|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- skript |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: wikineural-multilingual-ner-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: skript |
|
type: skript |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9013505175841503 |
|
- name: Recall |
|
type: recall |
|
value: 0.9308318584070796 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9158539983282251 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9658385093167702 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wikineural-multilingual-ner-finetuned-ner |
|
|
|
This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the skript dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1219 |
|
- Precision: 0.9014 |
|
- Recall: 0.9308 |
|
- F1: 0.9159 |
|
- Accuracy: 0.9658 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 298 | 0.1208 | 0.9016 | 0.8988 | 0.9002 | 0.9604 | |
|
| 0.118 | 2.0 | 596 | 0.1152 | 0.9016 | 0.9210 | 0.9112 | 0.9645 | |
|
| 0.118 | 3.0 | 894 | 0.1219 | 0.9014 | 0.9308 | 0.9159 | 0.9658 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|