrr_at_5
            value: 47.925000000000004
          - type: ndcg_at_1
            value: 35.714
          - type: ndcg_at_10
            value: 23.44
          - type: ndcg_at_100
            value: 35.345
          - type: ndcg_at_1000
            value: 46.495
          - type: ndcg_at_3
            value: 26.146
          - type: ndcg_at_5
            value: 24.878
          - type: precision_at_1
            value: 38.775999999999996
          - type: precision_at_10
            value: 20.816000000000003
          - type: precision_at_100
            value: 7.428999999999999
          - type: precision_at_1000
            value: 1.494
          - type: precision_at_3
            value: 25.85
          - type: precision_at_5
            value: 24.082
          - type: recall_at_1
            value: 3.047
          - type: recall_at_10
            value: 14.975
          - type: recall_at_100
            value: 45.943
          - type: recall_at_1000
            value: 80.31099999999999
          - type: recall_at_3
            value: 5.478000000000001
          - type: recall_at_5
            value: 8.294
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 68.84080000000002
          - type: ap
            value: 13.135219251019848
          - type: f1
            value: 52.849999421995506
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 56.68647425014149
          - type: f1
            value: 56.97981427365949
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 40.8911707239219
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 83.04226023722954
          - type: cos_sim_ap
            value: 63.681339908301325
          - type: cos_sim_f1
            value: 60.349184470480125
          - type: cos_sim_precision
            value: 53.437754271765655
          - type: cos_sim_recall
            value: 69.31398416886545
          - type: dot_accuracy
            value: 81.46271681468677
          - type: dot_ap
            value: 57.78072296265885
          - type: dot_f1
            value: 56.28769265132901
          - type: dot_precision
            value: 48.7993803253292
          - type: dot_recall
            value: 66.49076517150397
          - type: euclidean_accuracy
            value: 82.16606067830959
          - type: euclidean_ap
            value: 59.974530371203514
          - type: euclidean_f1
            value: 56.856023506366306
          - type: euclidean_precision
            value: 53.037916857012334
          - type: euclidean_recall
            value: 61.2664907651715
          - type: manhattan_accuracy
            value: 82.16606067830959
          - type: manhattan_ap
            value: 59.98962379571767
          - type: manhattan_f1
            value: 56.98153158451947
          - type: manhattan_precision
            value: 51.41158989598811
          - type: manhattan_recall
            value: 63.90501319261214
          - type: max_accuracy
            value: 83.04226023722954
          - type: max_ap
            value: 63.681339908301325
          - type: max_f1
            value: 60.349184470480125
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 88.56871191834517
          - type: cos_sim_ap
            value: 84.80240716354544
          - type: cos_sim_f1
            value: 77.07765285922385
          - type: cos_sim_precision
            value: 74.84947406601378
          - type: cos_sim_recall
            value: 79.44256236526024
          - type: dot_accuracy
            value: 86.00923662048356
          - type: dot_ap
            value: 78.6556459012073
          - type: dot_f1
            value: 72.7583749109052
          - type: dot_precision
            value: 67.72823779193206
          - type: dot_recall
            value: 78.59562673236834
          - type: euclidean_accuracy
            value: 87.84103698529127
          - type: euclidean_ap
            value: 83.50424424952834
          - type: euclidean_f1
            value: 75.74496544549307
          - type: euclidean_precision
            value: 73.19402556369381
          - type: euclidean_recall
            value: 78.48013550970127
          - type: manhattan_accuracy
            value: 87.9225365777933
          - type: manhattan_ap
            value: 83.49479248597825
          - type: manhattan_f1
            value: 75.67748162447101
          - type: manhattan_precision
            value: 73.06810035842294
          - type: manhattan_recall
            value: 78.48013550970127
          - type: max_accuracy
            value: 88.56871191834517
          - type: max_ap
            value: 84.80240716354544
          - type: max_f1
            value: 77.07765285922385

SGPT-2.7B-weightedmean-msmarco-specb-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 124796 with parameters:

{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 7.5e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}